Properties

Label 4002.2.a.bg.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 16x^{4} + 19x^{3} - 8x^{2} - 10x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.02256\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.662522 q^{5} +1.00000 q^{6} -0.537195 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -0.662522 q^{5} +1.00000 q^{6} -0.537195 q^{7} -1.00000 q^{8} +1.00000 q^{9} +0.662522 q^{10} +1.91221 q^{11} -1.00000 q^{12} -2.29155 q^{13} +0.537195 q^{14} +0.662522 q^{15} +1.00000 q^{16} -1.24969 q^{17} -1.00000 q^{18} +2.15128 q^{19} -0.662522 q^{20} +0.537195 q^{21} -1.91221 q^{22} +1.00000 q^{23} +1.00000 q^{24} -4.56106 q^{25} +2.29155 q^{26} -1.00000 q^{27} -0.537195 q^{28} +1.00000 q^{29} -0.662522 q^{30} +4.51797 q^{31} -1.00000 q^{32} -1.91221 q^{33} +1.24969 q^{34} +0.355903 q^{35} +1.00000 q^{36} -4.68235 q^{37} -2.15128 q^{38} +2.29155 q^{39} +0.662522 q^{40} +3.06169 q^{41} -0.537195 q^{42} +3.78428 q^{43} +1.91221 q^{44} -0.662522 q^{45} -1.00000 q^{46} -3.25727 q^{47} -1.00000 q^{48} -6.71142 q^{49} +4.56106 q^{50} +1.24969 q^{51} -2.29155 q^{52} -1.37436 q^{53} +1.00000 q^{54} -1.26688 q^{55} +0.537195 q^{56} -2.15128 q^{57} -1.00000 q^{58} +10.9987 q^{59} +0.662522 q^{60} +0.986600 q^{61} -4.51797 q^{62} -0.537195 q^{63} +1.00000 q^{64} +1.51820 q^{65} +1.91221 q^{66} -13.5609 q^{67} -1.24969 q^{68} -1.00000 q^{69} -0.355903 q^{70} +4.39652 q^{71} -1.00000 q^{72} +6.04309 q^{73} +4.68235 q^{74} +4.56106 q^{75} +2.15128 q^{76} -1.02723 q^{77} -2.29155 q^{78} +0.602927 q^{79} -0.662522 q^{80} +1.00000 q^{81} -3.06169 q^{82} -5.40097 q^{83} +0.537195 q^{84} +0.827946 q^{85} -3.78428 q^{86} -1.00000 q^{87} -1.91221 q^{88} -1.27788 q^{89} +0.662522 q^{90} +1.23101 q^{91} +1.00000 q^{92} -4.51797 q^{93} +3.25727 q^{94} -1.42527 q^{95} +1.00000 q^{96} +10.7530 q^{97} +6.71142 q^{98} +1.91221 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9} - 2 q^{10} - q^{11} - 7 q^{12} + q^{13} + 5 q^{14} - 2 q^{15} + 7 q^{16} - q^{17} - 7 q^{18} - 9 q^{19} + 2 q^{20} + 5 q^{21} + q^{22} + 7 q^{23} + 7 q^{24} + q^{25} - q^{26} - 7 q^{27} - 5 q^{28} + 7 q^{29} + 2 q^{30} - 19 q^{31} - 7 q^{32} + q^{33} + q^{34} + 11 q^{35} + 7 q^{36} - 18 q^{37} + 9 q^{38} - q^{39} - 2 q^{40} + 4 q^{41} - 5 q^{42} - 9 q^{43} - q^{44} + 2 q^{45} - 7 q^{46} - 11 q^{47} - 7 q^{48} + 12 q^{49} - q^{50} + q^{51} + q^{52} + 8 q^{53} + 7 q^{54} - 11 q^{55} + 5 q^{56} + 9 q^{57} - 7 q^{58} + 12 q^{59} - 2 q^{60} - 5 q^{61} + 19 q^{62} - 5 q^{63} + 7 q^{64} + 23 q^{65} - q^{66} - 13 q^{67} - q^{68} - 7 q^{69} - 11 q^{70} - q^{71} - 7 q^{72} - 26 q^{73} + 18 q^{74} - q^{75} - 9 q^{76} + 6 q^{77} + q^{78} - 38 q^{79} + 2 q^{80} + 7 q^{81} - 4 q^{82} - 6 q^{83} + 5 q^{84} - 25 q^{85} + 9 q^{86} - 7 q^{87} + q^{88} + 20 q^{89} - 2 q^{90} + 2 q^{91} + 7 q^{92} + 19 q^{93} + 11 q^{94} - 31 q^{95} + 7 q^{96} - 8 q^{97} - 12 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −0.662522 −0.296289 −0.148144 0.988966i \(-0.547330\pi\)
−0.148144 + 0.988966i \(0.547330\pi\)
\(6\) 1.00000 0.408248
\(7\) −0.537195 −0.203041 −0.101520 0.994833i \(-0.532371\pi\)
−0.101520 + 0.994833i \(0.532371\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 0.662522 0.209508
\(11\) 1.91221 0.576553 0.288277 0.957547i \(-0.406918\pi\)
0.288277 + 0.957547i \(0.406918\pi\)
\(12\) −1.00000 −0.288675
\(13\) −2.29155 −0.635562 −0.317781 0.948164i \(-0.602938\pi\)
−0.317781 + 0.948164i \(0.602938\pi\)
\(14\) 0.537195 0.143571
\(15\) 0.662522 0.171062
\(16\) 1.00000 0.250000
\(17\) −1.24969 −0.303094 −0.151547 0.988450i \(-0.548426\pi\)
−0.151547 + 0.988450i \(0.548426\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.15128 0.493537 0.246768 0.969074i \(-0.420631\pi\)
0.246768 + 0.969074i \(0.420631\pi\)
\(20\) −0.662522 −0.148144
\(21\) 0.537195 0.117226
\(22\) −1.91221 −0.407685
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) −4.56106 −0.912213
\(26\) 2.29155 0.449410
\(27\) −1.00000 −0.192450
\(28\) −0.537195 −0.101520
\(29\) 1.00000 0.185695
\(30\) −0.662522 −0.120959
\(31\) 4.51797 0.811451 0.405725 0.913995i \(-0.367019\pi\)
0.405725 + 0.913995i \(0.367019\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.91221 −0.332873
\(34\) 1.24969 0.214320
\(35\) 0.355903 0.0601586
\(36\) 1.00000 0.166667
\(37\) −4.68235 −0.769773 −0.384887 0.922964i \(-0.625759\pi\)
−0.384887 + 0.922964i \(0.625759\pi\)
\(38\) −2.15128 −0.348983
\(39\) 2.29155 0.366942
\(40\) 0.662522 0.104754
\(41\) 3.06169 0.478155 0.239078 0.971000i \(-0.423155\pi\)
0.239078 + 0.971000i \(0.423155\pi\)
\(42\) −0.537195 −0.0828910
\(43\) 3.78428 0.577097 0.288549 0.957465i \(-0.406827\pi\)
0.288549 + 0.957465i \(0.406827\pi\)
\(44\) 1.91221 0.288277
\(45\) −0.662522 −0.0987629
\(46\) −1.00000 −0.147442
\(47\) −3.25727 −0.475122 −0.237561 0.971373i \(-0.576348\pi\)
−0.237561 + 0.971373i \(0.576348\pi\)
\(48\) −1.00000 −0.144338
\(49\) −6.71142 −0.958775
\(50\) 4.56106 0.645032
\(51\) 1.24969 0.174991
\(52\) −2.29155 −0.317781
\(53\) −1.37436 −0.188783 −0.0943917 0.995535i \(-0.530091\pi\)
−0.0943917 + 0.995535i \(0.530091\pi\)
\(54\) 1.00000 0.136083
\(55\) −1.26688 −0.170826
\(56\) 0.537195 0.0717857
\(57\) −2.15128 −0.284944
\(58\) −1.00000 −0.131306
\(59\) 10.9987 1.43190 0.715952 0.698150i \(-0.245993\pi\)
0.715952 + 0.698150i \(0.245993\pi\)
\(60\) 0.662522 0.0855312
\(61\) 0.986600 0.126321 0.0631606 0.998003i \(-0.479882\pi\)
0.0631606 + 0.998003i \(0.479882\pi\)
\(62\) −4.51797 −0.573782
\(63\) −0.537195 −0.0676802
\(64\) 1.00000 0.125000
\(65\) 1.51820 0.188310
\(66\) 1.91221 0.235377
\(67\) −13.5609 −1.65673 −0.828363 0.560192i \(-0.810728\pi\)
−0.828363 + 0.560192i \(0.810728\pi\)
\(68\) −1.24969 −0.151547
\(69\) −1.00000 −0.120386
\(70\) −0.355903 −0.0425386
\(71\) 4.39652 0.521771 0.260886 0.965370i \(-0.415985\pi\)
0.260886 + 0.965370i \(0.415985\pi\)
\(72\) −1.00000 −0.117851
\(73\) 6.04309 0.707290 0.353645 0.935380i \(-0.384942\pi\)
0.353645 + 0.935380i \(0.384942\pi\)
\(74\) 4.68235 0.544312
\(75\) 4.56106 0.526666
\(76\) 2.15128 0.246768
\(77\) −1.02723 −0.117064
\(78\) −2.29155 −0.259467
\(79\) 0.602927 0.0678346 0.0339173 0.999425i \(-0.489202\pi\)
0.0339173 + 0.999425i \(0.489202\pi\)
\(80\) −0.662522 −0.0740722
\(81\) 1.00000 0.111111
\(82\) −3.06169 −0.338107
\(83\) −5.40097 −0.592833 −0.296416 0.955059i \(-0.595792\pi\)
−0.296416 + 0.955059i \(0.595792\pi\)
\(84\) 0.537195 0.0586128
\(85\) 0.827946 0.0898034
\(86\) −3.78428 −0.408069
\(87\) −1.00000 −0.107211
\(88\) −1.91221 −0.203842
\(89\) −1.27788 −0.135455 −0.0677277 0.997704i \(-0.521575\pi\)
−0.0677277 + 0.997704i \(0.521575\pi\)
\(90\) 0.662522 0.0698359
\(91\) 1.23101 0.129045
\(92\) 1.00000 0.104257
\(93\) −4.51797 −0.468491
\(94\) 3.25727 0.335962
\(95\) −1.42527 −0.146229
\(96\) 1.00000 0.102062
\(97\) 10.7530 1.09180 0.545902 0.837849i \(-0.316187\pi\)
0.545902 + 0.837849i \(0.316187\pi\)
\(98\) 6.71142 0.677956
\(99\) 1.91221 0.192184
\(100\) −4.56106 −0.456106
\(101\) −7.87633 −0.783724 −0.391862 0.920024i \(-0.628169\pi\)
−0.391862 + 0.920024i \(0.628169\pi\)
\(102\) −1.24969 −0.123738
\(103\) −13.6072 −1.34076 −0.670378 0.742019i \(-0.733868\pi\)
−0.670378 + 0.742019i \(0.733868\pi\)
\(104\) 2.29155 0.224705
\(105\) −0.355903 −0.0347326
\(106\) 1.37436 0.133490
\(107\) 14.6516 1.41642 0.708212 0.706000i \(-0.249502\pi\)
0.708212 + 0.706000i \(0.249502\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −5.86994 −0.562239 −0.281119 0.959673i \(-0.590706\pi\)
−0.281119 + 0.959673i \(0.590706\pi\)
\(110\) 1.26688 0.120792
\(111\) 4.68235 0.444429
\(112\) −0.537195 −0.0507601
\(113\) 12.2930 1.15642 0.578212 0.815887i \(-0.303751\pi\)
0.578212 + 0.815887i \(0.303751\pi\)
\(114\) 2.15128 0.201486
\(115\) −0.662522 −0.0617805
\(116\) 1.00000 0.0928477
\(117\) −2.29155 −0.211854
\(118\) −10.9987 −1.01251
\(119\) 0.671326 0.0615404
\(120\) −0.662522 −0.0604797
\(121\) −7.34345 −0.667586
\(122\) −0.986600 −0.0893226
\(123\) −3.06169 −0.276063
\(124\) 4.51797 0.405725
\(125\) 6.33441 0.566567
\(126\) 0.537195 0.0478571
\(127\) −9.47091 −0.840407 −0.420204 0.907430i \(-0.638041\pi\)
−0.420204 + 0.907430i \(0.638041\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −3.78428 −0.333187
\(130\) −1.51820 −0.133155
\(131\) −15.9426 −1.39291 −0.696455 0.717601i \(-0.745240\pi\)
−0.696455 + 0.717601i \(0.745240\pi\)
\(132\) −1.91221 −0.166437
\(133\) −1.15565 −0.100208
\(134\) 13.5609 1.17148
\(135\) 0.662522 0.0570208
\(136\) 1.24969 0.107160
\(137\) −4.27806 −0.365500 −0.182750 0.983159i \(-0.558500\pi\)
−0.182750 + 0.983159i \(0.558500\pi\)
\(138\) 1.00000 0.0851257
\(139\) 19.7483 1.67503 0.837515 0.546414i \(-0.184007\pi\)
0.837515 + 0.546414i \(0.184007\pi\)
\(140\) 0.355903 0.0300793
\(141\) 3.25727 0.274312
\(142\) −4.39652 −0.368948
\(143\) −4.38193 −0.366435
\(144\) 1.00000 0.0833333
\(145\) −0.662522 −0.0550194
\(146\) −6.04309 −0.500129
\(147\) 6.71142 0.553549
\(148\) −4.68235 −0.384887
\(149\) 11.1893 0.916664 0.458332 0.888781i \(-0.348447\pi\)
0.458332 + 0.888781i \(0.348447\pi\)
\(150\) −4.56106 −0.372409
\(151\) 1.02801 0.0836586 0.0418293 0.999125i \(-0.486681\pi\)
0.0418293 + 0.999125i \(0.486681\pi\)
\(152\) −2.15128 −0.174492
\(153\) −1.24969 −0.101031
\(154\) 1.02723 0.0827765
\(155\) −2.99325 −0.240424
\(156\) 2.29155 0.183471
\(157\) −9.59821 −0.766021 −0.383010 0.923744i \(-0.625113\pi\)
−0.383010 + 0.923744i \(0.625113\pi\)
\(158\) −0.602927 −0.0479663
\(159\) 1.37436 0.108994
\(160\) 0.662522 0.0523769
\(161\) −0.537195 −0.0423369
\(162\) −1.00000 −0.0785674
\(163\) −18.3567 −1.43781 −0.718903 0.695111i \(-0.755355\pi\)
−0.718903 + 0.695111i \(0.755355\pi\)
\(164\) 3.06169 0.239078
\(165\) 1.26688 0.0986266
\(166\) 5.40097 0.419196
\(167\) −24.1811 −1.87119 −0.935593 0.353079i \(-0.885135\pi\)
−0.935593 + 0.353079i \(0.885135\pi\)
\(168\) −0.537195 −0.0414455
\(169\) −7.74879 −0.596061
\(170\) −0.827946 −0.0635006
\(171\) 2.15128 0.164512
\(172\) 3.78428 0.288549
\(173\) 14.9035 1.13309 0.566545 0.824031i \(-0.308280\pi\)
0.566545 + 0.824031i \(0.308280\pi\)
\(174\) 1.00000 0.0758098
\(175\) 2.45018 0.185216
\(176\) 1.91221 0.144138
\(177\) −10.9987 −0.826710
\(178\) 1.27788 0.0957814
\(179\) −5.77261 −0.431465 −0.215732 0.976453i \(-0.569214\pi\)
−0.215732 + 0.976453i \(0.569214\pi\)
\(180\) −0.662522 −0.0493815
\(181\) −6.84199 −0.508561 −0.254281 0.967130i \(-0.581839\pi\)
−0.254281 + 0.967130i \(0.581839\pi\)
\(182\) −1.23101 −0.0912485
\(183\) −0.986600 −0.0729316
\(184\) −1.00000 −0.0737210
\(185\) 3.10216 0.228075
\(186\) 4.51797 0.331273
\(187\) −2.38967 −0.174750
\(188\) −3.25727 −0.237561
\(189\) 0.537195 0.0390752
\(190\) 1.42527 0.103400
\(191\) 19.2737 1.39460 0.697298 0.716782i \(-0.254386\pi\)
0.697298 + 0.716782i \(0.254386\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 0.191419 0.0137786 0.00688932 0.999976i \(-0.497807\pi\)
0.00688932 + 0.999976i \(0.497807\pi\)
\(194\) −10.7530 −0.772022
\(195\) −1.51820 −0.108721
\(196\) −6.71142 −0.479387
\(197\) −1.90518 −0.135739 −0.0678693 0.997694i \(-0.521620\pi\)
−0.0678693 + 0.997694i \(0.521620\pi\)
\(198\) −1.91221 −0.135895
\(199\) −12.6011 −0.893270 −0.446635 0.894716i \(-0.647378\pi\)
−0.446635 + 0.894716i \(0.647378\pi\)
\(200\) 4.56106 0.322516
\(201\) 13.5609 0.956511
\(202\) 7.87633 0.554177
\(203\) −0.537195 −0.0377037
\(204\) 1.24969 0.0874957
\(205\) −2.02843 −0.141672
\(206\) 13.6072 0.948058
\(207\) 1.00000 0.0695048
\(208\) −2.29155 −0.158890
\(209\) 4.11369 0.284550
\(210\) 0.355903 0.0245597
\(211\) −26.0281 −1.79185 −0.895923 0.444209i \(-0.853485\pi\)
−0.895923 + 0.444209i \(0.853485\pi\)
\(212\) −1.37436 −0.0943917
\(213\) −4.39652 −0.301245
\(214\) −14.6516 −1.00156
\(215\) −2.50717 −0.170987
\(216\) 1.00000 0.0680414
\(217\) −2.42703 −0.164757
\(218\) 5.86994 0.397563
\(219\) −6.04309 −0.408354
\(220\) −1.26688 −0.0854131
\(221\) 2.86373 0.192635
\(222\) −4.68235 −0.314259
\(223\) −17.3745 −1.16348 −0.581740 0.813375i \(-0.697628\pi\)
−0.581740 + 0.813375i \(0.697628\pi\)
\(224\) 0.537195 0.0358928
\(225\) −4.56106 −0.304071
\(226\) −12.2930 −0.817715
\(227\) −7.96370 −0.528569 −0.264285 0.964445i \(-0.585136\pi\)
−0.264285 + 0.964445i \(0.585136\pi\)
\(228\) −2.15128 −0.142472
\(229\) 4.43814 0.293280 0.146640 0.989190i \(-0.453154\pi\)
0.146640 + 0.989190i \(0.453154\pi\)
\(230\) 0.662522 0.0436854
\(231\) 1.02723 0.0675867
\(232\) −1.00000 −0.0656532
\(233\) 19.2617 1.26188 0.630938 0.775833i \(-0.282670\pi\)
0.630938 + 0.775833i \(0.282670\pi\)
\(234\) 2.29155 0.149803
\(235\) 2.15801 0.140773
\(236\) 10.9987 0.715952
\(237\) −0.602927 −0.0391643
\(238\) −0.671326 −0.0435156
\(239\) 23.8180 1.54066 0.770331 0.637645i \(-0.220091\pi\)
0.770331 + 0.637645i \(0.220091\pi\)
\(240\) 0.662522 0.0427656
\(241\) −5.72420 −0.368728 −0.184364 0.982858i \(-0.559023\pi\)
−0.184364 + 0.982858i \(0.559023\pi\)
\(242\) 7.34345 0.472055
\(243\) −1.00000 −0.0641500
\(244\) 0.986600 0.0631606
\(245\) 4.44646 0.284074
\(246\) 3.06169 0.195206
\(247\) −4.92976 −0.313673
\(248\) −4.51797 −0.286891
\(249\) 5.40097 0.342272
\(250\) −6.33441 −0.400623
\(251\) −13.2587 −0.836879 −0.418440 0.908245i \(-0.637423\pi\)
−0.418440 + 0.908245i \(0.637423\pi\)
\(252\) −0.537195 −0.0338401
\(253\) 1.91221 0.120220
\(254\) 9.47091 0.594258
\(255\) −0.827946 −0.0518480
\(256\) 1.00000 0.0625000
\(257\) −15.5021 −0.966994 −0.483497 0.875346i \(-0.660634\pi\)
−0.483497 + 0.875346i \(0.660634\pi\)
\(258\) 3.78428 0.235599
\(259\) 2.51533 0.156295
\(260\) 1.51820 0.0941549
\(261\) 1.00000 0.0618984
\(262\) 15.9426 0.984936
\(263\) −31.9201 −1.96828 −0.984138 0.177403i \(-0.943230\pi\)
−0.984138 + 0.177403i \(0.943230\pi\)
\(264\) 1.91221 0.117688
\(265\) 0.910546 0.0559344
\(266\) 1.15565 0.0708577
\(267\) 1.27788 0.0782052
\(268\) −13.5609 −0.828363
\(269\) 1.05924 0.0645828 0.0322914 0.999478i \(-0.489720\pi\)
0.0322914 + 0.999478i \(0.489720\pi\)
\(270\) −0.662522 −0.0403198
\(271\) −7.26353 −0.441228 −0.220614 0.975361i \(-0.570806\pi\)
−0.220614 + 0.975361i \(0.570806\pi\)
\(272\) −1.24969 −0.0757735
\(273\) −1.23101 −0.0745041
\(274\) 4.27806 0.258447
\(275\) −8.72172 −0.525939
\(276\) −1.00000 −0.0601929
\(277\) 15.1693 0.911435 0.455718 0.890124i \(-0.349383\pi\)
0.455718 + 0.890124i \(0.349383\pi\)
\(278\) −19.7483 −1.18443
\(279\) 4.51797 0.270484
\(280\) −0.355903 −0.0212693
\(281\) −9.83912 −0.586953 −0.293476 0.955966i \(-0.594812\pi\)
−0.293476 + 0.955966i \(0.594812\pi\)
\(282\) −3.25727 −0.193968
\(283\) 6.58812 0.391623 0.195811 0.980642i \(-0.437266\pi\)
0.195811 + 0.980642i \(0.437266\pi\)
\(284\) 4.39652 0.260886
\(285\) 1.42527 0.0844256
\(286\) 4.38193 0.259109
\(287\) −1.64472 −0.0970849
\(288\) −1.00000 −0.0589256
\(289\) −15.4383 −0.908134
\(290\) 0.662522 0.0389046
\(291\) −10.7530 −0.630353
\(292\) 6.04309 0.353645
\(293\) −26.1212 −1.52602 −0.763008 0.646389i \(-0.776278\pi\)
−0.763008 + 0.646389i \(0.776278\pi\)
\(294\) −6.71142 −0.391418
\(295\) −7.28685 −0.424257
\(296\) 4.68235 0.272156
\(297\) −1.91221 −0.110958
\(298\) −11.1893 −0.648179
\(299\) −2.29155 −0.132524
\(300\) 4.56106 0.263333
\(301\) −2.03290 −0.117174
\(302\) −1.02801 −0.0591556
\(303\) 7.87633 0.452483
\(304\) 2.15128 0.123384
\(305\) −0.653644 −0.0374276
\(306\) 1.24969 0.0714400
\(307\) −18.1507 −1.03591 −0.517957 0.855407i \(-0.673307\pi\)
−0.517957 + 0.855407i \(0.673307\pi\)
\(308\) −1.02723 −0.0585318
\(309\) 13.6072 0.774086
\(310\) 2.99325 0.170005
\(311\) −1.06964 −0.0606539 −0.0303270 0.999540i \(-0.509655\pi\)
−0.0303270 + 0.999540i \(0.509655\pi\)
\(312\) −2.29155 −0.129734
\(313\) −18.6843 −1.05610 −0.528049 0.849214i \(-0.677076\pi\)
−0.528049 + 0.849214i \(0.677076\pi\)
\(314\) 9.59821 0.541658
\(315\) 0.355903 0.0200529
\(316\) 0.602927 0.0339173
\(317\) 12.9906 0.729627 0.364813 0.931081i \(-0.381133\pi\)
0.364813 + 0.931081i \(0.381133\pi\)
\(318\) −1.37436 −0.0770705
\(319\) 1.91221 0.107063
\(320\) −0.662522 −0.0370361
\(321\) −14.6516 −0.817773
\(322\) 0.537195 0.0299367
\(323\) −2.68843 −0.149588
\(324\) 1.00000 0.0555556
\(325\) 10.4519 0.579768
\(326\) 18.3567 1.01668
\(327\) 5.86994 0.324609
\(328\) −3.06169 −0.169053
\(329\) 1.74979 0.0964691
\(330\) −1.26688 −0.0697395
\(331\) 9.73971 0.535343 0.267671 0.963510i \(-0.413746\pi\)
0.267671 + 0.963510i \(0.413746\pi\)
\(332\) −5.40097 −0.296416
\(333\) −4.68235 −0.256591
\(334\) 24.1811 1.32313
\(335\) 8.98438 0.490869
\(336\) 0.537195 0.0293064
\(337\) −7.46365 −0.406571 −0.203286 0.979119i \(-0.565162\pi\)
−0.203286 + 0.979119i \(0.565162\pi\)
\(338\) 7.74879 0.421479
\(339\) −12.2930 −0.667662
\(340\) 0.827946 0.0449017
\(341\) 8.63930 0.467844
\(342\) −2.15128 −0.116328
\(343\) 7.36570 0.397711
\(344\) −3.78428 −0.204035
\(345\) 0.662522 0.0356690
\(346\) −14.9035 −0.801215
\(347\) −18.1759 −0.975734 −0.487867 0.872918i \(-0.662225\pi\)
−0.487867 + 0.872918i \(0.662225\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −21.2660 −1.13834 −0.569170 0.822220i \(-0.692735\pi\)
−0.569170 + 0.822220i \(0.692735\pi\)
\(350\) −2.45018 −0.130968
\(351\) 2.29155 0.122314
\(352\) −1.91221 −0.101921
\(353\) 26.0964 1.38897 0.694487 0.719506i \(-0.255632\pi\)
0.694487 + 0.719506i \(0.255632\pi\)
\(354\) 10.9987 0.584572
\(355\) −2.91279 −0.154595
\(356\) −1.27788 −0.0677277
\(357\) −0.671326 −0.0355304
\(358\) 5.77261 0.305092
\(359\) −30.9097 −1.63135 −0.815675 0.578510i \(-0.803634\pi\)
−0.815675 + 0.578510i \(0.803634\pi\)
\(360\) 0.662522 0.0349180
\(361\) −14.3720 −0.756422
\(362\) 6.84199 0.359607
\(363\) 7.34345 0.385431
\(364\) 1.23101 0.0645224
\(365\) −4.00368 −0.209562
\(366\) 0.986600 0.0515704
\(367\) −6.59652 −0.344336 −0.172168 0.985068i \(-0.555077\pi\)
−0.172168 + 0.985068i \(0.555077\pi\)
\(368\) 1.00000 0.0521286
\(369\) 3.06169 0.159385
\(370\) −3.10216 −0.161273
\(371\) 0.738301 0.0383307
\(372\) −4.51797 −0.234246
\(373\) −2.27258 −0.117670 −0.0588349 0.998268i \(-0.518739\pi\)
−0.0588349 + 0.998268i \(0.518739\pi\)
\(374\) 2.38967 0.123567
\(375\) −6.33441 −0.327108
\(376\) 3.25727 0.167981
\(377\) −2.29155 −0.118021
\(378\) −0.537195 −0.0276303
\(379\) −12.4181 −0.637872 −0.318936 0.947776i \(-0.603326\pi\)
−0.318936 + 0.947776i \(0.603326\pi\)
\(380\) −1.42527 −0.0731147
\(381\) 9.47091 0.485209
\(382\) −19.2737 −0.986128
\(383\) −22.5910 −1.15434 −0.577172 0.816623i \(-0.695844\pi\)
−0.577172 + 0.816623i \(0.695844\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0.680562 0.0346847
\(386\) −0.191419 −0.00974297
\(387\) 3.78428 0.192366
\(388\) 10.7530 0.545902
\(389\) −19.3186 −0.979492 −0.489746 0.871865i \(-0.662911\pi\)
−0.489746 + 0.871865i \(0.662911\pi\)
\(390\) 1.51820 0.0768772
\(391\) −1.24969 −0.0631995
\(392\) 6.71142 0.338978
\(393\) 15.9426 0.804197
\(394\) 1.90518 0.0959816
\(395\) −0.399452 −0.0200986
\(396\) 1.91221 0.0960922
\(397\) −5.49304 −0.275688 −0.137844 0.990454i \(-0.544017\pi\)
−0.137844 + 0.990454i \(0.544017\pi\)
\(398\) 12.6011 0.631638
\(399\) 1.15565 0.0578551
\(400\) −4.56106 −0.228053
\(401\) 6.34075 0.316642 0.158321 0.987388i \(-0.449392\pi\)
0.158321 + 0.987388i \(0.449392\pi\)
\(402\) −13.5609 −0.676356
\(403\) −10.3531 −0.515727
\(404\) −7.87633 −0.391862
\(405\) −0.662522 −0.0329210
\(406\) 0.537195 0.0266605
\(407\) −8.95363 −0.443815
\(408\) −1.24969 −0.0618688
\(409\) 10.1610 0.502428 0.251214 0.967932i \(-0.419170\pi\)
0.251214 + 0.967932i \(0.419170\pi\)
\(410\) 2.02843 0.100177
\(411\) 4.27806 0.211021
\(412\) −13.6072 −0.670378
\(413\) −5.90842 −0.290735
\(414\) −1.00000 −0.0491473
\(415\) 3.57826 0.175650
\(416\) 2.29155 0.112353
\(417\) −19.7483 −0.967079
\(418\) −4.11369 −0.201207
\(419\) 21.4505 1.04793 0.523963 0.851741i \(-0.324453\pi\)
0.523963 + 0.851741i \(0.324453\pi\)
\(420\) −0.355903 −0.0173663
\(421\) −12.7848 −0.623093 −0.311547 0.950231i \(-0.600847\pi\)
−0.311547 + 0.950231i \(0.600847\pi\)
\(422\) 26.0281 1.26703
\(423\) −3.25727 −0.158374
\(424\) 1.37436 0.0667450
\(425\) 5.69991 0.276486
\(426\) 4.39652 0.213012
\(427\) −0.529997 −0.0256483
\(428\) 14.6516 0.708212
\(429\) 4.38193 0.211561
\(430\) 2.50717 0.120906
\(431\) 35.4828 1.70915 0.854574 0.519330i \(-0.173818\pi\)
0.854574 + 0.519330i \(0.173818\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 6.08785 0.292563 0.146282 0.989243i \(-0.453269\pi\)
0.146282 + 0.989243i \(0.453269\pi\)
\(434\) 2.42703 0.116501
\(435\) 0.662522 0.0317655
\(436\) −5.86994 −0.281119
\(437\) 2.15128 0.102910
\(438\) 6.04309 0.288750
\(439\) −27.4443 −1.30985 −0.654923 0.755696i \(-0.727299\pi\)
−0.654923 + 0.755696i \(0.727299\pi\)
\(440\) 1.26688 0.0603962
\(441\) −6.71142 −0.319592
\(442\) −2.86373 −0.136214
\(443\) −25.5492 −1.21388 −0.606940 0.794747i \(-0.707603\pi\)
−0.606940 + 0.794747i \(0.707603\pi\)
\(444\) 4.68235 0.222214
\(445\) 0.846626 0.0401339
\(446\) 17.3745 0.822704
\(447\) −11.1893 −0.529236
\(448\) −0.537195 −0.0253801
\(449\) −17.0641 −0.805306 −0.402653 0.915353i \(-0.631912\pi\)
−0.402653 + 0.915353i \(0.631912\pi\)
\(450\) 4.56106 0.215011
\(451\) 5.85459 0.275682
\(452\) 12.2930 0.578212
\(453\) −1.02801 −0.0483003
\(454\) 7.96370 0.373755
\(455\) −0.815570 −0.0382345
\(456\) 2.15128 0.100743
\(457\) 29.3382 1.37238 0.686192 0.727421i \(-0.259281\pi\)
0.686192 + 0.727421i \(0.259281\pi\)
\(458\) −4.43814 −0.207381
\(459\) 1.24969 0.0583305
\(460\) −0.662522 −0.0308902
\(461\) −4.69336 −0.218591 −0.109296 0.994009i \(-0.534860\pi\)
−0.109296 + 0.994009i \(0.534860\pi\)
\(462\) −1.02723 −0.0477910
\(463\) −36.1807 −1.68146 −0.840730 0.541454i \(-0.817874\pi\)
−0.840730 + 0.541454i \(0.817874\pi\)
\(464\) 1.00000 0.0464238
\(465\) 2.99325 0.138809
\(466\) −19.2617 −0.892282
\(467\) 28.4564 1.31681 0.658403 0.752666i \(-0.271232\pi\)
0.658403 + 0.752666i \(0.271232\pi\)
\(468\) −2.29155 −0.105927
\(469\) 7.28484 0.336383
\(470\) −2.15801 −0.0995418
\(471\) 9.59821 0.442262
\(472\) −10.9987 −0.506255
\(473\) 7.23634 0.332727
\(474\) 0.602927 0.0276934
\(475\) −9.81211 −0.450211
\(476\) 0.671326 0.0307702
\(477\) −1.37436 −0.0629278
\(478\) −23.8180 −1.08941
\(479\) −23.5349 −1.07534 −0.537668 0.843157i \(-0.680695\pi\)
−0.537668 + 0.843157i \(0.680695\pi\)
\(480\) −0.662522 −0.0302398
\(481\) 10.7298 0.489238
\(482\) 5.72420 0.260730
\(483\) 0.537195 0.0244432
\(484\) −7.34345 −0.333793
\(485\) −7.12411 −0.323489
\(486\) 1.00000 0.0453609
\(487\) −4.31147 −0.195371 −0.0976856 0.995217i \(-0.531144\pi\)
−0.0976856 + 0.995217i \(0.531144\pi\)
\(488\) −0.986600 −0.0446613
\(489\) 18.3567 0.830117
\(490\) −4.44646 −0.200871
\(491\) −25.5072 −1.15112 −0.575562 0.817758i \(-0.695217\pi\)
−0.575562 + 0.817758i \(0.695217\pi\)
\(492\) −3.06169 −0.138032
\(493\) −1.24969 −0.0562832
\(494\) 4.92976 0.221800
\(495\) −1.26688 −0.0569421
\(496\) 4.51797 0.202863
\(497\) −2.36179 −0.105941
\(498\) −5.40097 −0.242023
\(499\) 23.8655 1.06837 0.534184 0.845368i \(-0.320619\pi\)
0.534184 + 0.845368i \(0.320619\pi\)
\(500\) 6.33441 0.283284
\(501\) 24.1811 1.08033
\(502\) 13.2587 0.591763
\(503\) 30.9069 1.37807 0.689036 0.724727i \(-0.258034\pi\)
0.689036 + 0.724727i \(0.258034\pi\)
\(504\) 0.537195 0.0239286
\(505\) 5.21824 0.232209
\(506\) −1.91221 −0.0850081
\(507\) 7.74879 0.344136
\(508\) −9.47091 −0.420204
\(509\) −17.4891 −0.775192 −0.387596 0.921829i \(-0.626694\pi\)
−0.387596 + 0.921829i \(0.626694\pi\)
\(510\) 0.827946 0.0366621
\(511\) −3.24631 −0.143608
\(512\) −1.00000 −0.0441942
\(513\) −2.15128 −0.0949812
\(514\) 15.5021 0.683768
\(515\) 9.01506 0.397251
\(516\) −3.78428 −0.166594
\(517\) −6.22859 −0.273933
\(518\) −2.51533 −0.110517
\(519\) −14.9035 −0.654190
\(520\) −1.51820 −0.0665776
\(521\) −36.4214 −1.59565 −0.797825 0.602889i \(-0.794016\pi\)
−0.797825 + 0.602889i \(0.794016\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −23.5458 −1.02959 −0.514793 0.857314i \(-0.672131\pi\)
−0.514793 + 0.857314i \(0.672131\pi\)
\(524\) −15.9426 −0.696455
\(525\) −2.45018 −0.106935
\(526\) 31.9201 1.39178
\(527\) −5.64605 −0.245946
\(528\) −1.91221 −0.0832183
\(529\) 1.00000 0.0434783
\(530\) −0.910546 −0.0395516
\(531\) 10.9987 0.477301
\(532\) −1.15565 −0.0501040
\(533\) −7.01601 −0.303897
\(534\) −1.27788 −0.0552994
\(535\) −9.70701 −0.419671
\(536\) 13.5609 0.585741
\(537\) 5.77261 0.249106
\(538\) −1.05924 −0.0456670
\(539\) −12.8337 −0.552785
\(540\) 0.662522 0.0285104
\(541\) 17.2236 0.740500 0.370250 0.928932i \(-0.379272\pi\)
0.370250 + 0.928932i \(0.379272\pi\)
\(542\) 7.26353 0.311995
\(543\) 6.84199 0.293618
\(544\) 1.24969 0.0535800
\(545\) 3.88897 0.166585
\(546\) 1.23101 0.0526823
\(547\) 0.713616 0.0305120 0.0152560 0.999884i \(-0.495144\pi\)
0.0152560 + 0.999884i \(0.495144\pi\)
\(548\) −4.27806 −0.182750
\(549\) 0.986600 0.0421071
\(550\) 8.72172 0.371895
\(551\) 2.15128 0.0916475
\(552\) 1.00000 0.0425628
\(553\) −0.323889 −0.0137732
\(554\) −15.1693 −0.644482
\(555\) −3.10216 −0.131679
\(556\) 19.7483 0.837515
\(557\) 10.8643 0.460337 0.230168 0.973151i \(-0.426072\pi\)
0.230168 + 0.973151i \(0.426072\pi\)
\(558\) −4.51797 −0.191261
\(559\) −8.67187 −0.366781
\(560\) 0.355903 0.0150397
\(561\) 2.38967 0.100892
\(562\) 9.83912 0.415038
\(563\) −26.2759 −1.10740 −0.553699 0.832717i \(-0.686784\pi\)
−0.553699 + 0.832717i \(0.686784\pi\)
\(564\) 3.25727 0.137156
\(565\) −8.14435 −0.342635
\(566\) −6.58812 −0.276919
\(567\) −0.537195 −0.0225601
\(568\) −4.39652 −0.184474
\(569\) −36.3653 −1.52451 −0.762256 0.647276i \(-0.775908\pi\)
−0.762256 + 0.647276i \(0.775908\pi\)
\(570\) −1.42527 −0.0596979
\(571\) −3.95249 −0.165406 −0.0827032 0.996574i \(-0.526355\pi\)
−0.0827032 + 0.996574i \(0.526355\pi\)
\(572\) −4.38193 −0.183218
\(573\) −19.2737 −0.805170
\(574\) 1.64472 0.0686494
\(575\) −4.56106 −0.190210
\(576\) 1.00000 0.0416667
\(577\) 25.8782 1.07732 0.538662 0.842522i \(-0.318930\pi\)
0.538662 + 0.842522i \(0.318930\pi\)
\(578\) 15.4383 0.642148
\(579\) −0.191419 −0.00795510
\(580\) −0.662522 −0.0275097
\(581\) 2.90137 0.120369
\(582\) 10.7530 0.445727
\(583\) −2.62807 −0.108844
\(584\) −6.04309 −0.250065
\(585\) 1.51820 0.0627699
\(586\) 26.1212 1.07906
\(587\) 37.4508 1.54576 0.772881 0.634551i \(-0.218815\pi\)
0.772881 + 0.634551i \(0.218815\pi\)
\(588\) 6.71142 0.276774
\(589\) 9.71939 0.400481
\(590\) 7.28685 0.299995
\(591\) 1.90518 0.0783687
\(592\) −4.68235 −0.192443
\(593\) 19.9449 0.819040 0.409520 0.912301i \(-0.365696\pi\)
0.409520 + 0.912301i \(0.365696\pi\)
\(594\) 1.91221 0.0784590
\(595\) −0.444768 −0.0182337
\(596\) 11.1893 0.458332
\(597\) 12.6011 0.515730
\(598\) 2.29155 0.0937085
\(599\) 33.8808 1.38433 0.692165 0.721739i \(-0.256657\pi\)
0.692165 + 0.721739i \(0.256657\pi\)
\(600\) −4.56106 −0.186205
\(601\) 16.9018 0.689439 0.344720 0.938706i \(-0.387974\pi\)
0.344720 + 0.938706i \(0.387974\pi\)
\(602\) 2.03290 0.0828546
\(603\) −13.5609 −0.552242
\(604\) 1.02801 0.0418293
\(605\) 4.86520 0.197798
\(606\) −7.87633 −0.319954
\(607\) −37.7572 −1.53252 −0.766259 0.642532i \(-0.777884\pi\)
−0.766259 + 0.642532i \(0.777884\pi\)
\(608\) −2.15128 −0.0872458
\(609\) 0.537195 0.0217682
\(610\) 0.653644 0.0264653
\(611\) 7.46421 0.301970
\(612\) −1.24969 −0.0505157
\(613\) −8.00674 −0.323389 −0.161695 0.986841i \(-0.551696\pi\)
−0.161695 + 0.986841i \(0.551696\pi\)
\(614\) 18.1507 0.732502
\(615\) 2.02843 0.0817944
\(616\) 1.02723 0.0413883
\(617\) −21.4621 −0.864030 −0.432015 0.901866i \(-0.642197\pi\)
−0.432015 + 0.901866i \(0.642197\pi\)
\(618\) −13.6072 −0.547362
\(619\) −27.4480 −1.10323 −0.551614 0.834099i \(-0.685988\pi\)
−0.551614 + 0.834099i \(0.685988\pi\)
\(620\) −2.99325 −0.120212
\(621\) −1.00000 −0.0401286
\(622\) 1.06964 0.0428888
\(623\) 0.686472 0.0275029
\(624\) 2.29155 0.0917355
\(625\) 18.6086 0.744346
\(626\) 18.6843 0.746774
\(627\) −4.11369 −0.164285
\(628\) −9.59821 −0.383010
\(629\) 5.85148 0.233314
\(630\) −0.355903 −0.0141795
\(631\) −39.5511 −1.57450 −0.787252 0.616631i \(-0.788497\pi\)
−0.787252 + 0.616631i \(0.788497\pi\)
\(632\) −0.602927 −0.0239831
\(633\) 26.0281 1.03452
\(634\) −12.9906 −0.515924
\(635\) 6.27468 0.249003
\(636\) 1.37436 0.0544971
\(637\) 15.3796 0.609361
\(638\) −1.91221 −0.0757051
\(639\) 4.39652 0.173924
\(640\) 0.662522 0.0261885
\(641\) −24.7869 −0.979024 −0.489512 0.871997i \(-0.662825\pi\)
−0.489512 + 0.871997i \(0.662825\pi\)
\(642\) 14.6516 0.578253
\(643\) 4.91631 0.193880 0.0969401 0.995290i \(-0.469094\pi\)
0.0969401 + 0.995290i \(0.469094\pi\)
\(644\) −0.537195 −0.0211684
\(645\) 2.50717 0.0987196
\(646\) 2.68843 0.105775
\(647\) −3.82063 −0.150205 −0.0751023 0.997176i \(-0.523928\pi\)
−0.0751023 + 0.997176i \(0.523928\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 21.0318 0.825569
\(650\) −10.4519 −0.409958
\(651\) 2.42703 0.0951227
\(652\) −18.3567 −0.718903
\(653\) −36.0170 −1.40946 −0.704728 0.709478i \(-0.748931\pi\)
−0.704728 + 0.709478i \(0.748931\pi\)
\(654\) −5.86994 −0.229533
\(655\) 10.5623 0.412703
\(656\) 3.06169 0.119539
\(657\) 6.04309 0.235763
\(658\) −1.74979 −0.0682139
\(659\) 7.32402 0.285303 0.142652 0.989773i \(-0.454437\pi\)
0.142652 + 0.989773i \(0.454437\pi\)
\(660\) 1.26688 0.0493133
\(661\) 8.92072 0.346976 0.173488 0.984836i \(-0.444496\pi\)
0.173488 + 0.984836i \(0.444496\pi\)
\(662\) −9.73971 −0.378544
\(663\) −2.86373 −0.111218
\(664\) 5.40097 0.209598
\(665\) 0.765646 0.0296905
\(666\) 4.68235 0.181437
\(667\) 1.00000 0.0387202
\(668\) −24.1811 −0.935593
\(669\) 17.3745 0.671735
\(670\) −8.98438 −0.347097
\(671\) 1.88659 0.0728309
\(672\) −0.537195 −0.0207227
\(673\) 20.4446 0.788082 0.394041 0.919093i \(-0.371077\pi\)
0.394041 + 0.919093i \(0.371077\pi\)
\(674\) 7.46365 0.287489
\(675\) 4.56106 0.175555
\(676\) −7.74879 −0.298031
\(677\) 19.9088 0.765157 0.382579 0.923923i \(-0.375036\pi\)
0.382579 + 0.923923i \(0.375036\pi\)
\(678\) 12.2930 0.472108
\(679\) −5.77647 −0.221680
\(680\) −0.827946 −0.0317503
\(681\) 7.96370 0.305170
\(682\) −8.63930 −0.330816
\(683\) 37.1755 1.42248 0.711241 0.702948i \(-0.248134\pi\)
0.711241 + 0.702948i \(0.248134\pi\)
\(684\) 2.15128 0.0822561
\(685\) 2.83431 0.108293
\(686\) −7.36570 −0.281224
\(687\) −4.43814 −0.169326
\(688\) 3.78428 0.144274
\(689\) 3.14942 0.119984
\(690\) −0.662522 −0.0252218
\(691\) −8.31145 −0.316182 −0.158091 0.987425i \(-0.550534\pi\)
−0.158091 + 0.987425i \(0.550534\pi\)
\(692\) 14.9035 0.566545
\(693\) −1.02723 −0.0390212
\(694\) 18.1759 0.689948
\(695\) −13.0837 −0.496293
\(696\) 1.00000 0.0379049
\(697\) −3.82616 −0.144926
\(698\) 21.2660 0.804928
\(699\) −19.2617 −0.728545
\(700\) 2.45018 0.0926081
\(701\) 16.3750 0.618475 0.309238 0.950985i \(-0.399926\pi\)
0.309238 + 0.950985i \(0.399926\pi\)
\(702\) −2.29155 −0.0864890
\(703\) −10.0730 −0.379911
\(704\) 1.91221 0.0720692
\(705\) −2.15801 −0.0812755
\(706\) −26.0964 −0.982152
\(707\) 4.23112 0.159128
\(708\) −10.9987 −0.413355
\(709\) 24.6775 0.926785 0.463392 0.886153i \(-0.346632\pi\)
0.463392 + 0.886153i \(0.346632\pi\)
\(710\) 2.91279 0.109315
\(711\) 0.602927 0.0226115
\(712\) 1.27788 0.0478907
\(713\) 4.51797 0.169199
\(714\) 0.671326 0.0251238
\(715\) 2.90312 0.108571
\(716\) −5.77261 −0.215732
\(717\) −23.8180 −0.889501
\(718\) 30.9097 1.15354
\(719\) 26.7816 0.998784 0.499392 0.866376i \(-0.333557\pi\)
0.499392 + 0.866376i \(0.333557\pi\)
\(720\) −0.662522 −0.0246907
\(721\) 7.30971 0.272228
\(722\) 14.3720 0.534871
\(723\) 5.72420 0.212885
\(724\) −6.84199 −0.254281
\(725\) −4.56106 −0.169394
\(726\) −7.34345 −0.272541
\(727\) 8.11252 0.300877 0.150438 0.988619i \(-0.451932\pi\)
0.150438 + 0.988619i \(0.451932\pi\)
\(728\) −1.23101 −0.0456242
\(729\) 1.00000 0.0370370
\(730\) 4.00368 0.148183
\(731\) −4.72917 −0.174915
\(732\) −0.986600 −0.0364658
\(733\) 26.7905 0.989528 0.494764 0.869027i \(-0.335255\pi\)
0.494764 + 0.869027i \(0.335255\pi\)
\(734\) 6.59652 0.243482
\(735\) −4.44646 −0.164010
\(736\) −1.00000 −0.0368605
\(737\) −25.9313 −0.955191
\(738\) −3.06169 −0.112702
\(739\) 7.60479 0.279747 0.139873 0.990169i \(-0.455330\pi\)
0.139873 + 0.990169i \(0.455330\pi\)
\(740\) 3.10216 0.114038
\(741\) 4.92976 0.181099
\(742\) −0.738301 −0.0271039
\(743\) −36.2869 −1.33124 −0.665619 0.746292i \(-0.731832\pi\)
−0.665619 + 0.746292i \(0.731832\pi\)
\(744\) 4.51797 0.165637
\(745\) −7.41316 −0.271597
\(746\) 2.27258 0.0832051
\(747\) −5.40097 −0.197611
\(748\) −2.38967 −0.0873749
\(749\) −7.87077 −0.287592
\(750\) 6.33441 0.231300
\(751\) −6.04448 −0.220566 −0.110283 0.993900i \(-0.535176\pi\)
−0.110283 + 0.993900i \(0.535176\pi\)
\(752\) −3.25727 −0.118781
\(753\) 13.2587 0.483172
\(754\) 2.29155 0.0834534
\(755\) −0.681082 −0.0247871
\(756\) 0.537195 0.0195376
\(757\) −26.7788 −0.973294 −0.486647 0.873599i \(-0.661780\pi\)
−0.486647 + 0.873599i \(0.661780\pi\)
\(758\) 12.4181 0.451044
\(759\) −1.91221 −0.0694088
\(760\) 1.42527 0.0516999
\(761\) −47.7520 −1.73101 −0.865504 0.500901i \(-0.833002\pi\)
−0.865504 + 0.500901i \(0.833002\pi\)
\(762\) −9.47091 −0.343095
\(763\) 3.15330 0.114157
\(764\) 19.2737 0.697298
\(765\) 0.827946 0.0299345
\(766\) 22.5910 0.816245
\(767\) −25.2040 −0.910064
\(768\) −1.00000 −0.0360844
\(769\) 37.4483 1.35042 0.675211 0.737625i \(-0.264053\pi\)
0.675211 + 0.737625i \(0.264053\pi\)
\(770\) −0.680562 −0.0245258
\(771\) 15.5021 0.558294
\(772\) 0.191419 0.00688932
\(773\) 5.27035 0.189561 0.0947807 0.995498i \(-0.469785\pi\)
0.0947807 + 0.995498i \(0.469785\pi\)
\(774\) −3.78428 −0.136023
\(775\) −20.6067 −0.740216
\(776\) −10.7530 −0.386011
\(777\) −2.51533 −0.0902370
\(778\) 19.3186 0.692606
\(779\) 6.58654 0.235987
\(780\) −1.51820 −0.0543604
\(781\) 8.40707 0.300829
\(782\) 1.24969 0.0446888
\(783\) −1.00000 −0.0357371
\(784\) −6.71142 −0.239694
\(785\) 6.35902 0.226963
\(786\) −15.9426 −0.568653
\(787\) 16.0621 0.572552 0.286276 0.958147i \(-0.407583\pi\)
0.286276 + 0.958147i \(0.407583\pi\)
\(788\) −1.90518 −0.0678693
\(789\) 31.9201 1.13639
\(790\) 0.399452 0.0142119
\(791\) −6.60371 −0.234801
\(792\) −1.91221 −0.0679474
\(793\) −2.26084 −0.0802850
\(794\) 5.49304 0.194941
\(795\) −0.910546 −0.0322937
\(796\) −12.6011 −0.446635
\(797\) 34.8252 1.23357 0.616787 0.787130i \(-0.288434\pi\)
0.616787 + 0.787130i \(0.288434\pi\)
\(798\) −1.15565 −0.0409097
\(799\) 4.07058 0.144007
\(800\) 4.56106 0.161258
\(801\) −1.27788 −0.0451518
\(802\) −6.34075 −0.223900
\(803\) 11.5557 0.407790
\(804\) 13.5609 0.478256
\(805\) 0.355903 0.0125439
\(806\) 10.3531 0.364674
\(807\) −1.05924 −0.0372869
\(808\) 7.87633 0.277088
\(809\) 45.9202 1.61447 0.807234 0.590232i \(-0.200964\pi\)
0.807234 + 0.590232i \(0.200964\pi\)
\(810\) 0.662522 0.0232786
\(811\) 44.5143 1.56311 0.781554 0.623838i \(-0.214427\pi\)
0.781554 + 0.623838i \(0.214427\pi\)
\(812\) −0.537195 −0.0188518
\(813\) 7.26353 0.254743
\(814\) 8.95363 0.313825
\(815\) 12.1617 0.426005
\(816\) 1.24969 0.0437479
\(817\) 8.14103 0.284819
\(818\) −10.1610 −0.355270
\(819\) 1.23101 0.0430149
\(820\) −2.02843 −0.0708360
\(821\) −29.4704 −1.02853 −0.514263 0.857633i \(-0.671934\pi\)
−0.514263 + 0.857633i \(0.671934\pi\)
\(822\) −4.27806 −0.149215
\(823\) 41.6081 1.45037 0.725183 0.688556i \(-0.241755\pi\)
0.725183 + 0.688556i \(0.241755\pi\)
\(824\) 13.6072 0.474029
\(825\) 8.72172 0.303651
\(826\) 5.90842 0.205580
\(827\) 44.9575 1.56333 0.781663 0.623701i \(-0.214372\pi\)
0.781663 + 0.623701i \(0.214372\pi\)
\(828\) 1.00000 0.0347524
\(829\) 34.5082 1.19852 0.599259 0.800555i \(-0.295462\pi\)
0.599259 + 0.800555i \(0.295462\pi\)
\(830\) −3.57826 −0.124203
\(831\) −15.1693 −0.526217
\(832\) −2.29155 −0.0794452
\(833\) 8.38719 0.290599
\(834\) 19.7483 0.683828
\(835\) 16.0205 0.554412
\(836\) 4.11369 0.142275
\(837\) −4.51797 −0.156164
\(838\) −21.4505 −0.740995
\(839\) 56.2374 1.94153 0.970766 0.240030i \(-0.0771571\pi\)
0.970766 + 0.240030i \(0.0771571\pi\)
\(840\) 0.355903 0.0122798
\(841\) 1.00000 0.0344828
\(842\) 12.7848 0.440593
\(843\) 9.83912 0.338877
\(844\) −26.0281 −0.895923
\(845\) 5.13374 0.176606
\(846\) 3.25727 0.111987
\(847\) 3.94486 0.135547
\(848\) −1.37436 −0.0471958
\(849\) −6.58812 −0.226104
\(850\) −5.69991 −0.195505
\(851\) −4.68235 −0.160509
\(852\) −4.39652 −0.150622
\(853\) −11.8532 −0.405847 −0.202923 0.979195i \(-0.565044\pi\)
−0.202923 + 0.979195i \(0.565044\pi\)
\(854\) 0.529997 0.0181361
\(855\) −1.42527 −0.0487431
\(856\) −14.6516 −0.500782
\(857\) 35.4929 1.21241 0.606207 0.795307i \(-0.292690\pi\)
0.606207 + 0.795307i \(0.292690\pi\)
\(858\) −4.38193 −0.149597
\(859\) 49.1378 1.67656 0.838281 0.545239i \(-0.183561\pi\)
0.838281 + 0.545239i \(0.183561\pi\)
\(860\) −2.50717 −0.0854937
\(861\) 1.64472 0.0560520
\(862\) −35.4828 −1.20855
\(863\) −17.9972 −0.612633 −0.306317 0.951930i \(-0.599097\pi\)
−0.306317 + 0.951930i \(0.599097\pi\)
\(864\) 1.00000 0.0340207
\(865\) −9.87387 −0.335722
\(866\) −6.08785 −0.206873
\(867\) 15.4383 0.524311
\(868\) −2.42703 −0.0823787
\(869\) 1.15292 0.0391103
\(870\) −0.662522 −0.0224616
\(871\) 31.0755 1.05295
\(872\) 5.86994 0.198781
\(873\) 10.7530 0.363935
\(874\) −2.15128 −0.0727680
\(875\) −3.40281 −0.115036
\(876\) −6.04309 −0.204177
\(877\) 45.0468 1.52112 0.760561 0.649266i \(-0.224924\pi\)
0.760561 + 0.649266i \(0.224924\pi\)
\(878\) 27.4443 0.926201
\(879\) 26.1212 0.881046
\(880\) −1.26688 −0.0427066
\(881\) 23.1912 0.781333 0.390666 0.920532i \(-0.372245\pi\)
0.390666 + 0.920532i \(0.372245\pi\)
\(882\) 6.71142 0.225985
\(883\) 33.2408 1.11864 0.559321 0.828951i \(-0.311062\pi\)
0.559321 + 0.828951i \(0.311062\pi\)
\(884\) 2.86373 0.0963175
\(885\) 7.28685 0.244945
\(886\) 25.5492 0.858343
\(887\) −50.4077 −1.69252 −0.846262 0.532767i \(-0.821152\pi\)
−0.846262 + 0.532767i \(0.821152\pi\)
\(888\) −4.68235 −0.157129
\(889\) 5.08772 0.170637
\(890\) −0.846626 −0.0283790
\(891\) 1.91221 0.0640615
\(892\) −17.3745 −0.581740
\(893\) −7.00730 −0.234490
\(894\) 11.1893 0.374226
\(895\) 3.82448 0.127838
\(896\) 0.537195 0.0179464
\(897\) 2.29155 0.0765127
\(898\) 17.0641 0.569438
\(899\) 4.51797 0.150683
\(900\) −4.56106 −0.152035
\(901\) 1.71753 0.0572191
\(902\) −5.85459 −0.194937
\(903\) 2.03290 0.0676505
\(904\) −12.2930 −0.408858
\(905\) 4.53297 0.150681
\(906\) 1.02801 0.0341535
\(907\) −42.3352 −1.40572 −0.702859 0.711330i \(-0.748093\pi\)
−0.702859 + 0.711330i \(0.748093\pi\)
\(908\) −7.96370 −0.264285
\(909\) −7.87633 −0.261241
\(910\) 0.815570 0.0270359
\(911\) −9.78638 −0.324237 −0.162119 0.986771i \(-0.551833\pi\)
−0.162119 + 0.986771i \(0.551833\pi\)
\(912\) −2.15128 −0.0712359
\(913\) −10.3278 −0.341800
\(914\) −29.3382 −0.970422
\(915\) 0.653644 0.0216088
\(916\) 4.43814 0.146640
\(917\) 8.56427 0.282817
\(918\) −1.24969 −0.0412459
\(919\) −39.7046 −1.30973 −0.654867 0.755744i \(-0.727275\pi\)
−0.654867 + 0.755744i \(0.727275\pi\)
\(920\) 0.662522 0.0218427
\(921\) 18.1507 0.598085
\(922\) 4.69336 0.154567
\(923\) −10.0749 −0.331618
\(924\) 1.02723 0.0337934
\(925\) 21.3565 0.702197
\(926\) 36.1807 1.18897
\(927\) −13.6072 −0.446919
\(928\) −1.00000 −0.0328266
\(929\) 46.1659 1.51465 0.757326 0.653037i \(-0.226505\pi\)
0.757326 + 0.653037i \(0.226505\pi\)
\(930\) −2.99325 −0.0981525
\(931\) −14.4381 −0.473190
\(932\) 19.2617 0.630938
\(933\) 1.06964 0.0350186
\(934\) −28.4564 −0.931122
\(935\) 1.58321 0.0517764
\(936\) 2.29155 0.0749017
\(937\) −34.3820 −1.12321 −0.561606 0.827405i \(-0.689816\pi\)
−0.561606 + 0.827405i \(0.689816\pi\)
\(938\) −7.28484 −0.237858
\(939\) 18.6843 0.609738
\(940\) 2.15801 0.0703867
\(941\) 5.80081 0.189101 0.0945505 0.995520i \(-0.469859\pi\)
0.0945505 + 0.995520i \(0.469859\pi\)
\(942\) −9.59821 −0.312727
\(943\) 3.06169 0.0997023
\(944\) 10.9987 0.357976
\(945\) −0.355903 −0.0115775
\(946\) −7.23634 −0.235274
\(947\) −21.4285 −0.696332 −0.348166 0.937433i \(-0.613195\pi\)
−0.348166 + 0.937433i \(0.613195\pi\)
\(948\) −0.602927 −0.0195822
\(949\) −13.8480 −0.449526
\(950\) 9.81211 0.318347
\(951\) −12.9906 −0.421250
\(952\) −0.671326 −0.0217578
\(953\) −20.3925 −0.660579 −0.330289 0.943880i \(-0.607146\pi\)
−0.330289 + 0.943880i \(0.607146\pi\)
\(954\) 1.37436 0.0444967
\(955\) −12.7692 −0.413203
\(956\) 23.8180 0.770331
\(957\) −1.91221 −0.0618130
\(958\) 23.5349 0.760378
\(959\) 2.29815 0.0742113
\(960\) 0.662522 0.0213828
\(961\) −10.5880 −0.341548
\(962\) −10.7298 −0.345944
\(963\) 14.6516 0.472141
\(964\) −5.72420 −0.184364
\(965\) −0.126819 −0.00408246
\(966\) −0.537195 −0.0172840
\(967\) 0.951791 0.0306075 0.0153038 0.999883i \(-0.495128\pi\)
0.0153038 + 0.999883i \(0.495128\pi\)
\(968\) 7.34345 0.236027
\(969\) 2.68843 0.0863647
\(970\) 7.12411 0.228741
\(971\) 33.1967 1.06533 0.532666 0.846326i \(-0.321190\pi\)
0.532666 + 0.846326i \(0.321190\pi\)
\(972\) −1.00000 −0.0320750
\(973\) −10.6087 −0.340099
\(974\) 4.31147 0.138148
\(975\) −10.4519 −0.334729
\(976\) 0.986600 0.0315803
\(977\) 5.22535 0.167174 0.0835869 0.996500i \(-0.473362\pi\)
0.0835869 + 0.996500i \(0.473362\pi\)
\(978\) −18.3567 −0.586981
\(979\) −2.44358 −0.0780972
\(980\) 4.44646 0.142037
\(981\) −5.86994 −0.187413
\(982\) 25.5072 0.813968
\(983\) −2.55887 −0.0816152 −0.0408076 0.999167i \(-0.512993\pi\)
−0.0408076 + 0.999167i \(0.512993\pi\)
\(984\) 3.06169 0.0976030
\(985\) 1.26222 0.0402178
\(986\) 1.24969 0.0397982
\(987\) −1.74979 −0.0556965
\(988\) −4.92976 −0.156837
\(989\) 3.78428 0.120333
\(990\) 1.26688 0.0402641
\(991\) −31.4192 −0.998063 −0.499032 0.866584i \(-0.666311\pi\)
−0.499032 + 0.866584i \(0.666311\pi\)
\(992\) −4.51797 −0.143446
\(993\) −9.73971 −0.309080
\(994\) 2.36179 0.0749114
\(995\) 8.34852 0.264666
\(996\) 5.40097 0.171136
\(997\) −28.9702 −0.917496 −0.458748 0.888566i \(-0.651702\pi\)
−0.458748 + 0.888566i \(0.651702\pi\)
\(998\) −23.8655 −0.755450
\(999\) 4.68235 0.148143
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bg.1.3 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bg.1.3 7 1.1 even 1 trivial