Properties

Label 4002.2.a.bh.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - 3x^{6} - 16x^{5} + 51x^{4} + 45x^{3} - 152x^{2} - 54x + 70 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-0.924948\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -4.09187 q^{5} +1.00000 q^{6} -2.85370 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -4.09187 q^{5} +1.00000 q^{6} -2.85370 q^{7} +1.00000 q^{8} +1.00000 q^{9} -4.09187 q^{10} +0.493452 q^{11} +1.00000 q^{12} -5.03601 q^{13} -2.85370 q^{14} -4.09187 q^{15} +1.00000 q^{16} -0.585323 q^{17} +1.00000 q^{18} +0.996199 q^{19} -4.09187 q^{20} -2.85370 q^{21} +0.493452 q^{22} +1.00000 q^{23} +1.00000 q^{24} +11.7434 q^{25} -5.03601 q^{26} +1.00000 q^{27} -2.85370 q^{28} -1.00000 q^{29} -4.09187 q^{30} +4.90003 q^{31} +1.00000 q^{32} +0.493452 q^{33} -0.585323 q^{34} +11.6770 q^{35} +1.00000 q^{36} -1.11526 q^{37} +0.996199 q^{38} -5.03601 q^{39} -4.09187 q^{40} +7.29132 q^{41} -2.85370 q^{42} +6.49702 q^{43} +0.493452 q^{44} -4.09187 q^{45} +1.00000 q^{46} +4.69052 q^{47} +1.00000 q^{48} +1.14359 q^{49} +11.7434 q^{50} -0.585323 q^{51} -5.03601 q^{52} +7.44832 q^{53} +1.00000 q^{54} -2.01914 q^{55} -2.85370 q^{56} +0.996199 q^{57} -1.00000 q^{58} +1.14773 q^{59} -4.09187 q^{60} -6.67719 q^{61} +4.90003 q^{62} -2.85370 q^{63} +1.00000 q^{64} +20.6067 q^{65} +0.493452 q^{66} +16.1639 q^{67} -0.585323 q^{68} +1.00000 q^{69} +11.6770 q^{70} +6.89243 q^{71} +1.00000 q^{72} +1.12859 q^{73} -1.11526 q^{74} +11.7434 q^{75} +0.996199 q^{76} -1.40816 q^{77} -5.03601 q^{78} -10.1085 q^{79} -4.09187 q^{80} +1.00000 q^{81} +7.29132 q^{82} -0.118271 q^{83} -2.85370 q^{84} +2.39507 q^{85} +6.49702 q^{86} -1.00000 q^{87} +0.493452 q^{88} -12.2737 q^{89} -4.09187 q^{90} +14.3713 q^{91} +1.00000 q^{92} +4.90003 q^{93} +4.69052 q^{94} -4.07632 q^{95} +1.00000 q^{96} +1.37030 q^{97} +1.14359 q^{98} +0.493452 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q + 7 q^{2} + 7 q^{3} + 7 q^{4} + q^{5} + 7 q^{6} - 2 q^{7} + 7 q^{8} + 7 q^{9} + q^{10} + 11 q^{11} + 7 q^{12} - q^{13} - 2 q^{14} + q^{15} + 7 q^{16} + 18 q^{17} + 7 q^{18} + 6 q^{19} + q^{20} - 2 q^{21} + 11 q^{22} + 7 q^{23} + 7 q^{24} + 12 q^{25} - q^{26} + 7 q^{27} - 2 q^{28} - 7 q^{29} + q^{30} + 3 q^{31} + 7 q^{32} + 11 q^{33} + 18 q^{34} - 4 q^{35} + 7 q^{36} + 5 q^{37} + 6 q^{38} - q^{39} + q^{40} + 25 q^{41} - 2 q^{42} + 20 q^{43} + 11 q^{44} + q^{45} + 7 q^{46} + 7 q^{48} + 7 q^{49} + 12 q^{50} + 18 q^{51} - q^{52} - 4 q^{53} + 7 q^{54} + 17 q^{55} - 2 q^{56} + 6 q^{57} - 7 q^{58} - 17 q^{59} + q^{60} + 5 q^{61} + 3 q^{62} - 2 q^{63} + 7 q^{64} + 7 q^{65} + 11 q^{66} + 15 q^{67} + 18 q^{68} + 7 q^{69} - 4 q^{70} + 15 q^{71} + 7 q^{72} + 14 q^{73} + 5 q^{74} + 12 q^{75} + 6 q^{76} - 12 q^{77} - q^{78} - 4 q^{79} + q^{80} + 7 q^{81} + 25 q^{82} + 14 q^{83} - 2 q^{84} + 34 q^{85} + 20 q^{86} - 7 q^{87} + 11 q^{88} + 8 q^{89} + q^{90} - 6 q^{91} + 7 q^{92} + 3 q^{93} - 18 q^{95} + 7 q^{96} - 18 q^{97} + 7 q^{98} + 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −4.09187 −1.82994 −0.914970 0.403521i \(-0.867786\pi\)
−0.914970 + 0.403521i \(0.867786\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.85370 −1.07860 −0.539298 0.842115i \(-0.681310\pi\)
−0.539298 + 0.842115i \(0.681310\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −4.09187 −1.29396
\(11\) 0.493452 0.148781 0.0743907 0.997229i \(-0.476299\pi\)
0.0743907 + 0.997229i \(0.476299\pi\)
\(12\) 1.00000 0.288675
\(13\) −5.03601 −1.39674 −0.698370 0.715737i \(-0.746091\pi\)
−0.698370 + 0.715737i \(0.746091\pi\)
\(14\) −2.85370 −0.762683
\(15\) −4.09187 −1.05652
\(16\) 1.00000 0.250000
\(17\) −0.585323 −0.141962 −0.0709808 0.997478i \(-0.522613\pi\)
−0.0709808 + 0.997478i \(0.522613\pi\)
\(18\) 1.00000 0.235702
\(19\) 0.996199 0.228544 0.114272 0.993450i \(-0.463547\pi\)
0.114272 + 0.993450i \(0.463547\pi\)
\(20\) −4.09187 −0.914970
\(21\) −2.85370 −0.622728
\(22\) 0.493452 0.105204
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) 11.7434 2.34868
\(26\) −5.03601 −0.987644
\(27\) 1.00000 0.192450
\(28\) −2.85370 −0.539298
\(29\) −1.00000 −0.185695
\(30\) −4.09187 −0.747070
\(31\) 4.90003 0.880071 0.440035 0.897980i \(-0.354966\pi\)
0.440035 + 0.897980i \(0.354966\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.493452 0.0858990
\(34\) −0.585323 −0.100382
\(35\) 11.6770 1.97377
\(36\) 1.00000 0.166667
\(37\) −1.11526 −0.183347 −0.0916737 0.995789i \(-0.529222\pi\)
−0.0916737 + 0.995789i \(0.529222\pi\)
\(38\) 0.996199 0.161605
\(39\) −5.03601 −0.806408
\(40\) −4.09187 −0.646982
\(41\) 7.29132 1.13871 0.569356 0.822091i \(-0.307193\pi\)
0.569356 + 0.822091i \(0.307193\pi\)
\(42\) −2.85370 −0.440335
\(43\) 6.49702 0.990786 0.495393 0.868669i \(-0.335024\pi\)
0.495393 + 0.868669i \(0.335024\pi\)
\(44\) 0.493452 0.0743907
\(45\) −4.09187 −0.609980
\(46\) 1.00000 0.147442
\(47\) 4.69052 0.684183 0.342092 0.939667i \(-0.388865\pi\)
0.342092 + 0.939667i \(0.388865\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.14359 0.163370
\(50\) 11.7434 1.66077
\(51\) −0.585323 −0.0819616
\(52\) −5.03601 −0.698370
\(53\) 7.44832 1.02310 0.511552 0.859252i \(-0.329071\pi\)
0.511552 + 0.859252i \(0.329071\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.01914 −0.272261
\(56\) −2.85370 −0.381341
\(57\) 0.996199 0.131950
\(58\) −1.00000 −0.131306
\(59\) 1.14773 0.149421 0.0747107 0.997205i \(-0.476197\pi\)
0.0747107 + 0.997205i \(0.476197\pi\)
\(60\) −4.09187 −0.528258
\(61\) −6.67719 −0.854927 −0.427464 0.904033i \(-0.640593\pi\)
−0.427464 + 0.904033i \(0.640593\pi\)
\(62\) 4.90003 0.622304
\(63\) −2.85370 −0.359532
\(64\) 1.00000 0.125000
\(65\) 20.6067 2.55595
\(66\) 0.493452 0.0607397
\(67\) 16.1639 1.97473 0.987367 0.158448i \(-0.0506491\pi\)
0.987367 + 0.158448i \(0.0506491\pi\)
\(68\) −0.585323 −0.0709808
\(69\) 1.00000 0.120386
\(70\) 11.6770 1.39566
\(71\) 6.89243 0.817980 0.408990 0.912539i \(-0.365881\pi\)
0.408990 + 0.912539i \(0.365881\pi\)
\(72\) 1.00000 0.117851
\(73\) 1.12859 0.132091 0.0660455 0.997817i \(-0.478962\pi\)
0.0660455 + 0.997817i \(0.478962\pi\)
\(74\) −1.11526 −0.129646
\(75\) 11.7434 1.35601
\(76\) 0.996199 0.114272
\(77\) −1.40816 −0.160475
\(78\) −5.03601 −0.570216
\(79\) −10.1085 −1.13730 −0.568648 0.822581i \(-0.692533\pi\)
−0.568648 + 0.822581i \(0.692533\pi\)
\(80\) −4.09187 −0.457485
\(81\) 1.00000 0.111111
\(82\) 7.29132 0.805191
\(83\) −0.118271 −0.0129819 −0.00649096 0.999979i \(-0.502066\pi\)
−0.00649096 + 0.999979i \(0.502066\pi\)
\(84\) −2.85370 −0.311364
\(85\) 2.39507 0.259781
\(86\) 6.49702 0.700592
\(87\) −1.00000 −0.107211
\(88\) 0.493452 0.0526022
\(89\) −12.2737 −1.30101 −0.650503 0.759504i \(-0.725442\pi\)
−0.650503 + 0.759504i \(0.725442\pi\)
\(90\) −4.09187 −0.431321
\(91\) 14.3713 1.50652
\(92\) 1.00000 0.104257
\(93\) 4.90003 0.508109
\(94\) 4.69052 0.483790
\(95\) −4.07632 −0.418221
\(96\) 1.00000 0.102062
\(97\) 1.37030 0.139133 0.0695667 0.997577i \(-0.477838\pi\)
0.0695667 + 0.997577i \(0.477838\pi\)
\(98\) 1.14359 0.115520
\(99\) 0.493452 0.0495938
\(100\) 11.7434 1.17434
\(101\) 9.39187 0.934526 0.467263 0.884118i \(-0.345240\pi\)
0.467263 + 0.884118i \(0.345240\pi\)
\(102\) −0.585323 −0.0579556
\(103\) 9.77585 0.963244 0.481622 0.876379i \(-0.340048\pi\)
0.481622 + 0.876379i \(0.340048\pi\)
\(104\) −5.03601 −0.493822
\(105\) 11.6770 1.13955
\(106\) 7.44832 0.723444
\(107\) −10.2530 −0.991194 −0.495597 0.868553i \(-0.665051\pi\)
−0.495597 + 0.868553i \(0.665051\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.74008 0.454017 0.227009 0.973893i \(-0.427105\pi\)
0.227009 + 0.973893i \(0.427105\pi\)
\(110\) −2.01914 −0.192518
\(111\) −1.11526 −0.105856
\(112\) −2.85370 −0.269649
\(113\) 8.46983 0.796775 0.398387 0.917217i \(-0.369570\pi\)
0.398387 + 0.917217i \(0.369570\pi\)
\(114\) 0.996199 0.0933026
\(115\) −4.09187 −0.381569
\(116\) −1.00000 −0.0928477
\(117\) −5.03601 −0.465580
\(118\) 1.14773 0.105657
\(119\) 1.67033 0.153119
\(120\) −4.09187 −0.373535
\(121\) −10.7565 −0.977864
\(122\) −6.67719 −0.604525
\(123\) 7.29132 0.657436
\(124\) 4.90003 0.440035
\(125\) −27.5932 −2.46801
\(126\) −2.85370 −0.254228
\(127\) −13.0170 −1.15507 −0.577534 0.816366i \(-0.695985\pi\)
−0.577534 + 0.816366i \(0.695985\pi\)
\(128\) 1.00000 0.0883883
\(129\) 6.49702 0.572031
\(130\) 20.6067 1.80733
\(131\) 9.35723 0.817545 0.408773 0.912636i \(-0.365957\pi\)
0.408773 + 0.912636i \(0.365957\pi\)
\(132\) 0.493452 0.0429495
\(133\) −2.84285 −0.246506
\(134\) 16.1639 1.39635
\(135\) −4.09187 −0.352172
\(136\) −0.585323 −0.0501910
\(137\) −14.0617 −1.20138 −0.600688 0.799484i \(-0.705106\pi\)
−0.600688 + 0.799484i \(0.705106\pi\)
\(138\) 1.00000 0.0851257
\(139\) 1.33707 0.113408 0.0567042 0.998391i \(-0.481941\pi\)
0.0567042 + 0.998391i \(0.481941\pi\)
\(140\) 11.6770 0.986883
\(141\) 4.69052 0.395013
\(142\) 6.89243 0.578399
\(143\) −2.48503 −0.207809
\(144\) 1.00000 0.0833333
\(145\) 4.09187 0.339811
\(146\) 1.12859 0.0934025
\(147\) 1.14359 0.0943216
\(148\) −1.11526 −0.0916737
\(149\) 16.6516 1.36415 0.682077 0.731280i \(-0.261077\pi\)
0.682077 + 0.731280i \(0.261077\pi\)
\(150\) 11.7434 0.958845
\(151\) −11.4148 −0.928922 −0.464461 0.885593i \(-0.653752\pi\)
−0.464461 + 0.885593i \(0.653752\pi\)
\(152\) 0.996199 0.0808024
\(153\) −0.585323 −0.0473206
\(154\) −1.40816 −0.113473
\(155\) −20.0503 −1.61048
\(156\) −5.03601 −0.403204
\(157\) −15.9982 −1.27680 −0.638399 0.769705i \(-0.720403\pi\)
−0.638399 + 0.769705i \(0.720403\pi\)
\(158\) −10.1085 −0.804190
\(159\) 7.44832 0.590690
\(160\) −4.09187 −0.323491
\(161\) −2.85370 −0.224903
\(162\) 1.00000 0.0785674
\(163\) 23.2198 1.81871 0.909356 0.416019i \(-0.136575\pi\)
0.909356 + 0.416019i \(0.136575\pi\)
\(164\) 7.29132 0.569356
\(165\) −2.01914 −0.157190
\(166\) −0.118271 −0.00917960
\(167\) 16.3016 1.26145 0.630727 0.776005i \(-0.282757\pi\)
0.630727 + 0.776005i \(0.282757\pi\)
\(168\) −2.85370 −0.220168
\(169\) 12.3614 0.950880
\(170\) 2.39507 0.183693
\(171\) 0.996199 0.0761812
\(172\) 6.49702 0.495393
\(173\) −16.9323 −1.28734 −0.643669 0.765304i \(-0.722589\pi\)
−0.643669 + 0.765304i \(0.722589\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −33.5121 −2.53328
\(176\) 0.493452 0.0371953
\(177\) 1.14773 0.0862685
\(178\) −12.2737 −0.919950
\(179\) 16.5484 1.23688 0.618442 0.785831i \(-0.287764\pi\)
0.618442 + 0.785831i \(0.287764\pi\)
\(180\) −4.09187 −0.304990
\(181\) 9.58866 0.712719 0.356360 0.934349i \(-0.384018\pi\)
0.356360 + 0.934349i \(0.384018\pi\)
\(182\) 14.3713 1.06527
\(183\) −6.67719 −0.493592
\(184\) 1.00000 0.0737210
\(185\) 4.56349 0.335515
\(186\) 4.90003 0.359287
\(187\) −0.288829 −0.0211213
\(188\) 4.69052 0.342092
\(189\) −2.85370 −0.207576
\(190\) −4.07632 −0.295727
\(191\) −0.377430 −0.0273099 −0.0136549 0.999907i \(-0.504347\pi\)
−0.0136549 + 0.999907i \(0.504347\pi\)
\(192\) 1.00000 0.0721688
\(193\) −5.97717 −0.430246 −0.215123 0.976587i \(-0.569015\pi\)
−0.215123 + 0.976587i \(0.569015\pi\)
\(194\) 1.37030 0.0983821
\(195\) 20.6067 1.47568
\(196\) 1.14359 0.0816849
\(197\) 23.4602 1.67147 0.835734 0.549135i \(-0.185043\pi\)
0.835734 + 0.549135i \(0.185043\pi\)
\(198\) 0.493452 0.0350681
\(199\) −11.6183 −0.823600 −0.411800 0.911274i \(-0.635100\pi\)
−0.411800 + 0.911274i \(0.635100\pi\)
\(200\) 11.7434 0.830384
\(201\) 16.1639 1.14011
\(202\) 9.39187 0.660810
\(203\) 2.85370 0.200290
\(204\) −0.585323 −0.0409808
\(205\) −29.8351 −2.08378
\(206\) 9.77585 0.681116
\(207\) 1.00000 0.0695048
\(208\) −5.03601 −0.349185
\(209\) 0.491576 0.0340030
\(210\) 11.6770 0.805787
\(211\) 12.4896 0.859816 0.429908 0.902873i \(-0.358546\pi\)
0.429908 + 0.902873i \(0.358546\pi\)
\(212\) 7.44832 0.511552
\(213\) 6.89243 0.472261
\(214\) −10.2530 −0.700880
\(215\) −26.5850 −1.81308
\(216\) 1.00000 0.0680414
\(217\) −13.9832 −0.949241
\(218\) 4.74008 0.321039
\(219\) 1.12859 0.0762628
\(220\) −2.01914 −0.136131
\(221\) 2.94770 0.198283
\(222\) −1.11526 −0.0748512
\(223\) −2.51777 −0.168602 −0.0843011 0.996440i \(-0.526866\pi\)
−0.0843011 + 0.996440i \(0.526866\pi\)
\(224\) −2.85370 −0.190671
\(225\) 11.7434 0.782894
\(226\) 8.46983 0.563405
\(227\) 8.87577 0.589106 0.294553 0.955635i \(-0.404829\pi\)
0.294553 + 0.955635i \(0.404829\pi\)
\(228\) 0.996199 0.0659749
\(229\) −22.0806 −1.45913 −0.729564 0.683913i \(-0.760277\pi\)
−0.729564 + 0.683913i \(0.760277\pi\)
\(230\) −4.09187 −0.269810
\(231\) −1.40816 −0.0926503
\(232\) −1.00000 −0.0656532
\(233\) 10.8219 0.708968 0.354484 0.935062i \(-0.384657\pi\)
0.354484 + 0.935062i \(0.384657\pi\)
\(234\) −5.03601 −0.329215
\(235\) −19.1930 −1.25201
\(236\) 1.14773 0.0747107
\(237\) −10.1085 −0.656618
\(238\) 1.67033 0.108272
\(239\) 21.4582 1.38802 0.694008 0.719967i \(-0.255843\pi\)
0.694008 + 0.719967i \(0.255843\pi\)
\(240\) −4.09187 −0.264129
\(241\) −4.15852 −0.267874 −0.133937 0.990990i \(-0.542762\pi\)
−0.133937 + 0.990990i \(0.542762\pi\)
\(242\) −10.7565 −0.691454
\(243\) 1.00000 0.0641500
\(244\) −6.67719 −0.427464
\(245\) −4.67942 −0.298957
\(246\) 7.29132 0.464877
\(247\) −5.01687 −0.319216
\(248\) 4.90003 0.311152
\(249\) −0.118271 −0.00749511
\(250\) −27.5932 −1.74514
\(251\) −14.0739 −0.888337 −0.444168 0.895943i \(-0.646501\pi\)
−0.444168 + 0.895943i \(0.646501\pi\)
\(252\) −2.85370 −0.179766
\(253\) 0.493452 0.0310231
\(254\) −13.0170 −0.816757
\(255\) 2.39507 0.149985
\(256\) 1.00000 0.0625000
\(257\) 17.5843 1.09688 0.548439 0.836190i \(-0.315222\pi\)
0.548439 + 0.836190i \(0.315222\pi\)
\(258\) 6.49702 0.404487
\(259\) 3.18261 0.197758
\(260\) 20.6067 1.27797
\(261\) −1.00000 −0.0618984
\(262\) 9.35723 0.578092
\(263\) 7.57374 0.467017 0.233508 0.972355i \(-0.424979\pi\)
0.233508 + 0.972355i \(0.424979\pi\)
\(264\) 0.493452 0.0303699
\(265\) −30.4775 −1.87222
\(266\) −2.84285 −0.174306
\(267\) −12.2737 −0.751136
\(268\) 16.1639 0.987367
\(269\) 23.7986 1.45102 0.725512 0.688209i \(-0.241603\pi\)
0.725512 + 0.688209i \(0.241603\pi\)
\(270\) −4.09187 −0.249023
\(271\) 0.414208 0.0251613 0.0125807 0.999921i \(-0.495995\pi\)
0.0125807 + 0.999921i \(0.495995\pi\)
\(272\) −0.585323 −0.0354904
\(273\) 14.3713 0.869788
\(274\) −14.0617 −0.849501
\(275\) 5.79481 0.349440
\(276\) 1.00000 0.0601929
\(277\) 27.6210 1.65958 0.829792 0.558073i \(-0.188459\pi\)
0.829792 + 0.558073i \(0.188459\pi\)
\(278\) 1.33707 0.0801919
\(279\) 4.90003 0.293357
\(280\) 11.6770 0.697832
\(281\) 0.926190 0.0552519 0.0276259 0.999618i \(-0.491205\pi\)
0.0276259 + 0.999618i \(0.491205\pi\)
\(282\) 4.69052 0.279317
\(283\) 31.2174 1.85568 0.927840 0.372979i \(-0.121664\pi\)
0.927840 + 0.372979i \(0.121664\pi\)
\(284\) 6.89243 0.408990
\(285\) −4.07632 −0.241460
\(286\) −2.48503 −0.146943
\(287\) −20.8072 −1.22821
\(288\) 1.00000 0.0589256
\(289\) −16.6574 −0.979847
\(290\) 4.09187 0.240283
\(291\) 1.37030 0.0803287
\(292\) 1.12859 0.0660455
\(293\) −5.61469 −0.328014 −0.164007 0.986459i \(-0.552442\pi\)
−0.164007 + 0.986459i \(0.552442\pi\)
\(294\) 1.14359 0.0666955
\(295\) −4.69636 −0.273432
\(296\) −1.11526 −0.0648231
\(297\) 0.493452 0.0286330
\(298\) 16.6516 0.964603
\(299\) −5.03601 −0.291240
\(300\) 11.7434 0.678006
\(301\) −18.5405 −1.06866
\(302\) −11.4148 −0.656847
\(303\) 9.39187 0.539549
\(304\) 0.996199 0.0571359
\(305\) 27.3222 1.56447
\(306\) −0.585323 −0.0334607
\(307\) 30.8183 1.75889 0.879446 0.475998i \(-0.157913\pi\)
0.879446 + 0.475998i \(0.157913\pi\)
\(308\) −1.40816 −0.0802375
\(309\) 9.77585 0.556129
\(310\) −20.0503 −1.13878
\(311\) 7.44042 0.421908 0.210954 0.977496i \(-0.432343\pi\)
0.210954 + 0.977496i \(0.432343\pi\)
\(312\) −5.03601 −0.285108
\(313\) −21.6879 −1.22587 −0.612936 0.790133i \(-0.710012\pi\)
−0.612936 + 0.790133i \(0.710012\pi\)
\(314\) −15.9982 −0.902833
\(315\) 11.6770 0.657922
\(316\) −10.1085 −0.568648
\(317\) 15.4503 0.867774 0.433887 0.900967i \(-0.357142\pi\)
0.433887 + 0.900967i \(0.357142\pi\)
\(318\) 7.44832 0.417681
\(319\) −0.493452 −0.0276280
\(320\) −4.09187 −0.228743
\(321\) −10.2530 −0.572266
\(322\) −2.85370 −0.159030
\(323\) −0.583098 −0.0324445
\(324\) 1.00000 0.0555556
\(325\) −59.1400 −3.28050
\(326\) 23.2198 1.28602
\(327\) 4.74008 0.262127
\(328\) 7.29132 0.402596
\(329\) −13.3853 −0.737957
\(330\) −2.01914 −0.111150
\(331\) −32.6232 −1.79313 −0.896567 0.442909i \(-0.853947\pi\)
−0.896567 + 0.442909i \(0.853947\pi\)
\(332\) −0.118271 −0.00649096
\(333\) −1.11526 −0.0611158
\(334\) 16.3016 0.891982
\(335\) −66.1406 −3.61365
\(336\) −2.85370 −0.155682
\(337\) 2.83896 0.154648 0.0773241 0.997006i \(-0.475362\pi\)
0.0773241 + 0.997006i \(0.475362\pi\)
\(338\) 12.3614 0.672374
\(339\) 8.46983 0.460018
\(340\) 2.39507 0.129891
\(341\) 2.41793 0.130938
\(342\) 0.996199 0.0538683
\(343\) 16.7124 0.902386
\(344\) 6.49702 0.350296
\(345\) −4.09187 −0.220299
\(346\) −16.9323 −0.910285
\(347\) 24.9698 1.34045 0.670224 0.742159i \(-0.266198\pi\)
0.670224 + 0.742159i \(0.266198\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −16.8513 −0.902029 −0.451015 0.892517i \(-0.648938\pi\)
−0.451015 + 0.892517i \(0.648938\pi\)
\(350\) −33.5121 −1.79130
\(351\) −5.03601 −0.268803
\(352\) 0.493452 0.0263011
\(353\) −15.4083 −0.820103 −0.410052 0.912062i \(-0.634489\pi\)
−0.410052 + 0.912062i \(0.634489\pi\)
\(354\) 1.14773 0.0610011
\(355\) −28.2029 −1.49686
\(356\) −12.2737 −0.650503
\(357\) 1.67033 0.0884035
\(358\) 16.5484 0.874609
\(359\) −22.8561 −1.20630 −0.603149 0.797628i \(-0.706088\pi\)
−0.603149 + 0.797628i \(0.706088\pi\)
\(360\) −4.09187 −0.215661
\(361\) −18.0076 −0.947768
\(362\) 9.58866 0.503969
\(363\) −10.7565 −0.564570
\(364\) 14.3713 0.753259
\(365\) −4.61803 −0.241719
\(366\) −6.67719 −0.349023
\(367\) −25.5708 −1.33478 −0.667392 0.744706i \(-0.732589\pi\)
−0.667392 + 0.744706i \(0.732589\pi\)
\(368\) 1.00000 0.0521286
\(369\) 7.29132 0.379571
\(370\) 4.56349 0.237245
\(371\) −21.2552 −1.10352
\(372\) 4.90003 0.254055
\(373\) −15.4087 −0.797832 −0.398916 0.916987i \(-0.630613\pi\)
−0.398916 + 0.916987i \(0.630613\pi\)
\(374\) −0.288829 −0.0149350
\(375\) −27.5932 −1.42490
\(376\) 4.69052 0.241895
\(377\) 5.03601 0.259368
\(378\) −2.85370 −0.146778
\(379\) 23.4695 1.20555 0.602774 0.797912i \(-0.294062\pi\)
0.602774 + 0.797912i \(0.294062\pi\)
\(380\) −4.07632 −0.209111
\(381\) −13.0170 −0.666879
\(382\) −0.377430 −0.0193110
\(383\) −10.3053 −0.526574 −0.263287 0.964718i \(-0.584807\pi\)
−0.263287 + 0.964718i \(0.584807\pi\)
\(384\) 1.00000 0.0510310
\(385\) 5.76202 0.293660
\(386\) −5.97717 −0.304230
\(387\) 6.49702 0.330262
\(388\) 1.37030 0.0695667
\(389\) 8.28993 0.420316 0.210158 0.977667i \(-0.432602\pi\)
0.210158 + 0.977667i \(0.432602\pi\)
\(390\) 20.6067 1.04346
\(391\) −0.585323 −0.0296011
\(392\) 1.14359 0.0577600
\(393\) 9.35723 0.472010
\(394\) 23.4602 1.18191
\(395\) 41.3627 2.08118
\(396\) 0.493452 0.0247969
\(397\) −9.28617 −0.466060 −0.233030 0.972470i \(-0.574864\pi\)
−0.233030 + 0.972470i \(0.574864\pi\)
\(398\) −11.6183 −0.582373
\(399\) −2.84285 −0.142321
\(400\) 11.7434 0.587170
\(401\) −1.01662 −0.0507674 −0.0253837 0.999678i \(-0.508081\pi\)
−0.0253837 + 0.999678i \(0.508081\pi\)
\(402\) 16.1639 0.806182
\(403\) −24.6766 −1.22923
\(404\) 9.39187 0.467263
\(405\) −4.09187 −0.203327
\(406\) 2.85370 0.141627
\(407\) −0.550326 −0.0272787
\(408\) −0.585323 −0.0289778
\(409\) −8.46001 −0.418320 −0.209160 0.977881i \(-0.567073\pi\)
−0.209160 + 0.977881i \(0.567073\pi\)
\(410\) −29.8351 −1.47345
\(411\) −14.0617 −0.693614
\(412\) 9.77585 0.481622
\(413\) −3.27527 −0.161165
\(414\) 1.00000 0.0491473
\(415\) 0.483949 0.0237561
\(416\) −5.03601 −0.246911
\(417\) 1.33707 0.0654764
\(418\) 0.491576 0.0240438
\(419\) 7.56897 0.369768 0.184884 0.982760i \(-0.440809\pi\)
0.184884 + 0.982760i \(0.440809\pi\)
\(420\) 11.6770 0.569777
\(421\) −13.2733 −0.646902 −0.323451 0.946245i \(-0.604843\pi\)
−0.323451 + 0.946245i \(0.604843\pi\)
\(422\) 12.4896 0.607982
\(423\) 4.69052 0.228061
\(424\) 7.44832 0.361722
\(425\) −6.87369 −0.333423
\(426\) 6.89243 0.333939
\(427\) 19.0547 0.922121
\(428\) −10.2530 −0.495597
\(429\) −2.48503 −0.119978
\(430\) −26.5850 −1.28204
\(431\) 11.5827 0.557917 0.278959 0.960303i \(-0.410011\pi\)
0.278959 + 0.960303i \(0.410011\pi\)
\(432\) 1.00000 0.0481125
\(433\) 2.27384 0.109274 0.0546368 0.998506i \(-0.482600\pi\)
0.0546368 + 0.998506i \(0.482600\pi\)
\(434\) −13.9832 −0.671215
\(435\) 4.09187 0.196190
\(436\) 4.74008 0.227009
\(437\) 0.996199 0.0476547
\(438\) 1.12859 0.0539259
\(439\) −23.6409 −1.12832 −0.564160 0.825666i \(-0.690800\pi\)
−0.564160 + 0.825666i \(0.690800\pi\)
\(440\) −2.01914 −0.0962588
\(441\) 1.14359 0.0544566
\(442\) 2.94770 0.140208
\(443\) 8.74303 0.415394 0.207697 0.978193i \(-0.433403\pi\)
0.207697 + 0.978193i \(0.433403\pi\)
\(444\) −1.11526 −0.0529278
\(445\) 50.2222 2.38076
\(446\) −2.51777 −0.119220
\(447\) 16.6516 0.787595
\(448\) −2.85370 −0.134825
\(449\) −24.2675 −1.14526 −0.572628 0.819815i \(-0.694076\pi\)
−0.572628 + 0.819815i \(0.694076\pi\)
\(450\) 11.7434 0.553590
\(451\) 3.59791 0.169419
\(452\) 8.46983 0.398387
\(453\) −11.4148 −0.536314
\(454\) 8.87577 0.416561
\(455\) −58.8053 −2.75684
\(456\) 0.996199 0.0466513
\(457\) 10.8460 0.507352 0.253676 0.967289i \(-0.418360\pi\)
0.253676 + 0.967289i \(0.418360\pi\)
\(458\) −22.0806 −1.03176
\(459\) −0.585323 −0.0273205
\(460\) −4.09187 −0.190784
\(461\) 0.313283 0.0145911 0.00729553 0.999973i \(-0.497678\pi\)
0.00729553 + 0.999973i \(0.497678\pi\)
\(462\) −1.40816 −0.0655136
\(463\) −15.3959 −0.715506 −0.357753 0.933816i \(-0.616457\pi\)
−0.357753 + 0.933816i \(0.616457\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −20.0503 −0.929809
\(466\) 10.8219 0.501316
\(467\) −27.1999 −1.25866 −0.629330 0.777139i \(-0.716670\pi\)
−0.629330 + 0.777139i \(0.716670\pi\)
\(468\) −5.03601 −0.232790
\(469\) −46.1269 −2.12994
\(470\) −19.1930 −0.885308
\(471\) −15.9982 −0.737160
\(472\) 1.14773 0.0528285
\(473\) 3.20597 0.147411
\(474\) −10.1085 −0.464299
\(475\) 11.6988 0.536777
\(476\) 1.67033 0.0765597
\(477\) 7.44832 0.341035
\(478\) 21.4582 0.981475
\(479\) 42.3206 1.93368 0.966838 0.255390i \(-0.0822040\pi\)
0.966838 + 0.255390i \(0.0822040\pi\)
\(480\) −4.09187 −0.186768
\(481\) 5.61646 0.256088
\(482\) −4.15852 −0.189416
\(483\) −2.85370 −0.129848
\(484\) −10.7565 −0.488932
\(485\) −5.60711 −0.254606
\(486\) 1.00000 0.0453609
\(487\) 11.7342 0.531727 0.265863 0.964011i \(-0.414343\pi\)
0.265863 + 0.964011i \(0.414343\pi\)
\(488\) −6.67719 −0.302262
\(489\) 23.2198 1.05003
\(490\) −4.67942 −0.211395
\(491\) 4.97472 0.224506 0.112253 0.993680i \(-0.464193\pi\)
0.112253 + 0.993680i \(0.464193\pi\)
\(492\) 7.29132 0.328718
\(493\) 0.585323 0.0263616
\(494\) −5.01687 −0.225720
\(495\) −2.01914 −0.0907537
\(496\) 4.90003 0.220018
\(497\) −19.6689 −0.882271
\(498\) −0.118271 −0.00529985
\(499\) −16.3143 −0.730328 −0.365164 0.930943i \(-0.618987\pi\)
−0.365164 + 0.930943i \(0.618987\pi\)
\(500\) −27.5932 −1.23400
\(501\) 16.3016 0.728300
\(502\) −14.0739 −0.628149
\(503\) −7.46348 −0.332780 −0.166390 0.986060i \(-0.553211\pi\)
−0.166390 + 0.986060i \(0.553211\pi\)
\(504\) −2.85370 −0.127114
\(505\) −38.4303 −1.71013
\(506\) 0.493452 0.0219366
\(507\) 12.3614 0.548991
\(508\) −13.0170 −0.577534
\(509\) −22.9421 −1.01689 −0.508446 0.861094i \(-0.669780\pi\)
−0.508446 + 0.861094i \(0.669780\pi\)
\(510\) 2.39507 0.106055
\(511\) −3.22064 −0.142473
\(512\) 1.00000 0.0441942
\(513\) 0.996199 0.0439833
\(514\) 17.5843 0.775610
\(515\) −40.0015 −1.76268
\(516\) 6.49702 0.286015
\(517\) 2.31455 0.101794
\(518\) 3.18261 0.139836
\(519\) −16.9323 −0.743245
\(520\) 20.6067 0.903664
\(521\) 39.4342 1.72764 0.863821 0.503798i \(-0.168064\pi\)
0.863821 + 0.503798i \(0.168064\pi\)
\(522\) −1.00000 −0.0437688
\(523\) 12.9422 0.565923 0.282961 0.959131i \(-0.408683\pi\)
0.282961 + 0.959131i \(0.408683\pi\)
\(524\) 9.35723 0.408773
\(525\) −33.5121 −1.46259
\(526\) 7.57374 0.330231
\(527\) −2.86810 −0.124936
\(528\) 0.493452 0.0214747
\(529\) 1.00000 0.0434783
\(530\) −30.4775 −1.32386
\(531\) 1.14773 0.0498072
\(532\) −2.84285 −0.123253
\(533\) −36.7192 −1.59048
\(534\) −12.2737 −0.531133
\(535\) 41.9539 1.81383
\(536\) 16.1639 0.698174
\(537\) 16.5484 0.714115
\(538\) 23.7986 1.02603
\(539\) 0.564306 0.0243064
\(540\) −4.09187 −0.176086
\(541\) 34.1728 1.46920 0.734601 0.678500i \(-0.237369\pi\)
0.734601 + 0.678500i \(0.237369\pi\)
\(542\) 0.414208 0.0177918
\(543\) 9.58866 0.411489
\(544\) −0.585323 −0.0250955
\(545\) −19.3958 −0.830824
\(546\) 14.3713 0.615033
\(547\) −3.71313 −0.158762 −0.0793809 0.996844i \(-0.525294\pi\)
−0.0793809 + 0.996844i \(0.525294\pi\)
\(548\) −14.0617 −0.600688
\(549\) −6.67719 −0.284976
\(550\) 5.79481 0.247091
\(551\) −0.996199 −0.0424395
\(552\) 1.00000 0.0425628
\(553\) 28.8466 1.22668
\(554\) 27.6210 1.17350
\(555\) 4.56349 0.193709
\(556\) 1.33707 0.0567042
\(557\) 17.3170 0.733744 0.366872 0.930271i \(-0.380429\pi\)
0.366872 + 0.930271i \(0.380429\pi\)
\(558\) 4.90003 0.207435
\(559\) −32.7191 −1.38387
\(560\) 11.6770 0.493442
\(561\) −0.288829 −0.0121944
\(562\) 0.926190 0.0390690
\(563\) −6.46608 −0.272513 −0.136256 0.990674i \(-0.543507\pi\)
−0.136256 + 0.990674i \(0.543507\pi\)
\(564\) 4.69052 0.197507
\(565\) −34.6575 −1.45805
\(566\) 31.2174 1.31216
\(567\) −2.85370 −0.119844
\(568\) 6.89243 0.289200
\(569\) −4.60773 −0.193166 −0.0965830 0.995325i \(-0.530791\pi\)
−0.0965830 + 0.995325i \(0.530791\pi\)
\(570\) −4.07632 −0.170738
\(571\) −5.05862 −0.211697 −0.105848 0.994382i \(-0.533756\pi\)
−0.105848 + 0.994382i \(0.533756\pi\)
\(572\) −2.48503 −0.103904
\(573\) −0.377430 −0.0157674
\(574\) −20.8072 −0.868476
\(575\) 11.7434 0.489734
\(576\) 1.00000 0.0416667
\(577\) 10.0785 0.419573 0.209786 0.977747i \(-0.432723\pi\)
0.209786 + 0.977747i \(0.432723\pi\)
\(578\) −16.6574 −0.692856
\(579\) −5.97717 −0.248403
\(580\) 4.09187 0.169906
\(581\) 0.337509 0.0140022
\(582\) 1.37030 0.0568009
\(583\) 3.67539 0.152219
\(584\) 1.12859 0.0467012
\(585\) 20.6067 0.851983
\(586\) −5.61469 −0.231941
\(587\) 19.7036 0.813255 0.406627 0.913594i \(-0.366705\pi\)
0.406627 + 0.913594i \(0.366705\pi\)
\(588\) 1.14359 0.0471608
\(589\) 4.88140 0.201135
\(590\) −4.69636 −0.193346
\(591\) 23.4602 0.965022
\(592\) −1.11526 −0.0458368
\(593\) 8.31604 0.341499 0.170749 0.985314i \(-0.445381\pi\)
0.170749 + 0.985314i \(0.445381\pi\)
\(594\) 0.493452 0.0202466
\(595\) −6.83479 −0.280199
\(596\) 16.6516 0.682077
\(597\) −11.6183 −0.475506
\(598\) −5.03601 −0.205938
\(599\) −17.5413 −0.716717 −0.358358 0.933584i \(-0.616663\pi\)
−0.358358 + 0.933584i \(0.616663\pi\)
\(600\) 11.7434 0.479423
\(601\) −34.2128 −1.39557 −0.697785 0.716307i \(-0.745831\pi\)
−0.697785 + 0.716307i \(0.745831\pi\)
\(602\) −18.5405 −0.755656
\(603\) 16.1639 0.658245
\(604\) −11.4148 −0.464461
\(605\) 44.0142 1.78943
\(606\) 9.39187 0.381519
\(607\) 34.6251 1.40539 0.702695 0.711491i \(-0.251980\pi\)
0.702695 + 0.711491i \(0.251980\pi\)
\(608\) 0.996199 0.0404012
\(609\) 2.85370 0.115638
\(610\) 27.3222 1.10624
\(611\) −23.6215 −0.955625
\(612\) −0.585323 −0.0236603
\(613\) 3.77392 0.152427 0.0762135 0.997092i \(-0.475717\pi\)
0.0762135 + 0.997092i \(0.475717\pi\)
\(614\) 30.8183 1.24372
\(615\) −29.8351 −1.20307
\(616\) −1.40816 −0.0567365
\(617\) −32.6717 −1.31531 −0.657657 0.753318i \(-0.728452\pi\)
−0.657657 + 0.753318i \(0.728452\pi\)
\(618\) 9.77585 0.393243
\(619\) −38.2842 −1.53877 −0.769387 0.638783i \(-0.779438\pi\)
−0.769387 + 0.638783i \(0.779438\pi\)
\(620\) −20.0503 −0.805239
\(621\) 1.00000 0.0401286
\(622\) 7.44042 0.298334
\(623\) 35.0253 1.40326
\(624\) −5.03601 −0.201602
\(625\) 54.1906 2.16762
\(626\) −21.6879 −0.866822
\(627\) 0.491576 0.0196317
\(628\) −15.9982 −0.638399
\(629\) 0.652786 0.0260283
\(630\) 11.6770 0.465221
\(631\) 44.0796 1.75478 0.877392 0.479775i \(-0.159282\pi\)
0.877392 + 0.479775i \(0.159282\pi\)
\(632\) −10.1085 −0.402095
\(633\) 12.4896 0.496415
\(634\) 15.4503 0.613609
\(635\) 53.2637 2.11371
\(636\) 7.44832 0.295345
\(637\) −5.75913 −0.228185
\(638\) −0.493452 −0.0195359
\(639\) 6.89243 0.272660
\(640\) −4.09187 −0.161745
\(641\) −2.86813 −0.113284 −0.0566421 0.998395i \(-0.518039\pi\)
−0.0566421 + 0.998395i \(0.518039\pi\)
\(642\) −10.2530 −0.404653
\(643\) 32.3176 1.27448 0.637241 0.770664i \(-0.280076\pi\)
0.637241 + 0.770664i \(0.280076\pi\)
\(644\) −2.85370 −0.112451
\(645\) −26.5850 −1.04678
\(646\) −0.583098 −0.0229417
\(647\) −31.4708 −1.23724 −0.618622 0.785689i \(-0.712309\pi\)
−0.618622 + 0.785689i \(0.712309\pi\)
\(648\) 1.00000 0.0392837
\(649\) 0.566349 0.0222311
\(650\) −59.1400 −2.31966
\(651\) −13.9832 −0.548045
\(652\) 23.2198 0.909356
\(653\) 18.4318 0.721293 0.360647 0.932703i \(-0.382556\pi\)
0.360647 + 0.932703i \(0.382556\pi\)
\(654\) 4.74008 0.185352
\(655\) −38.2886 −1.49606
\(656\) 7.29132 0.284678
\(657\) 1.12859 0.0440303
\(658\) −13.3853 −0.521815
\(659\) 19.0985 0.743972 0.371986 0.928238i \(-0.378677\pi\)
0.371986 + 0.928238i \(0.378677\pi\)
\(660\) −2.01914 −0.0785950
\(661\) 41.9628 1.63216 0.816082 0.577936i \(-0.196142\pi\)
0.816082 + 0.577936i \(0.196142\pi\)
\(662\) −32.6232 −1.26794
\(663\) 2.94770 0.114479
\(664\) −0.118271 −0.00458980
\(665\) 11.6326 0.451092
\(666\) −1.11526 −0.0432154
\(667\) −1.00000 −0.0387202
\(668\) 16.3016 0.630727
\(669\) −2.51777 −0.0973426
\(670\) −66.1406 −2.55523
\(671\) −3.29487 −0.127197
\(672\) −2.85370 −0.110084
\(673\) 19.6186 0.756243 0.378122 0.925756i \(-0.376570\pi\)
0.378122 + 0.925756i \(0.376570\pi\)
\(674\) 2.83896 0.109353
\(675\) 11.7434 0.452004
\(676\) 12.3614 0.475440
\(677\) 9.69381 0.372563 0.186282 0.982496i \(-0.440356\pi\)
0.186282 + 0.982496i \(0.440356\pi\)
\(678\) 8.46983 0.325282
\(679\) −3.91043 −0.150069
\(680\) 2.39507 0.0918466
\(681\) 8.87577 0.340120
\(682\) 2.41793 0.0925872
\(683\) 19.3892 0.741907 0.370953 0.928651i \(-0.379031\pi\)
0.370953 + 0.928651i \(0.379031\pi\)
\(684\) 0.996199 0.0380906
\(685\) 57.5388 2.19845
\(686\) 16.7124 0.638083
\(687\) −22.0806 −0.842428
\(688\) 6.49702 0.247697
\(689\) −37.5098 −1.42901
\(690\) −4.09187 −0.155775
\(691\) 6.35111 0.241607 0.120804 0.992676i \(-0.461453\pi\)
0.120804 + 0.992676i \(0.461453\pi\)
\(692\) −16.9323 −0.643669
\(693\) −1.40816 −0.0534917
\(694\) 24.9698 0.947839
\(695\) −5.47110 −0.207531
\(696\) −1.00000 −0.0379049
\(697\) −4.26778 −0.161654
\(698\) −16.8513 −0.637831
\(699\) 10.8219 0.409323
\(700\) −33.5121 −1.26664
\(701\) 38.0299 1.43637 0.718185 0.695852i \(-0.244973\pi\)
0.718185 + 0.695852i \(0.244973\pi\)
\(702\) −5.03601 −0.190072
\(703\) −1.11102 −0.0419029
\(704\) 0.493452 0.0185977
\(705\) −19.1930 −0.722851
\(706\) −15.4083 −0.579900
\(707\) −26.8016 −1.00798
\(708\) 1.14773 0.0431343
\(709\) −24.5506 −0.922016 −0.461008 0.887396i \(-0.652512\pi\)
−0.461008 + 0.887396i \(0.652512\pi\)
\(710\) −28.2029 −1.05844
\(711\) −10.1085 −0.379099
\(712\) −12.2737 −0.459975
\(713\) 4.90003 0.183507
\(714\) 1.67033 0.0625107
\(715\) 10.1684 0.380278
\(716\) 16.5484 0.618442
\(717\) 21.4582 0.801371
\(718\) −22.8561 −0.852982
\(719\) −20.8699 −0.778317 −0.389158 0.921171i \(-0.627234\pi\)
−0.389158 + 0.921171i \(0.627234\pi\)
\(720\) −4.09187 −0.152495
\(721\) −27.8973 −1.03895
\(722\) −18.0076 −0.670173
\(723\) −4.15852 −0.154657
\(724\) 9.58866 0.356360
\(725\) −11.7434 −0.436139
\(726\) −10.7565 −0.399211
\(727\) −5.59285 −0.207427 −0.103714 0.994607i \(-0.533073\pi\)
−0.103714 + 0.994607i \(0.533073\pi\)
\(728\) 14.3713 0.532634
\(729\) 1.00000 0.0370370
\(730\) −4.61803 −0.170921
\(731\) −3.80286 −0.140654
\(732\) −6.67719 −0.246796
\(733\) −35.0249 −1.29367 −0.646837 0.762628i \(-0.723909\pi\)
−0.646837 + 0.762628i \(0.723909\pi\)
\(734\) −25.5708 −0.943835
\(735\) −4.67942 −0.172603
\(736\) 1.00000 0.0368605
\(737\) 7.97611 0.293804
\(738\) 7.29132 0.268397
\(739\) −15.3778 −0.565682 −0.282841 0.959167i \(-0.591277\pi\)
−0.282841 + 0.959167i \(0.591277\pi\)
\(740\) 4.56349 0.167757
\(741\) −5.01687 −0.184299
\(742\) −21.2552 −0.780304
\(743\) 35.3729 1.29770 0.648852 0.760914i \(-0.275249\pi\)
0.648852 + 0.760914i \(0.275249\pi\)
\(744\) 4.90003 0.179644
\(745\) −68.1363 −2.49632
\(746\) −15.4087 −0.564152
\(747\) −0.118271 −0.00432731
\(748\) −0.288829 −0.0105606
\(749\) 29.2589 1.06910
\(750\) −27.5932 −1.00756
\(751\) 12.0862 0.441032 0.220516 0.975383i \(-0.429226\pi\)
0.220516 + 0.975383i \(0.429226\pi\)
\(752\) 4.69052 0.171046
\(753\) −14.0739 −0.512882
\(754\) 5.03601 0.183401
\(755\) 46.7078 1.69987
\(756\) −2.85370 −0.103788
\(757\) 5.99283 0.217813 0.108907 0.994052i \(-0.465265\pi\)
0.108907 + 0.994052i \(0.465265\pi\)
\(758\) 23.4695 0.852451
\(759\) 0.493452 0.0179112
\(760\) −4.07632 −0.147864
\(761\) 9.29539 0.336958 0.168479 0.985705i \(-0.446115\pi\)
0.168479 + 0.985705i \(0.446115\pi\)
\(762\) −13.0170 −0.471555
\(763\) −13.5267 −0.489701
\(764\) −0.377430 −0.0136549
\(765\) 2.39507 0.0865938
\(766\) −10.3053 −0.372344
\(767\) −5.77997 −0.208703
\(768\) 1.00000 0.0360844
\(769\) −0.328834 −0.0118581 −0.00592904 0.999982i \(-0.501887\pi\)
−0.00592904 + 0.999982i \(0.501887\pi\)
\(770\) 5.76202 0.207649
\(771\) 17.5843 0.633283
\(772\) −5.97717 −0.215123
\(773\) 36.6062 1.31663 0.658317 0.752740i \(-0.271268\pi\)
0.658317 + 0.752740i \(0.271268\pi\)
\(774\) 6.49702 0.233531
\(775\) 57.5430 2.06701
\(776\) 1.37030 0.0491911
\(777\) 3.18261 0.114175
\(778\) 8.28993 0.297209
\(779\) 7.26360 0.260246
\(780\) 20.6067 0.737839
\(781\) 3.40108 0.121700
\(782\) −0.585323 −0.0209311
\(783\) −1.00000 −0.0357371
\(784\) 1.14359 0.0408425
\(785\) 65.4627 2.33647
\(786\) 9.35723 0.333761
\(787\) 42.8008 1.52568 0.762842 0.646585i \(-0.223804\pi\)
0.762842 + 0.646585i \(0.223804\pi\)
\(788\) 23.4602 0.835734
\(789\) 7.57374 0.269632
\(790\) 41.3627 1.47162
\(791\) −24.1703 −0.859398
\(792\) 0.493452 0.0175341
\(793\) 33.6264 1.19411
\(794\) −9.28617 −0.329554
\(795\) −30.4775 −1.08093
\(796\) −11.6183 −0.411800
\(797\) 14.9886 0.530925 0.265463 0.964121i \(-0.414475\pi\)
0.265463 + 0.964121i \(0.414475\pi\)
\(798\) −2.84285 −0.100636
\(799\) −2.74547 −0.0971278
\(800\) 11.7434 0.415192
\(801\) −12.2737 −0.433669
\(802\) −1.01662 −0.0358980
\(803\) 0.556903 0.0196527
\(804\) 16.1639 0.570057
\(805\) 11.6770 0.411559
\(806\) −24.6766 −0.869196
\(807\) 23.7986 0.837749
\(808\) 9.39187 0.330405
\(809\) 27.8747 0.980021 0.490010 0.871717i \(-0.336993\pi\)
0.490010 + 0.871717i \(0.336993\pi\)
\(810\) −4.09187 −0.143774
\(811\) −7.76453 −0.272649 −0.136325 0.990664i \(-0.543529\pi\)
−0.136325 + 0.990664i \(0.543529\pi\)
\(812\) 2.85370 0.100145
\(813\) 0.414208 0.0145269
\(814\) −0.550326 −0.0192889
\(815\) −95.0122 −3.32813
\(816\) −0.585323 −0.0204904
\(817\) 6.47233 0.226438
\(818\) −8.46001 −0.295797
\(819\) 14.3713 0.502172
\(820\) −29.8351 −1.04189
\(821\) 2.32292 0.0810703 0.0405352 0.999178i \(-0.487094\pi\)
0.0405352 + 0.999178i \(0.487094\pi\)
\(822\) −14.0617 −0.490459
\(823\) 34.2563 1.19410 0.597049 0.802205i \(-0.296340\pi\)
0.597049 + 0.802205i \(0.296340\pi\)
\(824\) 9.77585 0.340558
\(825\) 5.79481 0.201749
\(826\) −3.27527 −0.113961
\(827\) −16.3020 −0.566875 −0.283437 0.958991i \(-0.591475\pi\)
−0.283437 + 0.958991i \(0.591475\pi\)
\(828\) 1.00000 0.0347524
\(829\) −16.3511 −0.567897 −0.283948 0.958840i \(-0.591644\pi\)
−0.283948 + 0.958840i \(0.591644\pi\)
\(830\) 0.483949 0.0167981
\(831\) 27.6210 0.958161
\(832\) −5.03601 −0.174592
\(833\) −0.669369 −0.0231923
\(834\) 1.33707 0.0462988
\(835\) −66.7039 −2.30838
\(836\) 0.491576 0.0170015
\(837\) 4.90003 0.169370
\(838\) 7.56897 0.261466
\(839\) 24.2649 0.837717 0.418858 0.908052i \(-0.362430\pi\)
0.418858 + 0.908052i \(0.362430\pi\)
\(840\) 11.6770 0.402893
\(841\) 1.00000 0.0344828
\(842\) −13.2733 −0.457429
\(843\) 0.926190 0.0318997
\(844\) 12.4896 0.429908
\(845\) −50.5814 −1.74005
\(846\) 4.69052 0.161263
\(847\) 30.6958 1.05472
\(848\) 7.44832 0.255776
\(849\) 31.2174 1.07138
\(850\) −6.87369 −0.235766
\(851\) −1.11526 −0.0382306
\(852\) 6.89243 0.236131
\(853\) −0.639461 −0.0218947 −0.0109474 0.999940i \(-0.503485\pi\)
−0.0109474 + 0.999940i \(0.503485\pi\)
\(854\) 19.0547 0.652038
\(855\) −4.07632 −0.139407
\(856\) −10.2530 −0.350440
\(857\) 21.6836 0.740699 0.370349 0.928892i \(-0.379238\pi\)
0.370349 + 0.928892i \(0.379238\pi\)
\(858\) −2.48503 −0.0848376
\(859\) −0.283814 −0.00968360 −0.00484180 0.999988i \(-0.501541\pi\)
−0.00484180 + 0.999988i \(0.501541\pi\)
\(860\) −26.5850 −0.906540
\(861\) −20.8072 −0.709108
\(862\) 11.5827 0.394507
\(863\) 14.0262 0.477459 0.238729 0.971086i \(-0.423269\pi\)
0.238729 + 0.971086i \(0.423269\pi\)
\(864\) 1.00000 0.0340207
\(865\) 69.2847 2.35575
\(866\) 2.27384 0.0772682
\(867\) −16.6574 −0.565715
\(868\) −13.9832 −0.474621
\(869\) −4.98806 −0.169208
\(870\) 4.09187 0.138727
\(871\) −81.4016 −2.75819
\(872\) 4.74008 0.160519
\(873\) 1.37030 0.0463778
\(874\) 0.996199 0.0336969
\(875\) 78.7425 2.66198
\(876\) 1.12859 0.0381314
\(877\) −14.3936 −0.486038 −0.243019 0.970021i \(-0.578138\pi\)
−0.243019 + 0.970021i \(0.578138\pi\)
\(878\) −23.6409 −0.797843
\(879\) −5.61469 −0.189379
\(880\) −2.01914 −0.0680653
\(881\) 24.8558 0.837414 0.418707 0.908121i \(-0.362483\pi\)
0.418707 + 0.908121i \(0.362483\pi\)
\(882\) 1.14359 0.0385066
\(883\) −18.2276 −0.613406 −0.306703 0.951805i \(-0.599226\pi\)
−0.306703 + 0.951805i \(0.599226\pi\)
\(884\) 2.94770 0.0991417
\(885\) −4.69636 −0.157866
\(886\) 8.74303 0.293728
\(887\) −27.9892 −0.939786 −0.469893 0.882723i \(-0.655708\pi\)
−0.469893 + 0.882723i \(0.655708\pi\)
\(888\) −1.11526 −0.0374256
\(889\) 37.1465 1.24585
\(890\) 50.2222 1.68345
\(891\) 0.493452 0.0165313
\(892\) −2.51777 −0.0843011
\(893\) 4.67269 0.156366
\(894\) 16.6516 0.556914
\(895\) −67.7138 −2.26342
\(896\) −2.85370 −0.0953353
\(897\) −5.03601 −0.168148
\(898\) −24.2675 −0.809818
\(899\) −4.90003 −0.163425
\(900\) 11.7434 0.391447
\(901\) −4.35967 −0.145242
\(902\) 3.59791 0.119797
\(903\) −18.5405 −0.616990
\(904\) 8.46983 0.281702
\(905\) −39.2356 −1.30423
\(906\) −11.4148 −0.379231
\(907\) −10.0737 −0.334491 −0.167246 0.985915i \(-0.553487\pi\)
−0.167246 + 0.985915i \(0.553487\pi\)
\(908\) 8.87577 0.294553
\(909\) 9.39187 0.311509
\(910\) −58.8053 −1.94938
\(911\) 0.832587 0.0275848 0.0137924 0.999905i \(-0.495610\pi\)
0.0137924 + 0.999905i \(0.495610\pi\)
\(912\) 0.996199 0.0329874
\(913\) −0.0583610 −0.00193147
\(914\) 10.8460 0.358752
\(915\) 27.3222 0.903245
\(916\) −22.0806 −0.729564
\(917\) −26.7027 −0.881801
\(918\) −0.585323 −0.0193185
\(919\) 0.989923 0.0326545 0.0163273 0.999867i \(-0.494803\pi\)
0.0163273 + 0.999867i \(0.494803\pi\)
\(920\) −4.09187 −0.134905
\(921\) 30.8183 1.01550
\(922\) 0.313283 0.0103174
\(923\) −34.7104 −1.14251
\(924\) −1.40816 −0.0463251
\(925\) −13.0969 −0.430624
\(926\) −15.3959 −0.505939
\(927\) 9.77585 0.321081
\(928\) −1.00000 −0.0328266
\(929\) −38.9861 −1.27909 −0.639546 0.768752i \(-0.720878\pi\)
−0.639546 + 0.768752i \(0.720878\pi\)
\(930\) −20.0503 −0.657475
\(931\) 1.13924 0.0373372
\(932\) 10.8219 0.354484
\(933\) 7.44042 0.243588
\(934\) −27.1999 −0.890006
\(935\) 1.18185 0.0386506
\(936\) −5.03601 −0.164607
\(937\) 54.8428 1.79164 0.895819 0.444420i \(-0.146590\pi\)
0.895819 + 0.444420i \(0.146590\pi\)
\(938\) −46.1269 −1.50610
\(939\) −21.6879 −0.707757
\(940\) −19.1930 −0.626007
\(941\) −15.1819 −0.494916 −0.247458 0.968899i \(-0.579595\pi\)
−0.247458 + 0.968899i \(0.579595\pi\)
\(942\) −15.9982 −0.521251
\(943\) 7.29132 0.237438
\(944\) 1.14773 0.0373554
\(945\) 11.6770 0.379852
\(946\) 3.20597 0.104235
\(947\) −57.9806 −1.88412 −0.942059 0.335449i \(-0.891112\pi\)
−0.942059 + 0.335449i \(0.891112\pi\)
\(948\) −10.1085 −0.328309
\(949\) −5.68358 −0.184497
\(950\) 11.6988 0.379558
\(951\) 15.4503 0.501009
\(952\) 1.67033 0.0541359
\(953\) 21.7078 0.703183 0.351592 0.936153i \(-0.385641\pi\)
0.351592 + 0.936153i \(0.385641\pi\)
\(954\) 7.44832 0.241148
\(955\) 1.54440 0.0499755
\(956\) 21.4582 0.694008
\(957\) −0.493452 −0.0159510
\(958\) 42.3206 1.36732
\(959\) 40.1279 1.29580
\(960\) −4.09187 −0.132065
\(961\) −6.98973 −0.225475
\(962\) 5.61646 0.181082
\(963\) −10.2530 −0.330398
\(964\) −4.15852 −0.133937
\(965\) 24.4578 0.787325
\(966\) −2.85370 −0.0918162
\(967\) −2.58204 −0.0830327 −0.0415163 0.999138i \(-0.513219\pi\)
−0.0415163 + 0.999138i \(0.513219\pi\)
\(968\) −10.7565 −0.345727
\(969\) −0.583098 −0.0187318
\(970\) −5.60711 −0.180033
\(971\) −46.6368 −1.49664 −0.748322 0.663335i \(-0.769140\pi\)
−0.748322 + 0.663335i \(0.769140\pi\)
\(972\) 1.00000 0.0320750
\(973\) −3.81558 −0.122322
\(974\) 11.7342 0.375988
\(975\) −59.1400 −1.89399
\(976\) −6.67719 −0.213732
\(977\) −16.5727 −0.530206 −0.265103 0.964220i \(-0.585406\pi\)
−0.265103 + 0.964220i \(0.585406\pi\)
\(978\) 23.2198 0.742486
\(979\) −6.05646 −0.193565
\(980\) −4.67942 −0.149479
\(981\) 4.74008 0.151339
\(982\) 4.97472 0.158750
\(983\) 26.3074 0.839076 0.419538 0.907738i \(-0.362192\pi\)
0.419538 + 0.907738i \(0.362192\pi\)
\(984\) 7.29132 0.232439
\(985\) −95.9960 −3.05869
\(986\) 0.585323 0.0186405
\(987\) −13.3853 −0.426060
\(988\) −5.01687 −0.159608
\(989\) 6.49702 0.206593
\(990\) −2.01914 −0.0641725
\(991\) −26.3784 −0.837936 −0.418968 0.908001i \(-0.637608\pi\)
−0.418968 + 0.908001i \(0.637608\pi\)
\(992\) 4.90003 0.155576
\(993\) −32.6232 −1.03527
\(994\) −19.6689 −0.623859
\(995\) 47.5406 1.50714
\(996\) −0.118271 −0.00374756
\(997\) −41.1572 −1.30346 −0.651731 0.758450i \(-0.725957\pi\)
−0.651731 + 0.758450i \(0.725957\pi\)
\(998\) −16.3143 −0.516420
\(999\) −1.11526 −0.0352852
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bh.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bh.1.1 7 1.1 even 1 trivial