Properties

Label 4002.2.a.bg.1.6
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 16x^{4} + 19x^{3} - 8x^{2} - 10x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(-0.571135\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.26164 q^{5} +1.00000 q^{6} -5.18548 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +2.26164 q^{5} +1.00000 q^{6} -5.18548 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.26164 q^{10} +1.67849 q^{11} -1.00000 q^{12} +3.65861 q^{13} +5.18548 q^{14} -2.26164 q^{15} +1.00000 q^{16} -3.94013 q^{17} -1.00000 q^{18} -2.02647 q^{19} +2.26164 q^{20} +5.18548 q^{21} -1.67849 q^{22} +1.00000 q^{23} +1.00000 q^{24} +0.115013 q^{25} -3.65861 q^{26} -1.00000 q^{27} -5.18548 q^{28} +1.00000 q^{29} +2.26164 q^{30} +10.1123 q^{31} -1.00000 q^{32} -1.67849 q^{33} +3.94013 q^{34} -11.7277 q^{35} +1.00000 q^{36} -0.341829 q^{37} +2.02647 q^{38} -3.65861 q^{39} -2.26164 q^{40} -6.99527 q^{41} -5.18548 q^{42} -8.58420 q^{43} +1.67849 q^{44} +2.26164 q^{45} -1.00000 q^{46} -8.56649 q^{47} -1.00000 q^{48} +19.8892 q^{49} -0.115013 q^{50} +3.94013 q^{51} +3.65861 q^{52} +10.6734 q^{53} +1.00000 q^{54} +3.79614 q^{55} +5.18548 q^{56} +2.02647 q^{57} -1.00000 q^{58} -0.919230 q^{59} -2.26164 q^{60} +10.0494 q^{61} -10.1123 q^{62} -5.18548 q^{63} +1.00000 q^{64} +8.27446 q^{65} +1.67849 q^{66} +8.06080 q^{67} -3.94013 q^{68} -1.00000 q^{69} +11.7277 q^{70} -5.56591 q^{71} -1.00000 q^{72} -5.95173 q^{73} +0.341829 q^{74} -0.115013 q^{75} -2.02647 q^{76} -8.70376 q^{77} +3.65861 q^{78} -12.7138 q^{79} +2.26164 q^{80} +1.00000 q^{81} +6.99527 q^{82} -3.91365 q^{83} +5.18548 q^{84} -8.91115 q^{85} +8.58420 q^{86} -1.00000 q^{87} -1.67849 q^{88} +6.19047 q^{89} -2.26164 q^{90} -18.9716 q^{91} +1.00000 q^{92} -10.1123 q^{93} +8.56649 q^{94} -4.58315 q^{95} +1.00000 q^{96} -11.7633 q^{97} -19.8892 q^{98} +1.67849 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9} - 2 q^{10} - q^{11} - 7 q^{12} + q^{13} + 5 q^{14} - 2 q^{15} + 7 q^{16} - q^{17} - 7 q^{18} - 9 q^{19} + 2 q^{20} + 5 q^{21} + q^{22} + 7 q^{23} + 7 q^{24} + q^{25} - q^{26} - 7 q^{27} - 5 q^{28} + 7 q^{29} + 2 q^{30} - 19 q^{31} - 7 q^{32} + q^{33} + q^{34} + 11 q^{35} + 7 q^{36} - 18 q^{37} + 9 q^{38} - q^{39} - 2 q^{40} + 4 q^{41} - 5 q^{42} - 9 q^{43} - q^{44} + 2 q^{45} - 7 q^{46} - 11 q^{47} - 7 q^{48} + 12 q^{49} - q^{50} + q^{51} + q^{52} + 8 q^{53} + 7 q^{54} - 11 q^{55} + 5 q^{56} + 9 q^{57} - 7 q^{58} + 12 q^{59} - 2 q^{60} - 5 q^{61} + 19 q^{62} - 5 q^{63} + 7 q^{64} + 23 q^{65} - q^{66} - 13 q^{67} - q^{68} - 7 q^{69} - 11 q^{70} - q^{71} - 7 q^{72} - 26 q^{73} + 18 q^{74} - q^{75} - 9 q^{76} + 6 q^{77} + q^{78} - 38 q^{79} + 2 q^{80} + 7 q^{81} - 4 q^{82} - 6 q^{83} + 5 q^{84} - 25 q^{85} + 9 q^{86} - 7 q^{87} + q^{88} + 20 q^{89} - 2 q^{90} + 2 q^{91} + 7 q^{92} + 19 q^{93} + 11 q^{94} - 31 q^{95} + 7 q^{96} - 8 q^{97} - 12 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 2.26164 1.01144 0.505718 0.862699i \(-0.331228\pi\)
0.505718 + 0.862699i \(0.331228\pi\)
\(6\) 1.00000 0.408248
\(7\) −5.18548 −1.95993 −0.979963 0.199179i \(-0.936172\pi\)
−0.979963 + 0.199179i \(0.936172\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.26164 −0.715193
\(11\) 1.67849 0.506083 0.253042 0.967455i \(-0.418569\pi\)
0.253042 + 0.967455i \(0.418569\pi\)
\(12\) −1.00000 −0.288675
\(13\) 3.65861 1.01472 0.507358 0.861735i \(-0.330622\pi\)
0.507358 + 0.861735i \(0.330622\pi\)
\(14\) 5.18548 1.38588
\(15\) −2.26164 −0.583953
\(16\) 1.00000 0.250000
\(17\) −3.94013 −0.955621 −0.477811 0.878463i \(-0.658570\pi\)
−0.477811 + 0.878463i \(0.658570\pi\)
\(18\) −1.00000 −0.235702
\(19\) −2.02647 −0.464905 −0.232452 0.972608i \(-0.574675\pi\)
−0.232452 + 0.972608i \(0.574675\pi\)
\(20\) 2.26164 0.505718
\(21\) 5.18548 1.13156
\(22\) −1.67849 −0.357855
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) 0.115013 0.0230027
\(26\) −3.65861 −0.717512
\(27\) −1.00000 −0.192450
\(28\) −5.18548 −0.979963
\(29\) 1.00000 0.185695
\(30\) 2.26164 0.412917
\(31\) 10.1123 1.81622 0.908109 0.418733i \(-0.137526\pi\)
0.908109 + 0.418733i \(0.137526\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.67849 −0.292187
\(34\) 3.94013 0.675726
\(35\) −11.7277 −1.98234
\(36\) 1.00000 0.166667
\(37\) −0.341829 −0.0561963 −0.0280982 0.999605i \(-0.508945\pi\)
−0.0280982 + 0.999605i \(0.508945\pi\)
\(38\) 2.02647 0.328737
\(39\) −3.65861 −0.585846
\(40\) −2.26164 −0.357597
\(41\) −6.99527 −1.09248 −0.546239 0.837630i \(-0.683941\pi\)
−0.546239 + 0.837630i \(0.683941\pi\)
\(42\) −5.18548 −0.800136
\(43\) −8.58420 −1.30908 −0.654539 0.756028i \(-0.727137\pi\)
−0.654539 + 0.756028i \(0.727137\pi\)
\(44\) 1.67849 0.253042
\(45\) 2.26164 0.337145
\(46\) −1.00000 −0.147442
\(47\) −8.56649 −1.24955 −0.624775 0.780805i \(-0.714809\pi\)
−0.624775 + 0.780805i \(0.714809\pi\)
\(48\) −1.00000 −0.144338
\(49\) 19.8892 2.84131
\(50\) −0.115013 −0.0162653
\(51\) 3.94013 0.551728
\(52\) 3.65861 0.507358
\(53\) 10.6734 1.46610 0.733050 0.680175i \(-0.238096\pi\)
0.733050 + 0.680175i \(0.238096\pi\)
\(54\) 1.00000 0.136083
\(55\) 3.79614 0.511871
\(56\) 5.18548 0.692939
\(57\) 2.02647 0.268413
\(58\) −1.00000 −0.131306
\(59\) −0.919230 −0.119674 −0.0598368 0.998208i \(-0.519058\pi\)
−0.0598368 + 0.998208i \(0.519058\pi\)
\(60\) −2.26164 −0.291976
\(61\) 10.0494 1.28670 0.643350 0.765573i \(-0.277544\pi\)
0.643350 + 0.765573i \(0.277544\pi\)
\(62\) −10.1123 −1.28426
\(63\) −5.18548 −0.653309
\(64\) 1.00000 0.125000
\(65\) 8.27446 1.02632
\(66\) 1.67849 0.206608
\(67\) 8.06080 0.984783 0.492391 0.870374i \(-0.336123\pi\)
0.492391 + 0.870374i \(0.336123\pi\)
\(68\) −3.94013 −0.477811
\(69\) −1.00000 −0.120386
\(70\) 11.7277 1.40173
\(71\) −5.56591 −0.660552 −0.330276 0.943884i \(-0.607142\pi\)
−0.330276 + 0.943884i \(0.607142\pi\)
\(72\) −1.00000 −0.117851
\(73\) −5.95173 −0.696597 −0.348299 0.937384i \(-0.613241\pi\)
−0.348299 + 0.937384i \(0.613241\pi\)
\(74\) 0.341829 0.0397368
\(75\) −0.115013 −0.0132806
\(76\) −2.02647 −0.232452
\(77\) −8.70376 −0.991886
\(78\) 3.65861 0.414256
\(79\) −12.7138 −1.43041 −0.715204 0.698915i \(-0.753666\pi\)
−0.715204 + 0.698915i \(0.753666\pi\)
\(80\) 2.26164 0.252859
\(81\) 1.00000 0.111111
\(82\) 6.99527 0.772498
\(83\) −3.91365 −0.429579 −0.214790 0.976660i \(-0.568907\pi\)
−0.214790 + 0.976660i \(0.568907\pi\)
\(84\) 5.18548 0.565782
\(85\) −8.91115 −0.966550
\(86\) 8.58420 0.925658
\(87\) −1.00000 −0.107211
\(88\) −1.67849 −0.178927
\(89\) 6.19047 0.656189 0.328094 0.944645i \(-0.393594\pi\)
0.328094 + 0.944645i \(0.393594\pi\)
\(90\) −2.26164 −0.238398
\(91\) −18.9716 −1.98877
\(92\) 1.00000 0.104257
\(93\) −10.1123 −1.04859
\(94\) 8.56649 0.883566
\(95\) −4.58315 −0.470221
\(96\) 1.00000 0.102062
\(97\) −11.7633 −1.19438 −0.597192 0.802098i \(-0.703717\pi\)
−0.597192 + 0.802098i \(0.703717\pi\)
\(98\) −19.8892 −2.00911
\(99\) 1.67849 0.168694
\(100\) 0.115013 0.0115013
\(101\) 3.59695 0.357910 0.178955 0.983857i \(-0.442728\pi\)
0.178955 + 0.983857i \(0.442728\pi\)
\(102\) −3.94013 −0.390131
\(103\) 8.17997 0.805997 0.402998 0.915201i \(-0.367968\pi\)
0.402998 + 0.915201i \(0.367968\pi\)
\(104\) −3.65861 −0.358756
\(105\) 11.7277 1.14450
\(106\) −10.6734 −1.03669
\(107\) −3.70502 −0.358178 −0.179089 0.983833i \(-0.557315\pi\)
−0.179089 + 0.983833i \(0.557315\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −16.5982 −1.58982 −0.794911 0.606726i \(-0.792482\pi\)
−0.794911 + 0.606726i \(0.792482\pi\)
\(110\) −3.79614 −0.361947
\(111\) 0.341829 0.0324450
\(112\) −5.18548 −0.489982
\(113\) −3.48554 −0.327892 −0.163946 0.986469i \(-0.552422\pi\)
−0.163946 + 0.986469i \(0.552422\pi\)
\(114\) −2.02647 −0.189797
\(115\) 2.26164 0.210899
\(116\) 1.00000 0.0928477
\(117\) 3.65861 0.338239
\(118\) 0.919230 0.0846220
\(119\) 20.4314 1.87295
\(120\) 2.26164 0.206458
\(121\) −8.18268 −0.743880
\(122\) −10.0494 −0.909834
\(123\) 6.99527 0.630742
\(124\) 10.1123 0.908109
\(125\) −11.0481 −0.988170
\(126\) 5.18548 0.461959
\(127\) −8.80505 −0.781322 −0.390661 0.920535i \(-0.627753\pi\)
−0.390661 + 0.920535i \(0.627753\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 8.58420 0.755796
\(130\) −8.27446 −0.725718
\(131\) 12.1320 1.05998 0.529989 0.848004i \(-0.322196\pi\)
0.529989 + 0.848004i \(0.322196\pi\)
\(132\) −1.67849 −0.146094
\(133\) 10.5082 0.911179
\(134\) −8.06080 −0.696347
\(135\) −2.26164 −0.194651
\(136\) 3.94013 0.337863
\(137\) 9.66441 0.825686 0.412843 0.910802i \(-0.364536\pi\)
0.412843 + 0.910802i \(0.364536\pi\)
\(138\) 1.00000 0.0851257
\(139\) −13.4990 −1.14497 −0.572484 0.819916i \(-0.694020\pi\)
−0.572484 + 0.819916i \(0.694020\pi\)
\(140\) −11.7277 −0.991170
\(141\) 8.56649 0.721428
\(142\) 5.56591 0.467080
\(143\) 6.14093 0.513531
\(144\) 1.00000 0.0833333
\(145\) 2.26164 0.187819
\(146\) 5.95173 0.492569
\(147\) −19.8892 −1.64043
\(148\) −0.341829 −0.0280982
\(149\) 14.8484 1.21643 0.608216 0.793772i \(-0.291885\pi\)
0.608216 + 0.793772i \(0.291885\pi\)
\(150\) 0.115013 0.00939080
\(151\) −2.65666 −0.216196 −0.108098 0.994140i \(-0.534476\pi\)
−0.108098 + 0.994140i \(0.534476\pi\)
\(152\) 2.02647 0.164369
\(153\) −3.94013 −0.318540
\(154\) 8.70376 0.701369
\(155\) 22.8703 1.83699
\(156\) −3.65861 −0.292923
\(157\) −18.7191 −1.49395 −0.746974 0.664854i \(-0.768494\pi\)
−0.746974 + 0.664854i \(0.768494\pi\)
\(158\) 12.7138 1.01145
\(159\) −10.6734 −0.846453
\(160\) −2.26164 −0.178798
\(161\) −5.18548 −0.408673
\(162\) −1.00000 −0.0785674
\(163\) −2.31941 −0.181670 −0.0908351 0.995866i \(-0.528954\pi\)
−0.0908351 + 0.995866i \(0.528954\pi\)
\(164\) −6.99527 −0.546239
\(165\) −3.79614 −0.295529
\(166\) 3.91365 0.303759
\(167\) −0.957962 −0.0741294 −0.0370647 0.999313i \(-0.511801\pi\)
−0.0370647 + 0.999313i \(0.511801\pi\)
\(168\) −5.18548 −0.400068
\(169\) 0.385424 0.0296480
\(170\) 8.91115 0.683454
\(171\) −2.02647 −0.154968
\(172\) −8.58420 −0.654539
\(173\) −11.5729 −0.879874 −0.439937 0.898029i \(-0.644999\pi\)
−0.439937 + 0.898029i \(0.644999\pi\)
\(174\) 1.00000 0.0758098
\(175\) −0.596399 −0.0450835
\(176\) 1.67849 0.126521
\(177\) 0.919230 0.0690936
\(178\) −6.19047 −0.463995
\(179\) −10.3390 −0.772776 −0.386388 0.922336i \(-0.626277\pi\)
−0.386388 + 0.922336i \(0.626277\pi\)
\(180\) 2.26164 0.168573
\(181\) 24.7065 1.83642 0.918209 0.396097i \(-0.129636\pi\)
0.918209 + 0.396097i \(0.129636\pi\)
\(182\) 18.9716 1.40627
\(183\) −10.0494 −0.742876
\(184\) −1.00000 −0.0737210
\(185\) −0.773094 −0.0568390
\(186\) 10.1123 0.741468
\(187\) −6.61346 −0.483624
\(188\) −8.56649 −0.624775
\(189\) 5.18548 0.377188
\(190\) 4.58315 0.332497
\(191\) 12.1868 0.881808 0.440904 0.897554i \(-0.354658\pi\)
0.440904 + 0.897554i \(0.354658\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 7.91470 0.569713 0.284856 0.958570i \(-0.408054\pi\)
0.284856 + 0.958570i \(0.408054\pi\)
\(194\) 11.7633 0.844557
\(195\) −8.27446 −0.592546
\(196\) 19.8892 1.42066
\(197\) 1.08793 0.0775118 0.0387559 0.999249i \(-0.487661\pi\)
0.0387559 + 0.999249i \(0.487661\pi\)
\(198\) −1.67849 −0.119285
\(199\) −16.4282 −1.16456 −0.582281 0.812988i \(-0.697840\pi\)
−0.582281 + 0.812988i \(0.697840\pi\)
\(200\) −0.115013 −0.00813267
\(201\) −8.06080 −0.568565
\(202\) −3.59695 −0.253081
\(203\) −5.18548 −0.363949
\(204\) 3.94013 0.275864
\(205\) −15.8208 −1.10497
\(206\) −8.17997 −0.569926
\(207\) 1.00000 0.0695048
\(208\) 3.65861 0.253679
\(209\) −3.40141 −0.235281
\(210\) −11.7277 −0.809287
\(211\) −18.3924 −1.26618 −0.633092 0.774076i \(-0.718215\pi\)
−0.633092 + 0.774076i \(0.718215\pi\)
\(212\) 10.6734 0.733050
\(213\) 5.56591 0.381370
\(214\) 3.70502 0.253270
\(215\) −19.4144 −1.32405
\(216\) 1.00000 0.0680414
\(217\) −52.4370 −3.55965
\(218\) 16.5982 1.12417
\(219\) 5.95173 0.402181
\(220\) 3.79614 0.255935
\(221\) −14.4154 −0.969684
\(222\) −0.341829 −0.0229421
\(223\) −7.91788 −0.530220 −0.265110 0.964218i \(-0.585408\pi\)
−0.265110 + 0.964218i \(0.585408\pi\)
\(224\) 5.18548 0.346469
\(225\) 0.115013 0.00766756
\(226\) 3.48554 0.231855
\(227\) −25.9727 −1.72387 −0.861935 0.507018i \(-0.830748\pi\)
−0.861935 + 0.507018i \(0.830748\pi\)
\(228\) 2.02647 0.134206
\(229\) 23.9829 1.58483 0.792417 0.609980i \(-0.208822\pi\)
0.792417 + 0.609980i \(0.208822\pi\)
\(230\) −2.26164 −0.149128
\(231\) 8.70376 0.572665
\(232\) −1.00000 −0.0656532
\(233\) −2.23951 −0.146715 −0.0733577 0.997306i \(-0.523371\pi\)
−0.0733577 + 0.997306i \(0.523371\pi\)
\(234\) −3.65861 −0.239171
\(235\) −19.3743 −1.26384
\(236\) −0.919230 −0.0598368
\(237\) 12.7138 0.825847
\(238\) −20.4314 −1.32437
\(239\) 15.6532 1.01252 0.506260 0.862381i \(-0.331028\pi\)
0.506260 + 0.862381i \(0.331028\pi\)
\(240\) −2.26164 −0.145988
\(241\) 3.74945 0.241524 0.120762 0.992682i \(-0.461466\pi\)
0.120762 + 0.992682i \(0.461466\pi\)
\(242\) 8.18268 0.526002
\(243\) −1.00000 −0.0641500
\(244\) 10.0494 0.643350
\(245\) 44.9821 2.87380
\(246\) −6.99527 −0.446002
\(247\) −7.41407 −0.471746
\(248\) −10.1123 −0.642130
\(249\) 3.91365 0.248018
\(250\) 11.0481 0.698742
\(251\) −30.4348 −1.92103 −0.960515 0.278229i \(-0.910253\pi\)
−0.960515 + 0.278229i \(0.910253\pi\)
\(252\) −5.18548 −0.326654
\(253\) 1.67849 0.105526
\(254\) 8.80505 0.552478
\(255\) 8.91115 0.558038
\(256\) 1.00000 0.0625000
\(257\) 1.93369 0.120620 0.0603101 0.998180i \(-0.480791\pi\)
0.0603101 + 0.998180i \(0.480791\pi\)
\(258\) −8.58420 −0.534429
\(259\) 1.77255 0.110141
\(260\) 8.27446 0.513160
\(261\) 1.00000 0.0618984
\(262\) −12.1320 −0.749518
\(263\) 27.5921 1.70140 0.850700 0.525651i \(-0.176178\pi\)
0.850700 + 0.525651i \(0.176178\pi\)
\(264\) 1.67849 0.103304
\(265\) 24.1393 1.48287
\(266\) −10.5082 −0.644301
\(267\) −6.19047 −0.378851
\(268\) 8.06080 0.492391
\(269\) 0.980263 0.0597677 0.0298838 0.999553i \(-0.490486\pi\)
0.0298838 + 0.999553i \(0.490486\pi\)
\(270\) 2.26164 0.137639
\(271\) −23.1859 −1.40844 −0.704221 0.709981i \(-0.748704\pi\)
−0.704221 + 0.709981i \(0.748704\pi\)
\(272\) −3.94013 −0.238905
\(273\) 18.9716 1.14822
\(274\) −9.66441 −0.583848
\(275\) 0.193049 0.0116413
\(276\) −1.00000 −0.0601929
\(277\) 3.29919 0.198229 0.0991146 0.995076i \(-0.468399\pi\)
0.0991146 + 0.995076i \(0.468399\pi\)
\(278\) 13.4990 0.809615
\(279\) 10.1123 0.605406
\(280\) 11.7277 0.700863
\(281\) 14.9206 0.890090 0.445045 0.895508i \(-0.353188\pi\)
0.445045 + 0.895508i \(0.353188\pi\)
\(282\) −8.56649 −0.510127
\(283\) −7.35703 −0.437330 −0.218665 0.975800i \(-0.570170\pi\)
−0.218665 + 0.975800i \(0.570170\pi\)
\(284\) −5.56591 −0.330276
\(285\) 4.58315 0.271482
\(286\) −6.14093 −0.363121
\(287\) 36.2738 2.14118
\(288\) −1.00000 −0.0589256
\(289\) −1.47539 −0.0867879
\(290\) −2.26164 −0.132808
\(291\) 11.7633 0.689578
\(292\) −5.95173 −0.348299
\(293\) −15.0931 −0.881746 −0.440873 0.897569i \(-0.645331\pi\)
−0.440873 + 0.897569i \(0.645331\pi\)
\(294\) 19.8892 1.15996
\(295\) −2.07897 −0.121042
\(296\) 0.341829 0.0198684
\(297\) −1.67849 −0.0973958
\(298\) −14.8484 −0.860147
\(299\) 3.65861 0.211583
\(300\) −0.115013 −0.00664030
\(301\) 44.5132 2.56570
\(302\) 2.65666 0.152874
\(303\) −3.59695 −0.206639
\(304\) −2.02647 −0.116226
\(305\) 22.7282 1.30141
\(306\) 3.94013 0.225242
\(307\) −26.6685 −1.52205 −0.761027 0.648721i \(-0.775304\pi\)
−0.761027 + 0.648721i \(0.775304\pi\)
\(308\) −8.70376 −0.495943
\(309\) −8.17997 −0.465342
\(310\) −22.8703 −1.29895
\(311\) −23.3847 −1.32602 −0.663012 0.748609i \(-0.730722\pi\)
−0.663012 + 0.748609i \(0.730722\pi\)
\(312\) 3.65861 0.207128
\(313\) 3.76959 0.213070 0.106535 0.994309i \(-0.466024\pi\)
0.106535 + 0.994309i \(0.466024\pi\)
\(314\) 18.7191 1.05638
\(315\) −11.7277 −0.660780
\(316\) −12.7138 −0.715204
\(317\) −29.0727 −1.63288 −0.816442 0.577427i \(-0.804057\pi\)
−0.816442 + 0.577427i \(0.804057\pi\)
\(318\) 10.6734 0.598533
\(319\) 1.67849 0.0939773
\(320\) 2.26164 0.126429
\(321\) 3.70502 0.206794
\(322\) 5.18548 0.288975
\(323\) 7.98456 0.444273
\(324\) 1.00000 0.0555556
\(325\) 0.420789 0.0233412
\(326\) 2.31941 0.128460
\(327\) 16.5982 0.917884
\(328\) 6.99527 0.386249
\(329\) 44.4213 2.44903
\(330\) 3.79614 0.208970
\(331\) −33.3842 −1.83496 −0.917482 0.397777i \(-0.869782\pi\)
−0.917482 + 0.397777i \(0.869782\pi\)
\(332\) −3.91365 −0.214790
\(333\) −0.341829 −0.0187321
\(334\) 0.957962 0.0524174
\(335\) 18.2306 0.996045
\(336\) 5.18548 0.282891
\(337\) 18.7050 1.01893 0.509463 0.860492i \(-0.329844\pi\)
0.509463 + 0.860492i \(0.329844\pi\)
\(338\) −0.385424 −0.0209643
\(339\) 3.48554 0.189308
\(340\) −8.91115 −0.483275
\(341\) 16.9733 0.919158
\(342\) 2.02647 0.109579
\(343\) −66.8365 −3.60883
\(344\) 8.58420 0.462829
\(345\) −2.26164 −0.121763
\(346\) 11.5729 0.622165
\(347\) −30.8979 −1.65869 −0.829343 0.558740i \(-0.811285\pi\)
−0.829343 + 0.558740i \(0.811285\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −5.57364 −0.298350 −0.149175 0.988811i \(-0.547662\pi\)
−0.149175 + 0.988811i \(0.547662\pi\)
\(350\) 0.596399 0.0318789
\(351\) −3.65861 −0.195282
\(352\) −1.67849 −0.0894637
\(353\) −17.1035 −0.910329 −0.455164 0.890407i \(-0.650419\pi\)
−0.455164 + 0.890407i \(0.650419\pi\)
\(354\) −0.919230 −0.0488565
\(355\) −12.5881 −0.668106
\(356\) 6.19047 0.328094
\(357\) −20.4314 −1.08135
\(358\) 10.3390 0.546435
\(359\) −2.26293 −0.119433 −0.0597164 0.998215i \(-0.519020\pi\)
−0.0597164 + 0.998215i \(0.519020\pi\)
\(360\) −2.26164 −0.119199
\(361\) −14.8934 −0.783864
\(362\) −24.7065 −1.29854
\(363\) 8.18268 0.429479
\(364\) −18.9716 −0.994384
\(365\) −13.4607 −0.704564
\(366\) 10.0494 0.525293
\(367\) 13.2727 0.692831 0.346416 0.938081i \(-0.387399\pi\)
0.346416 + 0.938081i \(0.387399\pi\)
\(368\) 1.00000 0.0521286
\(369\) −6.99527 −0.364159
\(370\) 0.773094 0.0401912
\(371\) −55.3465 −2.87345
\(372\) −10.1123 −0.524297
\(373\) 0.0831012 0.00430282 0.00215141 0.999998i \(-0.499315\pi\)
0.00215141 + 0.999998i \(0.499315\pi\)
\(374\) 6.61346 0.341974
\(375\) 11.0481 0.570520
\(376\) 8.56649 0.441783
\(377\) 3.65861 0.188428
\(378\) −5.18548 −0.266712
\(379\) −7.42482 −0.381387 −0.190694 0.981650i \(-0.561074\pi\)
−0.190694 + 0.981650i \(0.561074\pi\)
\(380\) −4.58315 −0.235111
\(381\) 8.80505 0.451096
\(382\) −12.1868 −0.623533
\(383\) 20.7513 1.06034 0.530171 0.847891i \(-0.322128\pi\)
0.530171 + 0.847891i \(0.322128\pi\)
\(384\) 1.00000 0.0510310
\(385\) −19.6848 −1.00323
\(386\) −7.91470 −0.402848
\(387\) −8.58420 −0.436359
\(388\) −11.7633 −0.597192
\(389\) −36.3610 −1.84358 −0.921788 0.387695i \(-0.873271\pi\)
−0.921788 + 0.387695i \(0.873271\pi\)
\(390\) 8.27446 0.418993
\(391\) −3.94013 −0.199261
\(392\) −19.8892 −1.00455
\(393\) −12.1320 −0.611979
\(394\) −1.08793 −0.0548091
\(395\) −28.7539 −1.44677
\(396\) 1.67849 0.0843472
\(397\) 2.50661 0.125803 0.0629017 0.998020i \(-0.479965\pi\)
0.0629017 + 0.998020i \(0.479965\pi\)
\(398\) 16.4282 0.823469
\(399\) −10.5082 −0.526069
\(400\) 0.115013 0.00575067
\(401\) −26.5916 −1.32792 −0.663961 0.747767i \(-0.731126\pi\)
−0.663961 + 0.747767i \(0.731126\pi\)
\(402\) 8.06080 0.402036
\(403\) 36.9969 1.84295
\(404\) 3.59695 0.178955
\(405\) 2.26164 0.112382
\(406\) 5.18548 0.257351
\(407\) −0.573756 −0.0284400
\(408\) −3.94013 −0.195065
\(409\) −26.1269 −1.29189 −0.645945 0.763384i \(-0.723537\pi\)
−0.645945 + 0.763384i \(0.723537\pi\)
\(410\) 15.8208 0.781332
\(411\) −9.66441 −0.476710
\(412\) 8.17997 0.402998
\(413\) 4.76665 0.234551
\(414\) −1.00000 −0.0491473
\(415\) −8.85128 −0.434492
\(416\) −3.65861 −0.179378
\(417\) 13.4990 0.661048
\(418\) 3.40141 0.166368
\(419\) 34.8966 1.70481 0.852405 0.522883i \(-0.175143\pi\)
0.852405 + 0.522883i \(0.175143\pi\)
\(420\) 11.7277 0.572252
\(421\) −19.2371 −0.937560 −0.468780 0.883315i \(-0.655306\pi\)
−0.468780 + 0.883315i \(0.655306\pi\)
\(422\) 18.3924 0.895328
\(423\) −8.56649 −0.416517
\(424\) −10.6734 −0.518345
\(425\) −0.453167 −0.0219818
\(426\) −5.56591 −0.269669
\(427\) −52.1112 −2.52184
\(428\) −3.70502 −0.179089
\(429\) −6.14093 −0.296487
\(430\) 19.4144 0.936244
\(431\) −4.25421 −0.204918 −0.102459 0.994737i \(-0.532671\pi\)
−0.102459 + 0.994737i \(0.532671\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 1.85387 0.0890912 0.0445456 0.999007i \(-0.485816\pi\)
0.0445456 + 0.999007i \(0.485816\pi\)
\(434\) 52.4370 2.51706
\(435\) −2.26164 −0.108437
\(436\) −16.5982 −0.794911
\(437\) −2.02647 −0.0969393
\(438\) −5.95173 −0.284385
\(439\) −13.0700 −0.623797 −0.311898 0.950115i \(-0.600965\pi\)
−0.311898 + 0.950115i \(0.600965\pi\)
\(440\) −3.79614 −0.180974
\(441\) 19.8892 0.947103
\(442\) 14.4154 0.685670
\(443\) 16.2061 0.769977 0.384988 0.922921i \(-0.374205\pi\)
0.384988 + 0.922921i \(0.374205\pi\)
\(444\) 0.341829 0.0162225
\(445\) 14.0006 0.663693
\(446\) 7.91788 0.374922
\(447\) −14.8484 −0.702307
\(448\) −5.18548 −0.244991
\(449\) −0.298743 −0.0140985 −0.00704927 0.999975i \(-0.502244\pi\)
−0.00704927 + 0.999975i \(0.502244\pi\)
\(450\) −0.115013 −0.00542178
\(451\) −11.7415 −0.552884
\(452\) −3.48554 −0.163946
\(453\) 2.65666 0.124821
\(454\) 25.9727 1.21896
\(455\) −42.9070 −2.01151
\(456\) −2.02647 −0.0948983
\(457\) −6.82339 −0.319185 −0.159592 0.987183i \(-0.551018\pi\)
−0.159592 + 0.987183i \(0.551018\pi\)
\(458\) −23.9829 −1.12065
\(459\) 3.94013 0.183909
\(460\) 2.26164 0.105449
\(461\) 2.68303 0.124961 0.0624805 0.998046i \(-0.480099\pi\)
0.0624805 + 0.998046i \(0.480099\pi\)
\(462\) −8.70376 −0.404936
\(463\) −8.11062 −0.376932 −0.188466 0.982080i \(-0.560352\pi\)
−0.188466 + 0.982080i \(0.560352\pi\)
\(464\) 1.00000 0.0464238
\(465\) −22.8703 −1.06059
\(466\) 2.23951 0.103744
\(467\) −27.5000 −1.27255 −0.636275 0.771462i \(-0.719526\pi\)
−0.636275 + 0.771462i \(0.719526\pi\)
\(468\) 3.65861 0.169119
\(469\) −41.7991 −1.93010
\(470\) 19.3743 0.893670
\(471\) 18.7191 0.862531
\(472\) 0.919230 0.0423110
\(473\) −14.4085 −0.662502
\(474\) −12.7138 −0.583962
\(475\) −0.233071 −0.0106941
\(476\) 20.4314 0.936474
\(477\) 10.6734 0.488700
\(478\) −15.6532 −0.715960
\(479\) 24.4909 1.11902 0.559508 0.828825i \(-0.310990\pi\)
0.559508 + 0.828825i \(0.310990\pi\)
\(480\) 2.26164 0.103229
\(481\) −1.25062 −0.0570233
\(482\) −3.74945 −0.170783
\(483\) 5.18548 0.235947
\(484\) −8.18268 −0.371940
\(485\) −26.6044 −1.20804
\(486\) 1.00000 0.0453609
\(487\) −19.6246 −0.889276 −0.444638 0.895710i \(-0.646668\pi\)
−0.444638 + 0.895710i \(0.646668\pi\)
\(488\) −10.0494 −0.454917
\(489\) 2.31941 0.104887
\(490\) −44.9821 −2.03209
\(491\) 23.4593 1.05870 0.529351 0.848403i \(-0.322436\pi\)
0.529351 + 0.848403i \(0.322436\pi\)
\(492\) 6.99527 0.315371
\(493\) −3.94013 −0.177454
\(494\) 7.41407 0.333575
\(495\) 3.79614 0.170624
\(496\) 10.1123 0.454055
\(497\) 28.8619 1.29463
\(498\) −3.91365 −0.175375
\(499\) −17.4292 −0.780237 −0.390118 0.920765i \(-0.627566\pi\)
−0.390118 + 0.920765i \(0.627566\pi\)
\(500\) −11.0481 −0.494085
\(501\) 0.957962 0.0427986
\(502\) 30.4348 1.35837
\(503\) 42.5737 1.89827 0.949133 0.314877i \(-0.101963\pi\)
0.949133 + 0.314877i \(0.101963\pi\)
\(504\) 5.18548 0.230980
\(505\) 8.13500 0.362003
\(506\) −1.67849 −0.0746179
\(507\) −0.385424 −0.0171173
\(508\) −8.80505 −0.390661
\(509\) 12.3239 0.546248 0.273124 0.961979i \(-0.411943\pi\)
0.273124 + 0.961979i \(0.411943\pi\)
\(510\) −8.91115 −0.394592
\(511\) 30.8626 1.36528
\(512\) −1.00000 −0.0441942
\(513\) 2.02647 0.0894710
\(514\) −1.93369 −0.0852913
\(515\) 18.5001 0.815214
\(516\) 8.58420 0.377898
\(517\) −14.3787 −0.632377
\(518\) −1.77255 −0.0778812
\(519\) 11.5729 0.507995
\(520\) −8.27446 −0.362859
\(521\) 24.1714 1.05897 0.529483 0.848320i \(-0.322386\pi\)
0.529483 + 0.848320i \(0.322386\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −8.50983 −0.372109 −0.186054 0.982539i \(-0.559570\pi\)
−0.186054 + 0.982539i \(0.559570\pi\)
\(524\) 12.1320 0.529989
\(525\) 0.596399 0.0260290
\(526\) −27.5921 −1.20307
\(527\) −39.8437 −1.73562
\(528\) −1.67849 −0.0730468
\(529\) 1.00000 0.0434783
\(530\) −24.1393 −1.04854
\(531\) −0.919230 −0.0398912
\(532\) 10.5082 0.455590
\(533\) −25.5930 −1.10855
\(534\) 6.19047 0.267888
\(535\) −8.37942 −0.362274
\(536\) −8.06080 −0.348173
\(537\) 10.3390 0.446162
\(538\) −0.980263 −0.0422621
\(539\) 33.3837 1.43794
\(540\) −2.26164 −0.0973255
\(541\) −13.7964 −0.593152 −0.296576 0.955009i \(-0.595845\pi\)
−0.296576 + 0.955009i \(0.595845\pi\)
\(542\) 23.1859 0.995919
\(543\) −24.7065 −1.06026
\(544\) 3.94013 0.168932
\(545\) −37.5392 −1.60800
\(546\) −18.9716 −0.811911
\(547\) −27.5569 −1.17825 −0.589123 0.808043i \(-0.700527\pi\)
−0.589123 + 0.808043i \(0.700527\pi\)
\(548\) 9.66441 0.412843
\(549\) 10.0494 0.428900
\(550\) −0.193049 −0.00823162
\(551\) −2.02647 −0.0863307
\(552\) 1.00000 0.0425628
\(553\) 65.9269 2.80350
\(554\) −3.29919 −0.140169
\(555\) 0.773094 0.0328160
\(556\) −13.4990 −0.572484
\(557\) −23.8652 −1.01120 −0.505601 0.862768i \(-0.668729\pi\)
−0.505601 + 0.862768i \(0.668729\pi\)
\(558\) −10.1123 −0.428087
\(559\) −31.4062 −1.32834
\(560\) −11.7277 −0.495585
\(561\) 6.61346 0.279220
\(562\) −14.9206 −0.629388
\(563\) 33.8372 1.42607 0.713034 0.701129i \(-0.247320\pi\)
0.713034 + 0.701129i \(0.247320\pi\)
\(564\) 8.56649 0.360714
\(565\) −7.88303 −0.331642
\(566\) 7.35703 0.309239
\(567\) −5.18548 −0.217770
\(568\) 5.56591 0.233540
\(569\) −19.3483 −0.811122 −0.405561 0.914068i \(-0.632924\pi\)
−0.405561 + 0.914068i \(0.632924\pi\)
\(570\) −4.58315 −0.191967
\(571\) −11.3806 −0.476264 −0.238132 0.971233i \(-0.576535\pi\)
−0.238132 + 0.971233i \(0.576535\pi\)
\(572\) 6.14093 0.256765
\(573\) −12.1868 −0.509112
\(574\) −36.2738 −1.51404
\(575\) 0.115013 0.00479639
\(576\) 1.00000 0.0416667
\(577\) −20.5766 −0.856614 −0.428307 0.903633i \(-0.640890\pi\)
−0.428307 + 0.903633i \(0.640890\pi\)
\(578\) 1.47539 0.0613683
\(579\) −7.91470 −0.328924
\(580\) 2.26164 0.0939095
\(581\) 20.2942 0.841944
\(582\) −11.7633 −0.487605
\(583\) 17.9151 0.741969
\(584\) 5.95173 0.246284
\(585\) 8.27446 0.342107
\(586\) 15.0931 0.623489
\(587\) 29.9829 1.23753 0.618764 0.785577i \(-0.287634\pi\)
0.618764 + 0.785577i \(0.287634\pi\)
\(588\) −19.8892 −0.820216
\(589\) −20.4923 −0.844369
\(590\) 2.07897 0.0855897
\(591\) −1.08793 −0.0447515
\(592\) −0.341829 −0.0140491
\(593\) 7.75453 0.318440 0.159220 0.987243i \(-0.449102\pi\)
0.159220 + 0.987243i \(0.449102\pi\)
\(594\) 1.67849 0.0688692
\(595\) 46.2086 1.89437
\(596\) 14.8484 0.608216
\(597\) 16.4282 0.672360
\(598\) −3.65861 −0.149612
\(599\) −4.01034 −0.163858 −0.0819291 0.996638i \(-0.526108\pi\)
−0.0819291 + 0.996638i \(0.526108\pi\)
\(600\) 0.115013 0.00469540
\(601\) −29.1456 −1.18888 −0.594438 0.804142i \(-0.702625\pi\)
−0.594438 + 0.804142i \(0.702625\pi\)
\(602\) −44.5132 −1.81422
\(603\) 8.06080 0.328261
\(604\) −2.65666 −0.108098
\(605\) −18.5063 −0.752387
\(606\) 3.59695 0.146116
\(607\) −6.54187 −0.265526 −0.132763 0.991148i \(-0.542385\pi\)
−0.132763 + 0.991148i \(0.542385\pi\)
\(608\) 2.02647 0.0821843
\(609\) 5.18548 0.210126
\(610\) −22.7282 −0.920239
\(611\) −31.3414 −1.26794
\(612\) −3.94013 −0.159270
\(613\) 9.34783 0.377555 0.188778 0.982020i \(-0.439547\pi\)
0.188778 + 0.982020i \(0.439547\pi\)
\(614\) 26.6685 1.07625
\(615\) 15.8208 0.637955
\(616\) 8.70376 0.350685
\(617\) −13.0888 −0.526936 −0.263468 0.964668i \(-0.584866\pi\)
−0.263468 + 0.964668i \(0.584866\pi\)
\(618\) 8.17997 0.329047
\(619\) −30.4964 −1.22576 −0.612878 0.790178i \(-0.709988\pi\)
−0.612878 + 0.790178i \(0.709988\pi\)
\(620\) 22.8703 0.918494
\(621\) −1.00000 −0.0401286
\(622\) 23.3847 0.937640
\(623\) −32.1005 −1.28608
\(624\) −3.65861 −0.146462
\(625\) −25.5618 −1.02247
\(626\) −3.76959 −0.150663
\(627\) 3.40141 0.135839
\(628\) −18.7191 −0.746974
\(629\) 1.34685 0.0537024
\(630\) 11.7277 0.467242
\(631\) 42.8187 1.70458 0.852292 0.523067i \(-0.175212\pi\)
0.852292 + 0.523067i \(0.175212\pi\)
\(632\) 12.7138 0.505726
\(633\) 18.3924 0.731032
\(634\) 29.0727 1.15462
\(635\) −19.9138 −0.790257
\(636\) −10.6734 −0.423227
\(637\) 72.7667 2.88312
\(638\) −1.67849 −0.0664520
\(639\) −5.56591 −0.220184
\(640\) −2.26164 −0.0893992
\(641\) 16.5300 0.652897 0.326448 0.945215i \(-0.394148\pi\)
0.326448 + 0.945215i \(0.394148\pi\)
\(642\) −3.70502 −0.146225
\(643\) 31.6166 1.24684 0.623419 0.781888i \(-0.285743\pi\)
0.623419 + 0.781888i \(0.285743\pi\)
\(644\) −5.18548 −0.204336
\(645\) 19.4144 0.764440
\(646\) −7.98456 −0.314148
\(647\) −7.66830 −0.301472 −0.150736 0.988574i \(-0.548164\pi\)
−0.150736 + 0.988574i \(0.548164\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −1.54292 −0.0605648
\(650\) −0.420789 −0.0165047
\(651\) 52.4370 2.05517
\(652\) −2.31941 −0.0908351
\(653\) −13.2880 −0.519999 −0.260000 0.965609i \(-0.583722\pi\)
−0.260000 + 0.965609i \(0.583722\pi\)
\(654\) −16.5982 −0.649042
\(655\) 27.4382 1.07210
\(656\) −6.99527 −0.273119
\(657\) −5.95173 −0.232199
\(658\) −44.4213 −1.73172
\(659\) 3.17353 0.123623 0.0618116 0.998088i \(-0.480312\pi\)
0.0618116 + 0.998088i \(0.480312\pi\)
\(660\) −3.79614 −0.147764
\(661\) 5.63282 0.219091 0.109546 0.993982i \(-0.465060\pi\)
0.109546 + 0.993982i \(0.465060\pi\)
\(662\) 33.3842 1.29752
\(663\) 14.4154 0.559847
\(664\) 3.91365 0.151879
\(665\) 23.7658 0.921599
\(666\) 0.341829 0.0132456
\(667\) 1.00000 0.0387202
\(668\) −0.957962 −0.0370647
\(669\) 7.91788 0.306123
\(670\) −18.2306 −0.704310
\(671\) 16.8679 0.651177
\(672\) −5.18548 −0.200034
\(673\) 14.8683 0.573130 0.286565 0.958061i \(-0.407487\pi\)
0.286565 + 0.958061i \(0.407487\pi\)
\(674\) −18.7050 −0.720490
\(675\) −0.115013 −0.00442687
\(676\) 0.385424 0.0148240
\(677\) −4.96188 −0.190700 −0.0953502 0.995444i \(-0.530397\pi\)
−0.0953502 + 0.995444i \(0.530397\pi\)
\(678\) −3.48554 −0.133861
\(679\) 60.9984 2.34090
\(680\) 8.91115 0.341727
\(681\) 25.9727 0.995277
\(682\) −16.9733 −0.649943
\(683\) 36.6077 1.40075 0.700377 0.713773i \(-0.253015\pi\)
0.700377 + 0.713773i \(0.253015\pi\)
\(684\) −2.02647 −0.0774841
\(685\) 21.8574 0.835128
\(686\) 66.8365 2.55183
\(687\) −23.9829 −0.915004
\(688\) −8.58420 −0.327269
\(689\) 39.0497 1.48767
\(690\) 2.26164 0.0860991
\(691\) 29.9333 1.13871 0.569357 0.822090i \(-0.307192\pi\)
0.569357 + 0.822090i \(0.307192\pi\)
\(692\) −11.5729 −0.439937
\(693\) −8.70376 −0.330629
\(694\) 30.8979 1.17287
\(695\) −30.5298 −1.15806
\(696\) 1.00000 0.0379049
\(697\) 27.5623 1.04399
\(698\) 5.57364 0.210966
\(699\) 2.23951 0.0847062
\(700\) −0.596399 −0.0225418
\(701\) 33.7050 1.27302 0.636510 0.771269i \(-0.280377\pi\)
0.636510 + 0.771269i \(0.280377\pi\)
\(702\) 3.65861 0.138085
\(703\) 0.692707 0.0261259
\(704\) 1.67849 0.0632604
\(705\) 19.3743 0.729679
\(706\) 17.1035 0.643700
\(707\) −18.6519 −0.701477
\(708\) 0.919230 0.0345468
\(709\) 1.39042 0.0522183 0.0261092 0.999659i \(-0.491688\pi\)
0.0261092 + 0.999659i \(0.491688\pi\)
\(710\) 12.5881 0.472422
\(711\) −12.7138 −0.476803
\(712\) −6.19047 −0.231998
\(713\) 10.1123 0.378708
\(714\) 20.4314 0.764627
\(715\) 13.8886 0.519403
\(716\) −10.3390 −0.386388
\(717\) −15.6532 −0.584579
\(718\) 2.26293 0.0844517
\(719\) 6.93817 0.258750 0.129375 0.991596i \(-0.458703\pi\)
0.129375 + 0.991596i \(0.458703\pi\)
\(720\) 2.26164 0.0842863
\(721\) −42.4171 −1.57969
\(722\) 14.8934 0.554275
\(723\) −3.74945 −0.139444
\(724\) 24.7065 0.918209
\(725\) 0.115013 0.00427149
\(726\) −8.18268 −0.303688
\(727\) 50.1096 1.85846 0.929231 0.369498i \(-0.120470\pi\)
0.929231 + 0.369498i \(0.120470\pi\)
\(728\) 18.9716 0.703136
\(729\) 1.00000 0.0370370
\(730\) 13.4607 0.498202
\(731\) 33.8228 1.25098
\(732\) −10.0494 −0.371438
\(733\) −22.7042 −0.838600 −0.419300 0.907848i \(-0.637724\pi\)
−0.419300 + 0.907848i \(0.637724\pi\)
\(734\) −13.2727 −0.489906
\(735\) −44.9821 −1.65919
\(736\) −1.00000 −0.0368605
\(737\) 13.5299 0.498382
\(738\) 6.99527 0.257499
\(739\) 16.9804 0.624634 0.312317 0.949978i \(-0.398895\pi\)
0.312317 + 0.949978i \(0.398895\pi\)
\(740\) −0.773094 −0.0284195
\(741\) 7.41407 0.272363
\(742\) 55.3465 2.03183
\(743\) 21.3220 0.782229 0.391115 0.920342i \(-0.372090\pi\)
0.391115 + 0.920342i \(0.372090\pi\)
\(744\) 10.1123 0.370734
\(745\) 33.5818 1.23034
\(746\) −0.0831012 −0.00304255
\(747\) −3.91365 −0.143193
\(748\) −6.61346 −0.241812
\(749\) 19.2123 0.702002
\(750\) −11.0481 −0.403419
\(751\) −30.6682 −1.11910 −0.559549 0.828798i \(-0.689025\pi\)
−0.559549 + 0.828798i \(0.689025\pi\)
\(752\) −8.56649 −0.312388
\(753\) 30.4348 1.10911
\(754\) −3.65861 −0.133239
\(755\) −6.00842 −0.218669
\(756\) 5.18548 0.188594
\(757\) 39.2460 1.42642 0.713210 0.700950i \(-0.247241\pi\)
0.713210 + 0.700950i \(0.247241\pi\)
\(758\) 7.42482 0.269682
\(759\) −1.67849 −0.0609253
\(760\) 4.58315 0.166248
\(761\) 22.8777 0.829317 0.414659 0.909977i \(-0.363901\pi\)
0.414659 + 0.909977i \(0.363901\pi\)
\(762\) −8.80505 −0.318973
\(763\) 86.0697 3.11593
\(764\) 12.1868 0.440904
\(765\) −8.91115 −0.322183
\(766\) −20.7513 −0.749775
\(767\) −3.36311 −0.121435
\(768\) −1.00000 −0.0360844
\(769\) 48.8512 1.76162 0.880810 0.473469i \(-0.156998\pi\)
0.880810 + 0.473469i \(0.156998\pi\)
\(770\) 19.6848 0.709390
\(771\) −1.93369 −0.0696401
\(772\) 7.91470 0.284856
\(773\) −49.5308 −1.78150 −0.890750 0.454493i \(-0.849820\pi\)
−0.890750 + 0.454493i \(0.849820\pi\)
\(774\) 8.58420 0.308553
\(775\) 1.16305 0.0417779
\(776\) 11.7633 0.422278
\(777\) −1.77255 −0.0635898
\(778\) 36.3610 1.30360
\(779\) 14.1757 0.507898
\(780\) −8.27446 −0.296273
\(781\) −9.34231 −0.334294
\(782\) 3.94013 0.140899
\(783\) −1.00000 −0.0357371
\(784\) 19.8892 0.710328
\(785\) −42.3359 −1.51103
\(786\) 12.1320 0.432735
\(787\) −11.2970 −0.402693 −0.201347 0.979520i \(-0.564532\pi\)
−0.201347 + 0.979520i \(0.564532\pi\)
\(788\) 1.08793 0.0387559
\(789\) −27.5921 −0.982304
\(790\) 28.7539 1.02302
\(791\) 18.0742 0.642644
\(792\) −1.67849 −0.0596425
\(793\) 36.7670 1.30563
\(794\) −2.50661 −0.0889564
\(795\) −24.1393 −0.856133
\(796\) −16.4282 −0.582281
\(797\) −52.0174 −1.84255 −0.921276 0.388910i \(-0.872852\pi\)
−0.921276 + 0.388910i \(0.872852\pi\)
\(798\) 10.5082 0.371987
\(799\) 33.7531 1.19410
\(800\) −0.115013 −0.00406634
\(801\) 6.19047 0.218730
\(802\) 26.5916 0.938982
\(803\) −9.98991 −0.352536
\(804\) −8.06080 −0.284282
\(805\) −11.7277 −0.413346
\(806\) −36.9969 −1.30316
\(807\) −0.980263 −0.0345069
\(808\) −3.59695 −0.126540
\(809\) 4.37247 0.153728 0.0768639 0.997042i \(-0.475509\pi\)
0.0768639 + 0.997042i \(0.475509\pi\)
\(810\) −2.26164 −0.0794659
\(811\) −11.3391 −0.398169 −0.199085 0.979982i \(-0.563797\pi\)
−0.199085 + 0.979982i \(0.563797\pi\)
\(812\) −5.18548 −0.181975
\(813\) 23.1859 0.813164
\(814\) 0.573756 0.0201101
\(815\) −5.24567 −0.183748
\(816\) 3.94013 0.137932
\(817\) 17.3956 0.608597
\(818\) 26.1269 0.913505
\(819\) −18.9716 −0.662923
\(820\) −15.8208 −0.552485
\(821\) 23.2357 0.810931 0.405465 0.914110i \(-0.367109\pi\)
0.405465 + 0.914110i \(0.367109\pi\)
\(822\) 9.66441 0.337085
\(823\) −44.9685 −1.56750 −0.783752 0.621073i \(-0.786697\pi\)
−0.783752 + 0.621073i \(0.786697\pi\)
\(824\) −8.17997 −0.284963
\(825\) −0.193049 −0.00672109
\(826\) −4.76665 −0.165853
\(827\) −17.3178 −0.602199 −0.301099 0.953593i \(-0.597354\pi\)
−0.301099 + 0.953593i \(0.597354\pi\)
\(828\) 1.00000 0.0347524
\(829\) 37.0366 1.28633 0.643167 0.765726i \(-0.277620\pi\)
0.643167 + 0.765726i \(0.277620\pi\)
\(830\) 8.85128 0.307232
\(831\) −3.29919 −0.114448
\(832\) 3.65861 0.126839
\(833\) −78.3659 −2.71522
\(834\) −13.4990 −0.467431
\(835\) −2.16657 −0.0749771
\(836\) −3.40141 −0.117640
\(837\) −10.1123 −0.349531
\(838\) −34.8966 −1.20548
\(839\) 38.9850 1.34591 0.672956 0.739682i \(-0.265024\pi\)
0.672956 + 0.739682i \(0.265024\pi\)
\(840\) −11.7277 −0.404643
\(841\) 1.00000 0.0344828
\(842\) 19.2371 0.662955
\(843\) −14.9206 −0.513893
\(844\) −18.3924 −0.633092
\(845\) 0.871690 0.0299870
\(846\) 8.56649 0.294522
\(847\) 42.4311 1.45795
\(848\) 10.6734 0.366525
\(849\) 7.35703 0.252493
\(850\) 0.453167 0.0155435
\(851\) −0.341829 −0.0117177
\(852\) 5.56591 0.190685
\(853\) −20.5551 −0.703793 −0.351896 0.936039i \(-0.614463\pi\)
−0.351896 + 0.936039i \(0.614463\pi\)
\(854\) 52.1112 1.78321
\(855\) −4.58315 −0.156740
\(856\) 3.70502 0.126635
\(857\) −38.6247 −1.31940 −0.659698 0.751531i \(-0.729316\pi\)
−0.659698 + 0.751531i \(0.729316\pi\)
\(858\) 6.14093 0.209648
\(859\) −21.7884 −0.743412 −0.371706 0.928351i \(-0.621227\pi\)
−0.371706 + 0.928351i \(0.621227\pi\)
\(860\) −19.4144 −0.662024
\(861\) −36.2738 −1.23621
\(862\) 4.25421 0.144899
\(863\) 47.7394 1.62507 0.812534 0.582913i \(-0.198087\pi\)
0.812534 + 0.582913i \(0.198087\pi\)
\(864\) 1.00000 0.0340207
\(865\) −26.1738 −0.889936
\(866\) −1.85387 −0.0629970
\(867\) 1.47539 0.0501070
\(868\) −52.4370 −1.77983
\(869\) −21.3399 −0.723906
\(870\) 2.26164 0.0766768
\(871\) 29.4913 0.999275
\(872\) 16.5982 0.562087
\(873\) −11.7633 −0.398128
\(874\) 2.02647 0.0685465
\(875\) 57.2896 1.93674
\(876\) 5.95173 0.201090
\(877\) 56.3532 1.90291 0.951456 0.307784i \(-0.0995874\pi\)
0.951456 + 0.307784i \(0.0995874\pi\)
\(878\) 13.0700 0.441091
\(879\) 15.0931 0.509076
\(880\) 3.79614 0.127968
\(881\) 37.3886 1.25966 0.629828 0.776735i \(-0.283126\pi\)
0.629828 + 0.776735i \(0.283126\pi\)
\(882\) −19.8892 −0.669703
\(883\) −40.4172 −1.36015 −0.680074 0.733144i \(-0.738052\pi\)
−0.680074 + 0.733144i \(0.738052\pi\)
\(884\) −14.4154 −0.484842
\(885\) 2.07897 0.0698837
\(886\) −16.2061 −0.544456
\(887\) 5.45256 0.183079 0.0915395 0.995801i \(-0.470821\pi\)
0.0915395 + 0.995801i \(0.470821\pi\)
\(888\) −0.341829 −0.0114710
\(889\) 45.6584 1.53133
\(890\) −14.0006 −0.469302
\(891\) 1.67849 0.0562315
\(892\) −7.91788 −0.265110
\(893\) 17.3598 0.580922
\(894\) 14.8484 0.496606
\(895\) −23.3832 −0.781613
\(896\) 5.18548 0.173235
\(897\) −3.65861 −0.122157
\(898\) 0.298743 0.00996918
\(899\) 10.1123 0.337263
\(900\) 0.115013 0.00383378
\(901\) −42.0544 −1.40104
\(902\) 11.7415 0.390948
\(903\) −44.5132 −1.48131
\(904\) 3.48554 0.115927
\(905\) 55.8771 1.85742
\(906\) −2.65666 −0.0882618
\(907\) 32.8885 1.09205 0.546023 0.837770i \(-0.316141\pi\)
0.546023 + 0.837770i \(0.316141\pi\)
\(908\) −25.9727 −0.861935
\(909\) 3.59695 0.119303
\(910\) 42.9070 1.42235
\(911\) −30.2278 −1.00149 −0.500747 0.865594i \(-0.666941\pi\)
−0.500747 + 0.865594i \(0.666941\pi\)
\(912\) 2.02647 0.0671032
\(913\) −6.56902 −0.217403
\(914\) 6.82339 0.225698
\(915\) −22.7282 −0.751372
\(916\) 23.9829 0.792417
\(917\) −62.9103 −2.07748
\(918\) −3.94013 −0.130044
\(919\) 3.63191 0.119806 0.0599028 0.998204i \(-0.480921\pi\)
0.0599028 + 0.998204i \(0.480921\pi\)
\(920\) −2.26164 −0.0745640
\(921\) 26.6685 0.878758
\(922\) −2.68303 −0.0883608
\(923\) −20.3635 −0.670272
\(924\) 8.70376 0.286333
\(925\) −0.0393149 −0.00129267
\(926\) 8.11062 0.266531
\(927\) 8.17997 0.268666
\(928\) −1.00000 −0.0328266
\(929\) −50.9359 −1.67115 −0.835576 0.549375i \(-0.814866\pi\)
−0.835576 + 0.549375i \(0.814866\pi\)
\(930\) 22.8703 0.749948
\(931\) −40.3049 −1.32094
\(932\) −2.23951 −0.0733577
\(933\) 23.3847 0.765580
\(934\) 27.5000 0.899829
\(935\) −14.9573 −0.489155
\(936\) −3.65861 −0.119585
\(937\) 36.4955 1.19226 0.596128 0.802889i \(-0.296705\pi\)
0.596128 + 0.802889i \(0.296705\pi\)
\(938\) 41.7991 1.36479
\(939\) −3.76959 −0.123016
\(940\) −19.3743 −0.631920
\(941\) −35.5367 −1.15846 −0.579232 0.815163i \(-0.696647\pi\)
−0.579232 + 0.815163i \(0.696647\pi\)
\(942\) −18.7191 −0.609901
\(943\) −6.99527 −0.227797
\(944\) −0.919230 −0.0299184
\(945\) 11.7277 0.381501
\(946\) 14.4085 0.468460
\(947\) 18.3895 0.597579 0.298789 0.954319i \(-0.403417\pi\)
0.298789 + 0.954319i \(0.403417\pi\)
\(948\) 12.7138 0.412923
\(949\) −21.7751 −0.706848
\(950\) 0.233071 0.00756184
\(951\) 29.0727 0.942746
\(952\) −20.4314 −0.662187
\(953\) 29.3478 0.950667 0.475333 0.879806i \(-0.342327\pi\)
0.475333 + 0.879806i \(0.342327\pi\)
\(954\) −10.6734 −0.345563
\(955\) 27.5622 0.891892
\(956\) 15.6532 0.506260
\(957\) −1.67849 −0.0542578
\(958\) −24.4909 −0.791263
\(959\) −50.1146 −1.61828
\(960\) −2.26164 −0.0729941
\(961\) 71.2582 2.29865
\(962\) 1.25062 0.0403216
\(963\) −3.70502 −0.119393
\(964\) 3.74945 0.120762
\(965\) 17.9002 0.576228
\(966\) −5.18548 −0.166840
\(967\) −23.3078 −0.749528 −0.374764 0.927120i \(-0.622276\pi\)
−0.374764 + 0.927120i \(0.622276\pi\)
\(968\) 8.18268 0.263001
\(969\) −7.98456 −0.256501
\(970\) 26.6044 0.854215
\(971\) 41.2512 1.32382 0.661908 0.749585i \(-0.269747\pi\)
0.661908 + 0.749585i \(0.269747\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 69.9986 2.24405
\(974\) 19.6246 0.628813
\(975\) −0.420789 −0.0134760
\(976\) 10.0494 0.321675
\(977\) 29.1039 0.931116 0.465558 0.885017i \(-0.345854\pi\)
0.465558 + 0.885017i \(0.345854\pi\)
\(978\) −2.31941 −0.0741665
\(979\) 10.3906 0.332086
\(980\) 44.9821 1.43690
\(981\) −16.5982 −0.529941
\(982\) −23.4593 −0.748615
\(983\) 15.1901 0.484489 0.242244 0.970215i \(-0.422116\pi\)
0.242244 + 0.970215i \(0.422116\pi\)
\(984\) −6.99527 −0.223001
\(985\) 2.46051 0.0783982
\(986\) 3.94013 0.125479
\(987\) −44.4213 −1.41395
\(988\) −7.41407 −0.235873
\(989\) −8.58420 −0.272962
\(990\) −3.79614 −0.120649
\(991\) 46.4337 1.47501 0.737507 0.675339i \(-0.236003\pi\)
0.737507 + 0.675339i \(0.236003\pi\)
\(992\) −10.1123 −0.321065
\(993\) 33.3842 1.05942
\(994\) −28.8619 −0.915443
\(995\) −37.1546 −1.17788
\(996\) 3.91365 0.124009
\(997\) −7.74371 −0.245246 −0.122623 0.992453i \(-0.539131\pi\)
−0.122623 + 0.992453i \(0.539131\pi\)
\(998\) 17.4292 0.551711
\(999\) 0.341829 0.0108150
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bg.1.6 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bg.1.6 7 1.1 even 1 trivial