Properties

Label 4002.2.a.bg.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $7$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(7\)
Coefficient field: \(\mathbb{Q}[x]/(x^{7} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{7} - x^{6} - 13x^{5} + 16x^{4} + 19x^{3} - 8x^{2} - 10x - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.99277\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.83000 q^{5} +1.00000 q^{6} -4.91072 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -3.83000 q^{5} +1.00000 q^{6} -4.91072 q^{7} -1.00000 q^{8} +1.00000 q^{9} +3.83000 q^{10} -1.87490 q^{11} -1.00000 q^{12} -3.25549 q^{13} +4.91072 q^{14} +3.83000 q^{15} +1.00000 q^{16} +5.70490 q^{17} -1.00000 q^{18} +0.533915 q^{19} -3.83000 q^{20} +4.91072 q^{21} +1.87490 q^{22} +1.00000 q^{23} +1.00000 q^{24} +9.66892 q^{25} +3.25549 q^{26} -1.00000 q^{27} -4.91072 q^{28} +1.00000 q^{29} -3.83000 q^{30} -6.65632 q^{31} -1.00000 q^{32} +1.87490 q^{33} -5.70490 q^{34} +18.8081 q^{35} +1.00000 q^{36} +0.389510 q^{37} -0.533915 q^{38} +3.25549 q^{39} +3.83000 q^{40} +2.74088 q^{41} -4.91072 q^{42} +12.3587 q^{43} -1.87490 q^{44} -3.83000 q^{45} -1.00000 q^{46} -3.23624 q^{47} -1.00000 q^{48} +17.1152 q^{49} -9.66892 q^{50} -5.70490 q^{51} -3.25549 q^{52} -3.80480 q^{53} +1.00000 q^{54} +7.18087 q^{55} +4.91072 q^{56} -0.533915 q^{57} -1.00000 q^{58} +7.62559 q^{59} +3.83000 q^{60} +5.94654 q^{61} +6.65632 q^{62} -4.91072 q^{63} +1.00000 q^{64} +12.4685 q^{65} -1.87490 q^{66} -6.17079 q^{67} +5.70490 q^{68} -1.00000 q^{69} -18.8081 q^{70} +2.94885 q^{71} -1.00000 q^{72} -9.05747 q^{73} -0.389510 q^{74} -9.66892 q^{75} +0.533915 q^{76} +9.20710 q^{77} -3.25549 q^{78} -5.70853 q^{79} -3.83000 q^{80} +1.00000 q^{81} -2.74088 q^{82} +3.17099 q^{83} +4.91072 q^{84} -21.8498 q^{85} -12.3587 q^{86} -1.00000 q^{87} +1.87490 q^{88} +11.3685 q^{89} +3.83000 q^{90} +15.9868 q^{91} +1.00000 q^{92} +6.65632 q^{93} +3.23624 q^{94} -2.04490 q^{95} +1.00000 q^{96} +3.97037 q^{97} -17.1152 q^{98} -1.87490 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 7 q - 7 q^{2} - 7 q^{3} + 7 q^{4} + 2 q^{5} + 7 q^{6} - 5 q^{7} - 7 q^{8} + 7 q^{9} - 2 q^{10} - q^{11} - 7 q^{12} + q^{13} + 5 q^{14} - 2 q^{15} + 7 q^{16} - q^{17} - 7 q^{18} - 9 q^{19} + 2 q^{20} + 5 q^{21} + q^{22} + 7 q^{23} + 7 q^{24} + q^{25} - q^{26} - 7 q^{27} - 5 q^{28} + 7 q^{29} + 2 q^{30} - 19 q^{31} - 7 q^{32} + q^{33} + q^{34} + 11 q^{35} + 7 q^{36} - 18 q^{37} + 9 q^{38} - q^{39} - 2 q^{40} + 4 q^{41} - 5 q^{42} - 9 q^{43} - q^{44} + 2 q^{45} - 7 q^{46} - 11 q^{47} - 7 q^{48} + 12 q^{49} - q^{50} + q^{51} + q^{52} + 8 q^{53} + 7 q^{54} - 11 q^{55} + 5 q^{56} + 9 q^{57} - 7 q^{58} + 12 q^{59} - 2 q^{60} - 5 q^{61} + 19 q^{62} - 5 q^{63} + 7 q^{64} + 23 q^{65} - q^{66} - 13 q^{67} - q^{68} - 7 q^{69} - 11 q^{70} - q^{71} - 7 q^{72} - 26 q^{73} + 18 q^{74} - q^{75} - 9 q^{76} + 6 q^{77} + q^{78} - 38 q^{79} + 2 q^{80} + 7 q^{81} - 4 q^{82} - 6 q^{83} + 5 q^{84} - 25 q^{85} + 9 q^{86} - 7 q^{87} + q^{88} + 20 q^{89} - 2 q^{90} + 2 q^{91} + 7 q^{92} + 19 q^{93} + 11 q^{94} - 31 q^{95} + 7 q^{96} - 8 q^{97} - 12 q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −3.83000 −1.71283 −0.856415 0.516289i \(-0.827313\pi\)
−0.856415 + 0.516289i \(0.827313\pi\)
\(6\) 1.00000 0.408248
\(7\) −4.91072 −1.85608 −0.928039 0.372484i \(-0.878506\pi\)
−0.928039 + 0.372484i \(0.878506\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 3.83000 1.21115
\(11\) −1.87490 −0.565303 −0.282652 0.959223i \(-0.591214\pi\)
−0.282652 + 0.959223i \(0.591214\pi\)
\(12\) −1.00000 −0.288675
\(13\) −3.25549 −0.902912 −0.451456 0.892294i \(-0.649095\pi\)
−0.451456 + 0.892294i \(0.649095\pi\)
\(14\) 4.91072 1.31244
\(15\) 3.83000 0.988902
\(16\) 1.00000 0.250000
\(17\) 5.70490 1.38364 0.691821 0.722069i \(-0.256809\pi\)
0.691821 + 0.722069i \(0.256809\pi\)
\(18\) −1.00000 −0.235702
\(19\) 0.533915 0.122489 0.0612443 0.998123i \(-0.480493\pi\)
0.0612443 + 0.998123i \(0.480493\pi\)
\(20\) −3.83000 −0.856415
\(21\) 4.91072 1.07161
\(22\) 1.87490 0.399730
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) 9.66892 1.93378
\(26\) 3.25549 0.638455
\(27\) −1.00000 −0.192450
\(28\) −4.91072 −0.928039
\(29\) 1.00000 0.185695
\(30\) −3.83000 −0.699260
\(31\) −6.65632 −1.19551 −0.597755 0.801679i \(-0.703941\pi\)
−0.597755 + 0.801679i \(0.703941\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.87490 0.326378
\(34\) −5.70490 −0.978382
\(35\) 18.8081 3.17914
\(36\) 1.00000 0.166667
\(37\) 0.389510 0.0640350 0.0320175 0.999487i \(-0.489807\pi\)
0.0320175 + 0.999487i \(0.489807\pi\)
\(38\) −0.533915 −0.0866125
\(39\) 3.25549 0.521296
\(40\) 3.83000 0.605577
\(41\) 2.74088 0.428054 0.214027 0.976828i \(-0.431342\pi\)
0.214027 + 0.976828i \(0.431342\pi\)
\(42\) −4.91072 −0.757740
\(43\) 12.3587 1.88469 0.942343 0.334649i \(-0.108618\pi\)
0.942343 + 0.334649i \(0.108618\pi\)
\(44\) −1.87490 −0.282652
\(45\) −3.83000 −0.570943
\(46\) −1.00000 −0.147442
\(47\) −3.23624 −0.472055 −0.236027 0.971746i \(-0.575845\pi\)
−0.236027 + 0.971746i \(0.575845\pi\)
\(48\) −1.00000 −0.144338
\(49\) 17.1152 2.44502
\(50\) −9.66892 −1.36739
\(51\) −5.70490 −0.798846
\(52\) −3.25549 −0.451456
\(53\) −3.80480 −0.522629 −0.261314 0.965254i \(-0.584156\pi\)
−0.261314 + 0.965254i \(0.584156\pi\)
\(54\) 1.00000 0.136083
\(55\) 7.18087 0.968268
\(56\) 4.91072 0.656222
\(57\) −0.533915 −0.0707188
\(58\) −1.00000 −0.131306
\(59\) 7.62559 0.992767 0.496384 0.868103i \(-0.334661\pi\)
0.496384 + 0.868103i \(0.334661\pi\)
\(60\) 3.83000 0.494451
\(61\) 5.94654 0.761376 0.380688 0.924704i \(-0.375687\pi\)
0.380688 + 0.924704i \(0.375687\pi\)
\(62\) 6.65632 0.845354
\(63\) −4.91072 −0.618692
\(64\) 1.00000 0.125000
\(65\) 12.4685 1.54653
\(66\) −1.87490 −0.230784
\(67\) −6.17079 −0.753882 −0.376941 0.926237i \(-0.623024\pi\)
−0.376941 + 0.926237i \(0.623024\pi\)
\(68\) 5.70490 0.691821
\(69\) −1.00000 −0.120386
\(70\) −18.8081 −2.24799
\(71\) 2.94885 0.349965 0.174982 0.984572i \(-0.444013\pi\)
0.174982 + 0.984572i \(0.444013\pi\)
\(72\) −1.00000 −0.117851
\(73\) −9.05747 −1.06010 −0.530049 0.847967i \(-0.677826\pi\)
−0.530049 + 0.847967i \(0.677826\pi\)
\(74\) −0.389510 −0.0452796
\(75\) −9.66892 −1.11647
\(76\) 0.533915 0.0612443
\(77\) 9.20710 1.04925
\(78\) −3.25549 −0.368612
\(79\) −5.70853 −0.642259 −0.321130 0.947035i \(-0.604063\pi\)
−0.321130 + 0.947035i \(0.604063\pi\)
\(80\) −3.83000 −0.428207
\(81\) 1.00000 0.111111
\(82\) −2.74088 −0.302680
\(83\) 3.17099 0.348061 0.174030 0.984740i \(-0.444321\pi\)
0.174030 + 0.984740i \(0.444321\pi\)
\(84\) 4.91072 0.535803
\(85\) −21.8498 −2.36994
\(86\) −12.3587 −1.33267
\(87\) −1.00000 −0.107211
\(88\) 1.87490 0.199865
\(89\) 11.3685 1.20506 0.602531 0.798096i \(-0.294159\pi\)
0.602531 + 0.798096i \(0.294159\pi\)
\(90\) 3.83000 0.403718
\(91\) 15.9868 1.67587
\(92\) 1.00000 0.104257
\(93\) 6.65632 0.690228
\(94\) 3.23624 0.333793
\(95\) −2.04490 −0.209802
\(96\) 1.00000 0.102062
\(97\) 3.97037 0.403130 0.201565 0.979475i \(-0.435397\pi\)
0.201565 + 0.979475i \(0.435397\pi\)
\(98\) −17.1152 −1.72889
\(99\) −1.87490 −0.188434
\(100\) 9.66892 0.966892
\(101\) 18.8391 1.87456 0.937281 0.348574i \(-0.113334\pi\)
0.937281 + 0.348574i \(0.113334\pi\)
\(102\) 5.70490 0.564869
\(103\) −7.01135 −0.690848 −0.345424 0.938447i \(-0.612265\pi\)
−0.345424 + 0.938447i \(0.612265\pi\)
\(104\) 3.25549 0.319227
\(105\) −18.8081 −1.83548
\(106\) 3.80480 0.369554
\(107\) −8.37729 −0.809863 −0.404932 0.914347i \(-0.632705\pi\)
−0.404932 + 0.914347i \(0.632705\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −3.47602 −0.332942 −0.166471 0.986046i \(-0.553237\pi\)
−0.166471 + 0.986046i \(0.553237\pi\)
\(110\) −7.18087 −0.684669
\(111\) −0.389510 −0.0369706
\(112\) −4.91072 −0.464019
\(113\) −0.833643 −0.0784226 −0.0392113 0.999231i \(-0.512485\pi\)
−0.0392113 + 0.999231i \(0.512485\pi\)
\(114\) 0.533915 0.0500057
\(115\) −3.83000 −0.357150
\(116\) 1.00000 0.0928477
\(117\) −3.25549 −0.300971
\(118\) −7.62559 −0.701993
\(119\) −28.0152 −2.56815
\(120\) −3.83000 −0.349630
\(121\) −7.48476 −0.680432
\(122\) −5.94654 −0.538374
\(123\) −2.74088 −0.247137
\(124\) −6.65632 −0.597755
\(125\) −17.8820 −1.59941
\(126\) 4.91072 0.437482
\(127\) −16.7703 −1.48812 −0.744061 0.668111i \(-0.767103\pi\)
−0.744061 + 0.668111i \(0.767103\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −12.3587 −1.08812
\(130\) −12.4685 −1.09356
\(131\) 16.7185 1.46070 0.730351 0.683072i \(-0.239356\pi\)
0.730351 + 0.683072i \(0.239356\pi\)
\(132\) 1.87490 0.163189
\(133\) −2.62191 −0.227348
\(134\) 6.17079 0.533075
\(135\) 3.83000 0.329634
\(136\) −5.70490 −0.489191
\(137\) −0.560201 −0.0478612 −0.0239306 0.999714i \(-0.507618\pi\)
−0.0239306 + 0.999714i \(0.507618\pi\)
\(138\) 1.00000 0.0851257
\(139\) −21.8843 −1.85620 −0.928102 0.372326i \(-0.878560\pi\)
−0.928102 + 0.372326i \(0.878560\pi\)
\(140\) 18.8081 1.58957
\(141\) 3.23624 0.272541
\(142\) −2.94885 −0.247462
\(143\) 6.10372 0.510419
\(144\) 1.00000 0.0833333
\(145\) −3.83000 −0.318064
\(146\) 9.05747 0.749602
\(147\) −17.1152 −1.41163
\(148\) 0.389510 0.0320175
\(149\) −0.858167 −0.0703038 −0.0351519 0.999382i \(-0.511192\pi\)
−0.0351519 + 0.999382i \(0.511192\pi\)
\(150\) 9.66892 0.789464
\(151\) −13.5924 −1.10613 −0.553065 0.833138i \(-0.686542\pi\)
−0.553065 + 0.833138i \(0.686542\pi\)
\(152\) −0.533915 −0.0433062
\(153\) 5.70490 0.461214
\(154\) −9.20710 −0.741929
\(155\) 25.4937 2.04771
\(156\) 3.25549 0.260648
\(157\) 3.57130 0.285021 0.142511 0.989793i \(-0.454483\pi\)
0.142511 + 0.989793i \(0.454483\pi\)
\(158\) 5.70853 0.454146
\(159\) 3.80480 0.301740
\(160\) 3.83000 0.302788
\(161\) −4.91072 −0.387019
\(162\) −1.00000 −0.0785674
\(163\) 18.4147 1.44235 0.721174 0.692754i \(-0.243603\pi\)
0.721174 + 0.692754i \(0.243603\pi\)
\(164\) 2.74088 0.214027
\(165\) −7.18087 −0.559030
\(166\) −3.17099 −0.246116
\(167\) 5.92710 0.458653 0.229327 0.973350i \(-0.426348\pi\)
0.229327 + 0.973350i \(0.426348\pi\)
\(168\) −4.91072 −0.378870
\(169\) −2.40176 −0.184751
\(170\) 21.8498 1.67580
\(171\) 0.533915 0.0408295
\(172\) 12.3587 0.942343
\(173\) 2.39898 0.182391 0.0911954 0.995833i \(-0.470931\pi\)
0.0911954 + 0.995833i \(0.470931\pi\)
\(174\) 1.00000 0.0758098
\(175\) −47.4813 −3.58925
\(176\) −1.87490 −0.141326
\(177\) −7.62559 −0.573174
\(178\) −11.3685 −0.852107
\(179\) −1.32347 −0.0989208 −0.0494604 0.998776i \(-0.515750\pi\)
−0.0494604 + 0.998776i \(0.515750\pi\)
\(180\) −3.83000 −0.285472
\(181\) 20.3239 1.51066 0.755331 0.655344i \(-0.227476\pi\)
0.755331 + 0.655344i \(0.227476\pi\)
\(182\) −15.9868 −1.18502
\(183\) −5.94654 −0.439581
\(184\) −1.00000 −0.0737210
\(185\) −1.49182 −0.109681
\(186\) −6.65632 −0.488065
\(187\) −10.6961 −0.782177
\(188\) −3.23624 −0.236027
\(189\) 4.91072 0.357202
\(190\) 2.04490 0.148352
\(191\) 20.2770 1.46719 0.733596 0.679586i \(-0.237840\pi\)
0.733596 + 0.679586i \(0.237840\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −17.5746 −1.26505 −0.632523 0.774541i \(-0.717981\pi\)
−0.632523 + 0.774541i \(0.717981\pi\)
\(194\) −3.97037 −0.285056
\(195\) −12.4685 −0.892891
\(196\) 17.1152 1.22251
\(197\) −14.7121 −1.04819 −0.524096 0.851659i \(-0.675597\pi\)
−0.524096 + 0.851659i \(0.675597\pi\)
\(198\) 1.87490 0.133243
\(199\) −3.40969 −0.241706 −0.120853 0.992670i \(-0.538563\pi\)
−0.120853 + 0.992670i \(0.538563\pi\)
\(200\) −9.66892 −0.683696
\(201\) 6.17079 0.435254
\(202\) −18.8391 −1.32552
\(203\) −4.91072 −0.344665
\(204\) −5.70490 −0.399423
\(205\) −10.4976 −0.733183
\(206\) 7.01135 0.488504
\(207\) 1.00000 0.0695048
\(208\) −3.25549 −0.225728
\(209\) −1.00104 −0.0692431
\(210\) 18.8081 1.29788
\(211\) −12.2627 −0.844197 −0.422099 0.906550i \(-0.638706\pi\)
−0.422099 + 0.906550i \(0.638706\pi\)
\(212\) −3.80480 −0.261314
\(213\) −2.94885 −0.202052
\(214\) 8.37729 0.572660
\(215\) −47.3339 −3.22814
\(216\) 1.00000 0.0680414
\(217\) 32.6873 2.21896
\(218\) 3.47602 0.235426
\(219\) 9.05747 0.612047
\(220\) 7.18087 0.484134
\(221\) −18.5723 −1.24931
\(222\) 0.389510 0.0261422
\(223\) −14.0063 −0.937932 −0.468966 0.883216i \(-0.655373\pi\)
−0.468966 + 0.883216i \(0.655373\pi\)
\(224\) 4.91072 0.328111
\(225\) 9.66892 0.644595
\(226\) 0.833643 0.0554531
\(227\) 26.1269 1.73410 0.867052 0.498217i \(-0.166012\pi\)
0.867052 + 0.498217i \(0.166012\pi\)
\(228\) −0.533915 −0.0353594
\(229\) 18.3486 1.21251 0.606255 0.795270i \(-0.292671\pi\)
0.606255 + 0.795270i \(0.292671\pi\)
\(230\) 3.83000 0.252543
\(231\) −9.20710 −0.605783
\(232\) −1.00000 −0.0656532
\(233\) 13.5059 0.884804 0.442402 0.896817i \(-0.354127\pi\)
0.442402 + 0.896817i \(0.354127\pi\)
\(234\) 3.25549 0.212818
\(235\) 12.3948 0.808549
\(236\) 7.62559 0.496384
\(237\) 5.70853 0.370809
\(238\) 28.0152 1.81595
\(239\) −25.7537 −1.66587 −0.832934 0.553373i \(-0.813341\pi\)
−0.832934 + 0.553373i \(0.813341\pi\)
\(240\) 3.83000 0.247226
\(241\) −3.86531 −0.248987 −0.124493 0.992220i \(-0.539731\pi\)
−0.124493 + 0.992220i \(0.539731\pi\)
\(242\) 7.48476 0.481138
\(243\) −1.00000 −0.0641500
\(244\) 5.94654 0.380688
\(245\) −65.5511 −4.18791
\(246\) 2.74088 0.174752
\(247\) −1.73816 −0.110596
\(248\) 6.65632 0.422677
\(249\) −3.17099 −0.200953
\(250\) 17.8820 1.13096
\(251\) 28.6662 1.80940 0.904698 0.426054i \(-0.140097\pi\)
0.904698 + 0.426054i \(0.140097\pi\)
\(252\) −4.91072 −0.309346
\(253\) −1.87490 −0.117874
\(254\) 16.7703 1.05226
\(255\) 21.8498 1.36829
\(256\) 1.00000 0.0625000
\(257\) −28.2206 −1.76035 −0.880176 0.474648i \(-0.842575\pi\)
−0.880176 + 0.474648i \(0.842575\pi\)
\(258\) 12.3587 0.769420
\(259\) −1.91277 −0.118854
\(260\) 12.4685 0.773267
\(261\) 1.00000 0.0618984
\(262\) −16.7185 −1.03287
\(263\) 3.91934 0.241677 0.120838 0.992672i \(-0.461442\pi\)
0.120838 + 0.992672i \(0.461442\pi\)
\(264\) −1.87490 −0.115392
\(265\) 14.5724 0.895174
\(266\) 2.62191 0.160759
\(267\) −11.3685 −0.695743
\(268\) −6.17079 −0.376941
\(269\) 8.44951 0.515176 0.257588 0.966255i \(-0.417072\pi\)
0.257588 + 0.966255i \(0.417072\pi\)
\(270\) −3.83000 −0.233087
\(271\) 0.259889 0.0157871 0.00789357 0.999969i \(-0.497487\pi\)
0.00789357 + 0.999969i \(0.497487\pi\)
\(272\) 5.70490 0.345910
\(273\) −15.9868 −0.967566
\(274\) 0.560201 0.0338430
\(275\) −18.1282 −1.09317
\(276\) −1.00000 −0.0601929
\(277\) 18.2011 1.09360 0.546798 0.837265i \(-0.315847\pi\)
0.546798 + 0.837265i \(0.315847\pi\)
\(278\) 21.8843 1.31253
\(279\) −6.65632 −0.398504
\(280\) −18.8081 −1.12400
\(281\) 9.68103 0.577522 0.288761 0.957401i \(-0.406757\pi\)
0.288761 + 0.957401i \(0.406757\pi\)
\(282\) −3.23624 −0.192716
\(283\) −11.0363 −0.656040 −0.328020 0.944671i \(-0.606381\pi\)
−0.328020 + 0.944671i \(0.606381\pi\)
\(284\) 2.94885 0.174982
\(285\) 2.04490 0.121129
\(286\) −6.10372 −0.360921
\(287\) −13.4597 −0.794501
\(288\) −1.00000 −0.0589256
\(289\) 15.5459 0.914465
\(290\) 3.83000 0.224905
\(291\) −3.97037 −0.232747
\(292\) −9.05747 −0.530049
\(293\) 4.04428 0.236269 0.118135 0.992998i \(-0.462309\pi\)
0.118135 + 0.992998i \(0.462309\pi\)
\(294\) 17.1152 0.998176
\(295\) −29.2060 −1.70044
\(296\) −0.389510 −0.0226398
\(297\) 1.87490 0.108793
\(298\) 0.858167 0.0497123
\(299\) −3.25549 −0.188270
\(300\) −9.66892 −0.558235
\(301\) −60.6901 −3.49812
\(302\) 13.5924 0.782152
\(303\) −18.8391 −1.08228
\(304\) 0.533915 0.0306221
\(305\) −22.7753 −1.30411
\(306\) −5.70490 −0.326127
\(307\) 29.2154 1.66741 0.833706 0.552209i \(-0.186215\pi\)
0.833706 + 0.552209i \(0.186215\pi\)
\(308\) 9.20710 0.524623
\(309\) 7.01135 0.398862
\(310\) −25.4937 −1.44795
\(311\) −6.51297 −0.369316 −0.184658 0.982803i \(-0.559118\pi\)
−0.184658 + 0.982803i \(0.559118\pi\)
\(312\) −3.25549 −0.184306
\(313\) −7.39447 −0.417960 −0.208980 0.977920i \(-0.567014\pi\)
−0.208980 + 0.977920i \(0.567014\pi\)
\(314\) −3.57130 −0.201540
\(315\) 18.8081 1.05971
\(316\) −5.70853 −0.321130
\(317\) −9.04641 −0.508097 −0.254048 0.967192i \(-0.581762\pi\)
−0.254048 + 0.967192i \(0.581762\pi\)
\(318\) −3.80480 −0.213362
\(319\) −1.87490 −0.104974
\(320\) −3.83000 −0.214104
\(321\) 8.37729 0.467575
\(322\) 4.91072 0.273664
\(323\) 3.04593 0.169480
\(324\) 1.00000 0.0555556
\(325\) −31.4771 −1.74604
\(326\) −18.4147 −1.01989
\(327\) 3.47602 0.192224
\(328\) −2.74088 −0.151340
\(329\) 15.8923 0.876170
\(330\) 7.18087 0.395294
\(331\) 5.63149 0.309535 0.154767 0.987951i \(-0.450537\pi\)
0.154767 + 0.987951i \(0.450537\pi\)
\(332\) 3.17099 0.174030
\(333\) 0.389510 0.0213450
\(334\) −5.92710 −0.324317
\(335\) 23.6341 1.29127
\(336\) 4.91072 0.267902
\(337\) 6.41842 0.349634 0.174817 0.984601i \(-0.444067\pi\)
0.174817 + 0.984601i \(0.444067\pi\)
\(338\) 2.40176 0.130639
\(339\) 0.833643 0.0452773
\(340\) −21.8498 −1.18497
\(341\) 12.4799 0.675826
\(342\) −0.533915 −0.0288708
\(343\) −49.6727 −2.68207
\(344\) −12.3587 −0.666337
\(345\) 3.83000 0.206200
\(346\) −2.39898 −0.128970
\(347\) −11.0884 −0.595255 −0.297627 0.954682i \(-0.596195\pi\)
−0.297627 + 0.954682i \(0.596195\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −5.04948 −0.270293 −0.135146 0.990826i \(-0.543150\pi\)
−0.135146 + 0.990826i \(0.543150\pi\)
\(350\) 47.4813 2.53798
\(351\) 3.25549 0.173765
\(352\) 1.87490 0.0999324
\(353\) −24.9910 −1.33014 −0.665069 0.746782i \(-0.731598\pi\)
−0.665069 + 0.746782i \(0.731598\pi\)
\(354\) 7.62559 0.405296
\(355\) −11.2941 −0.599430
\(356\) 11.3685 0.602531
\(357\) 28.0152 1.48272
\(358\) 1.32347 0.0699476
\(359\) 30.9096 1.63134 0.815672 0.578514i \(-0.196367\pi\)
0.815672 + 0.578514i \(0.196367\pi\)
\(360\) 3.83000 0.201859
\(361\) −18.7149 −0.984997
\(362\) −20.3239 −1.06820
\(363\) 7.48476 0.392848
\(364\) 15.9868 0.837937
\(365\) 34.6901 1.81577
\(366\) 5.94654 0.310831
\(367\) −23.4141 −1.22221 −0.611103 0.791551i \(-0.709274\pi\)
−0.611103 + 0.791551i \(0.709274\pi\)
\(368\) 1.00000 0.0521286
\(369\) 2.74088 0.142685
\(370\) 1.49182 0.0775562
\(371\) 18.6843 0.970040
\(372\) 6.65632 0.345114
\(373\) 11.7633 0.609083 0.304541 0.952499i \(-0.401497\pi\)
0.304541 + 0.952499i \(0.401497\pi\)
\(374\) 10.6961 0.553083
\(375\) 17.8820 0.923421
\(376\) 3.23624 0.166897
\(377\) −3.25549 −0.167666
\(378\) −4.91072 −0.252580
\(379\) −6.32423 −0.324854 −0.162427 0.986721i \(-0.551932\pi\)
−0.162427 + 0.986721i \(0.551932\pi\)
\(380\) −2.04490 −0.104901
\(381\) 16.7703 0.859168
\(382\) −20.2770 −1.03746
\(383\) 33.7745 1.72579 0.862897 0.505380i \(-0.168648\pi\)
0.862897 + 0.505380i \(0.168648\pi\)
\(384\) 1.00000 0.0510310
\(385\) −35.2632 −1.79718
\(386\) 17.5746 0.894523
\(387\) 12.3587 0.628229
\(388\) 3.97037 0.201565
\(389\) −13.3750 −0.678141 −0.339071 0.940761i \(-0.610113\pi\)
−0.339071 + 0.940761i \(0.610113\pi\)
\(390\) 12.4685 0.631370
\(391\) 5.70490 0.288509
\(392\) −17.1152 −0.864446
\(393\) −16.7185 −0.843337
\(394\) 14.7121 0.741183
\(395\) 21.8637 1.10008
\(396\) −1.87490 −0.0942172
\(397\) −12.4687 −0.625784 −0.312892 0.949789i \(-0.601298\pi\)
−0.312892 + 0.949789i \(0.601298\pi\)
\(398\) 3.40969 0.170912
\(399\) 2.62191 0.131259
\(400\) 9.66892 0.483446
\(401\) −32.3691 −1.61644 −0.808218 0.588884i \(-0.799568\pi\)
−0.808218 + 0.588884i \(0.799568\pi\)
\(402\) −6.17079 −0.307771
\(403\) 21.6696 1.07944
\(404\) 18.8391 0.937281
\(405\) −3.83000 −0.190314
\(406\) 4.91072 0.243715
\(407\) −0.730292 −0.0361992
\(408\) 5.70490 0.282435
\(409\) 15.8537 0.783917 0.391959 0.919983i \(-0.371798\pi\)
0.391959 + 0.919983i \(0.371798\pi\)
\(410\) 10.4976 0.518439
\(411\) 0.560201 0.0276327
\(412\) −7.01135 −0.345424
\(413\) −37.4471 −1.84265
\(414\) −1.00000 −0.0491473
\(415\) −12.1449 −0.596169
\(416\) 3.25549 0.159614
\(417\) 21.8843 1.07168
\(418\) 1.00104 0.0489623
\(419\) −8.75952 −0.427930 −0.213965 0.976841i \(-0.568638\pi\)
−0.213965 + 0.976841i \(0.568638\pi\)
\(420\) −18.8081 −0.917740
\(421\) 36.0980 1.75931 0.879654 0.475614i \(-0.157774\pi\)
0.879654 + 0.475614i \(0.157774\pi\)
\(422\) 12.2627 0.596938
\(423\) −3.23624 −0.157352
\(424\) 3.80480 0.184777
\(425\) 55.1602 2.67566
\(426\) 2.94885 0.142872
\(427\) −29.2018 −1.41317
\(428\) −8.37729 −0.404932
\(429\) −6.10372 −0.294690
\(430\) 47.3339 2.28264
\(431\) −23.8375 −1.14821 −0.574105 0.818781i \(-0.694650\pi\)
−0.574105 + 0.818781i \(0.694650\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −24.9294 −1.19803 −0.599015 0.800738i \(-0.704441\pi\)
−0.599015 + 0.800738i \(0.704441\pi\)
\(434\) −32.6873 −1.56904
\(435\) 3.83000 0.183635
\(436\) −3.47602 −0.166471
\(437\) 0.533915 0.0255406
\(438\) −9.05747 −0.432783
\(439\) 33.4631 1.59711 0.798554 0.601923i \(-0.205599\pi\)
0.798554 + 0.601923i \(0.205599\pi\)
\(440\) −7.18087 −0.342334
\(441\) 17.1152 0.815007
\(442\) 18.5723 0.883393
\(443\) −23.2755 −1.10585 −0.552927 0.833230i \(-0.686489\pi\)
−0.552927 + 0.833230i \(0.686489\pi\)
\(444\) −0.389510 −0.0184853
\(445\) −43.5415 −2.06407
\(446\) 14.0063 0.663218
\(447\) 0.858167 0.0405899
\(448\) −4.91072 −0.232010
\(449\) 29.2949 1.38251 0.691255 0.722611i \(-0.257058\pi\)
0.691255 + 0.722611i \(0.257058\pi\)
\(450\) −9.66892 −0.455797
\(451\) −5.13888 −0.241980
\(452\) −0.833643 −0.0392113
\(453\) 13.5924 0.638625
\(454\) −26.1269 −1.22620
\(455\) −61.2295 −2.87048
\(456\) 0.533915 0.0250029
\(457\) 27.2353 1.27401 0.637007 0.770858i \(-0.280172\pi\)
0.637007 + 0.770858i \(0.280172\pi\)
\(458\) −18.3486 −0.857374
\(459\) −5.70490 −0.266282
\(460\) −3.83000 −0.178575
\(461\) −3.22761 −0.150325 −0.0751625 0.997171i \(-0.523948\pi\)
−0.0751625 + 0.997171i \(0.523948\pi\)
\(462\) 9.20710 0.428353
\(463\) 30.1032 1.39901 0.699506 0.714627i \(-0.253403\pi\)
0.699506 + 0.714627i \(0.253403\pi\)
\(464\) 1.00000 0.0464238
\(465\) −25.4937 −1.18224
\(466\) −13.5059 −0.625651
\(467\) 6.87890 0.318318 0.159159 0.987253i \(-0.449122\pi\)
0.159159 + 0.987253i \(0.449122\pi\)
\(468\) −3.25549 −0.150485
\(469\) 30.3030 1.39926
\(470\) −12.3948 −0.571731
\(471\) −3.57130 −0.164557
\(472\) −7.62559 −0.350996
\(473\) −23.1713 −1.06542
\(474\) −5.70853 −0.262201
\(475\) 5.16238 0.236866
\(476\) −28.0152 −1.28407
\(477\) −3.80480 −0.174210
\(478\) 25.7537 1.17795
\(479\) 6.31331 0.288462 0.144231 0.989544i \(-0.453929\pi\)
0.144231 + 0.989544i \(0.453929\pi\)
\(480\) −3.83000 −0.174815
\(481\) −1.26805 −0.0578180
\(482\) 3.86531 0.176060
\(483\) 4.91072 0.223445
\(484\) −7.48476 −0.340216
\(485\) −15.2065 −0.690492
\(486\) 1.00000 0.0453609
\(487\) 27.4092 1.24203 0.621015 0.783799i \(-0.286721\pi\)
0.621015 + 0.783799i \(0.286721\pi\)
\(488\) −5.94654 −0.269187
\(489\) −18.4147 −0.832740
\(490\) 65.5511 2.96130
\(491\) −42.0045 −1.89564 −0.947819 0.318810i \(-0.896717\pi\)
−0.947819 + 0.318810i \(0.896717\pi\)
\(492\) −2.74088 −0.123569
\(493\) 5.70490 0.256936
\(494\) 1.73816 0.0782034
\(495\) 7.18087 0.322756
\(496\) −6.65632 −0.298878
\(497\) −14.4810 −0.649561
\(498\) 3.17099 0.142095
\(499\) −35.3516 −1.58256 −0.791278 0.611457i \(-0.790584\pi\)
−0.791278 + 0.611457i \(0.790584\pi\)
\(500\) −17.8820 −0.799706
\(501\) −5.92710 −0.264803
\(502\) −28.6662 −1.27944
\(503\) −21.3739 −0.953014 −0.476507 0.879171i \(-0.658097\pi\)
−0.476507 + 0.879171i \(0.658097\pi\)
\(504\) 4.91072 0.218741
\(505\) −72.1539 −3.21081
\(506\) 1.87490 0.0833494
\(507\) 2.40176 0.106666
\(508\) −16.7703 −0.744061
\(509\) 12.7335 0.564402 0.282201 0.959355i \(-0.408935\pi\)
0.282201 + 0.959355i \(0.408935\pi\)
\(510\) −21.8498 −0.967525
\(511\) 44.4787 1.96762
\(512\) −1.00000 −0.0441942
\(513\) −0.533915 −0.0235729
\(514\) 28.2206 1.24476
\(515\) 26.8535 1.18331
\(516\) −12.3587 −0.544062
\(517\) 6.06763 0.266854
\(518\) 1.91277 0.0840424
\(519\) −2.39898 −0.105303
\(520\) −12.4685 −0.546782
\(521\) 8.59574 0.376586 0.188293 0.982113i \(-0.439705\pi\)
0.188293 + 0.982113i \(0.439705\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −4.59103 −0.200752 −0.100376 0.994950i \(-0.532005\pi\)
−0.100376 + 0.994950i \(0.532005\pi\)
\(524\) 16.7185 0.730351
\(525\) 47.4813 2.07226
\(526\) −3.91934 −0.170891
\(527\) −37.9737 −1.65416
\(528\) 1.87490 0.0815945
\(529\) 1.00000 0.0434783
\(530\) −14.5724 −0.632984
\(531\) 7.62559 0.330922
\(532\) −2.62191 −0.113674
\(533\) −8.92293 −0.386495
\(534\) 11.3685 0.491964
\(535\) 32.0851 1.38716
\(536\) 6.17079 0.266538
\(537\) 1.32347 0.0571120
\(538\) −8.44951 −0.364284
\(539\) −32.0892 −1.38218
\(540\) 3.83000 0.164817
\(541\) 21.9295 0.942824 0.471412 0.881913i \(-0.343745\pi\)
0.471412 + 0.881913i \(0.343745\pi\)
\(542\) −0.259889 −0.0111632
\(543\) −20.3239 −0.872181
\(544\) −5.70490 −0.244596
\(545\) 13.3132 0.570273
\(546\) 15.9868 0.684172
\(547\) −11.2261 −0.479993 −0.239997 0.970774i \(-0.577146\pi\)
−0.239997 + 0.970774i \(0.577146\pi\)
\(548\) −0.560201 −0.0239306
\(549\) 5.94654 0.253792
\(550\) 18.1282 0.772991
\(551\) 0.533915 0.0227455
\(552\) 1.00000 0.0425628
\(553\) 28.0330 1.19208
\(554\) −18.2011 −0.773289
\(555\) 1.49182 0.0633244
\(556\) −21.8843 −0.928102
\(557\) −34.8655 −1.47730 −0.738650 0.674089i \(-0.764536\pi\)
−0.738650 + 0.674089i \(0.764536\pi\)
\(558\) 6.65632 0.281785
\(559\) −40.2337 −1.70170
\(560\) 18.8081 0.794786
\(561\) 10.6961 0.451590
\(562\) −9.68103 −0.408370
\(563\) −34.2819 −1.44481 −0.722405 0.691471i \(-0.756963\pi\)
−0.722405 + 0.691471i \(0.756963\pi\)
\(564\) 3.23624 0.136270
\(565\) 3.19286 0.134324
\(566\) 11.0363 0.463891
\(567\) −4.91072 −0.206231
\(568\) −2.94885 −0.123731
\(569\) 11.1828 0.468806 0.234403 0.972140i \(-0.424687\pi\)
0.234403 + 0.972140i \(0.424687\pi\)
\(570\) −2.04490 −0.0856513
\(571\) −13.2459 −0.554324 −0.277162 0.960823i \(-0.589394\pi\)
−0.277162 + 0.960823i \(0.589394\pi\)
\(572\) 6.10372 0.255209
\(573\) −20.2770 −0.847084
\(574\) 13.4597 0.561797
\(575\) 9.66892 0.403222
\(576\) 1.00000 0.0416667
\(577\) −28.3523 −1.18032 −0.590161 0.807286i \(-0.700936\pi\)
−0.590161 + 0.807286i \(0.700936\pi\)
\(578\) −15.5459 −0.646624
\(579\) 17.5746 0.730375
\(580\) −3.83000 −0.159032
\(581\) −15.5718 −0.646028
\(582\) 3.97037 0.164577
\(583\) 7.13361 0.295444
\(584\) 9.05747 0.374801
\(585\) 12.4685 0.515511
\(586\) −4.04428 −0.167068
\(587\) −35.4129 −1.46165 −0.730823 0.682568i \(-0.760863\pi\)
−0.730823 + 0.682568i \(0.760863\pi\)
\(588\) −17.1152 −0.705817
\(589\) −3.55391 −0.146436
\(590\) 29.2060 1.20239
\(591\) 14.7121 0.605174
\(592\) 0.389510 0.0160088
\(593\) 41.6833 1.71173 0.855864 0.517200i \(-0.173026\pi\)
0.855864 + 0.517200i \(0.173026\pi\)
\(594\) −1.87490 −0.0769280
\(595\) 107.298 4.39880
\(596\) −0.858167 −0.0351519
\(597\) 3.40969 0.139549
\(598\) 3.25549 0.133127
\(599\) −39.9957 −1.63418 −0.817091 0.576509i \(-0.804415\pi\)
−0.817091 + 0.576509i \(0.804415\pi\)
\(600\) 9.66892 0.394732
\(601\) 30.8301 1.25759 0.628793 0.777573i \(-0.283549\pi\)
0.628793 + 0.777573i \(0.283549\pi\)
\(602\) 60.6901 2.47355
\(603\) −6.17079 −0.251294
\(604\) −13.5924 −0.553065
\(605\) 28.6666 1.16546
\(606\) 18.8391 0.765287
\(607\) 33.3434 1.35337 0.676683 0.736275i \(-0.263417\pi\)
0.676683 + 0.736275i \(0.263417\pi\)
\(608\) −0.533915 −0.0216531
\(609\) 4.91072 0.198992
\(610\) 22.7753 0.922143
\(611\) 10.5356 0.426224
\(612\) 5.70490 0.230607
\(613\) −19.8609 −0.802175 −0.401087 0.916040i \(-0.631368\pi\)
−0.401087 + 0.916040i \(0.631368\pi\)
\(614\) −29.2154 −1.17904
\(615\) 10.4976 0.423304
\(616\) −9.20710 −0.370965
\(617\) −47.0395 −1.89374 −0.946870 0.321618i \(-0.895773\pi\)
−0.946870 + 0.321618i \(0.895773\pi\)
\(618\) −7.01135 −0.282038
\(619\) 11.6425 0.467950 0.233975 0.972243i \(-0.424827\pi\)
0.233975 + 0.972243i \(0.424827\pi\)
\(620\) 25.4937 1.02385
\(621\) −1.00000 −0.0401286
\(622\) 6.51297 0.261146
\(623\) −55.8276 −2.23669
\(624\) 3.25549 0.130324
\(625\) 20.1434 0.805737
\(626\) 7.39447 0.295543
\(627\) 1.00104 0.0399775
\(628\) 3.57130 0.142511
\(629\) 2.22212 0.0886016
\(630\) −18.8081 −0.749331
\(631\) −10.6489 −0.423926 −0.211963 0.977278i \(-0.567986\pi\)
−0.211963 + 0.977278i \(0.567986\pi\)
\(632\) 5.70853 0.227073
\(633\) 12.2627 0.487398
\(634\) 9.04641 0.359279
\(635\) 64.2303 2.54890
\(636\) 3.80480 0.150870
\(637\) −55.7183 −2.20764
\(638\) 1.87490 0.0742279
\(639\) 2.94885 0.116655
\(640\) 3.83000 0.151394
\(641\) −28.0047 −1.10612 −0.553060 0.833142i \(-0.686540\pi\)
−0.553060 + 0.833142i \(0.686540\pi\)
\(642\) −8.37729 −0.330625
\(643\) −14.4751 −0.570842 −0.285421 0.958402i \(-0.592133\pi\)
−0.285421 + 0.958402i \(0.592133\pi\)
\(644\) −4.91072 −0.193509
\(645\) 47.3339 1.86377
\(646\) −3.04593 −0.119841
\(647\) 41.3074 1.62396 0.811981 0.583684i \(-0.198389\pi\)
0.811981 + 0.583684i \(0.198389\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −14.2972 −0.561215
\(650\) 31.4771 1.23463
\(651\) −32.6873 −1.28112
\(652\) 18.4147 0.721174
\(653\) −12.9580 −0.507085 −0.253542 0.967324i \(-0.581596\pi\)
−0.253542 + 0.967324i \(0.581596\pi\)
\(654\) −3.47602 −0.135923
\(655\) −64.0319 −2.50193
\(656\) 2.74088 0.107013
\(657\) −9.05747 −0.353366
\(658\) −15.8923 −0.619546
\(659\) 26.9082 1.04819 0.524097 0.851658i \(-0.324403\pi\)
0.524097 + 0.851658i \(0.324403\pi\)
\(660\) −7.18087 −0.279515
\(661\) 35.8148 1.39304 0.696518 0.717539i \(-0.254732\pi\)
0.696518 + 0.717539i \(0.254732\pi\)
\(662\) −5.63149 −0.218874
\(663\) 18.5723 0.721287
\(664\) −3.17099 −0.123058
\(665\) 10.0419 0.389408
\(666\) −0.389510 −0.0150932
\(667\) 1.00000 0.0387202
\(668\) 5.92710 0.229327
\(669\) 14.0063 0.541515
\(670\) −23.6341 −0.913067
\(671\) −11.1492 −0.430408
\(672\) −4.91072 −0.189435
\(673\) −5.14212 −0.198214 −0.0991071 0.995077i \(-0.531599\pi\)
−0.0991071 + 0.995077i \(0.531599\pi\)
\(674\) −6.41842 −0.247228
\(675\) −9.66892 −0.372157
\(676\) −2.40176 −0.0923754
\(677\) −5.44358 −0.209214 −0.104607 0.994514i \(-0.533358\pi\)
−0.104607 + 0.994514i \(0.533358\pi\)
\(678\) −0.833643 −0.0320159
\(679\) −19.4973 −0.748240
\(680\) 21.8498 0.837901
\(681\) −26.1269 −1.00119
\(682\) −12.4799 −0.477881
\(683\) −3.89519 −0.149045 −0.0745226 0.997219i \(-0.523743\pi\)
−0.0745226 + 0.997219i \(0.523743\pi\)
\(684\) 0.533915 0.0204148
\(685\) 2.14557 0.0819781
\(686\) 49.6727 1.89651
\(687\) −18.3486 −0.700043
\(688\) 12.3587 0.471171
\(689\) 12.3865 0.471888
\(690\) −3.83000 −0.145806
\(691\) −22.3650 −0.850806 −0.425403 0.905004i \(-0.639868\pi\)
−0.425403 + 0.905004i \(0.639868\pi\)
\(692\) 2.39898 0.0911954
\(693\) 9.20710 0.349749
\(694\) 11.0884 0.420909
\(695\) 83.8170 3.17936
\(696\) 1.00000 0.0379049
\(697\) 15.6365 0.592273
\(698\) 5.04948 0.191126
\(699\) −13.5059 −0.510842
\(700\) −47.4813 −1.79463
\(701\) 16.0604 0.606593 0.303297 0.952896i \(-0.401913\pi\)
0.303297 + 0.952896i \(0.401913\pi\)
\(702\) −3.25549 −0.122871
\(703\) 0.207965 0.00784356
\(704\) −1.87490 −0.0706629
\(705\) −12.3948 −0.466816
\(706\) 24.9910 0.940549
\(707\) −92.5136 −3.47933
\(708\) −7.62559 −0.286587
\(709\) 24.6413 0.925424 0.462712 0.886509i \(-0.346876\pi\)
0.462712 + 0.886509i \(0.346876\pi\)
\(710\) 11.2941 0.423861
\(711\) −5.70853 −0.214086
\(712\) −11.3685 −0.426054
\(713\) −6.65632 −0.249281
\(714\) −28.0152 −1.04844
\(715\) −23.3773 −0.874260
\(716\) −1.32347 −0.0494604
\(717\) 25.7537 0.961789
\(718\) −30.9096 −1.15353
\(719\) −16.1644 −0.602829 −0.301415 0.953493i \(-0.597459\pi\)
−0.301415 + 0.953493i \(0.597459\pi\)
\(720\) −3.83000 −0.142736
\(721\) 34.4307 1.28227
\(722\) 18.7149 0.696498
\(723\) 3.86531 0.143753
\(724\) 20.3239 0.755331
\(725\) 9.66892 0.359095
\(726\) −7.48476 −0.277785
\(727\) −42.9921 −1.59449 −0.797245 0.603656i \(-0.793710\pi\)
−0.797245 + 0.603656i \(0.793710\pi\)
\(728\) −15.9868 −0.592511
\(729\) 1.00000 0.0370370
\(730\) −34.6901 −1.28394
\(731\) 70.5052 2.60773
\(732\) −5.94654 −0.219790
\(733\) 34.7544 1.28368 0.641841 0.766838i \(-0.278171\pi\)
0.641841 + 0.766838i \(0.278171\pi\)
\(734\) 23.4141 0.864231
\(735\) 65.5511 2.41789
\(736\) −1.00000 −0.0368605
\(737\) 11.5696 0.426172
\(738\) −2.74088 −0.100893
\(739\) −27.3490 −1.00605 −0.503026 0.864272i \(-0.667780\pi\)
−0.503026 + 0.864272i \(0.667780\pi\)
\(740\) −1.49182 −0.0548405
\(741\) 1.73816 0.0638528
\(742\) −18.6843 −0.685922
\(743\) −35.0890 −1.28729 −0.643644 0.765325i \(-0.722578\pi\)
−0.643644 + 0.765325i \(0.722578\pi\)
\(744\) −6.65632 −0.244033
\(745\) 3.28678 0.120418
\(746\) −11.7633 −0.430686
\(747\) 3.17099 0.116020
\(748\) −10.6961 −0.391089
\(749\) 41.1385 1.50317
\(750\) −17.8820 −0.652957
\(751\) 13.2572 0.483761 0.241880 0.970306i \(-0.422236\pi\)
0.241880 + 0.970306i \(0.422236\pi\)
\(752\) −3.23624 −0.118014
\(753\) −28.6662 −1.04465
\(754\) 3.25549 0.118558
\(755\) 52.0588 1.89461
\(756\) 4.91072 0.178601
\(757\) 11.0990 0.403400 0.201700 0.979447i \(-0.435353\pi\)
0.201700 + 0.979447i \(0.435353\pi\)
\(758\) 6.32423 0.229706
\(759\) 1.87490 0.0680545
\(760\) 2.04490 0.0741762
\(761\) 1.03759 0.0376126 0.0188063 0.999823i \(-0.494013\pi\)
0.0188063 + 0.999823i \(0.494013\pi\)
\(762\) −16.7703 −0.607524
\(763\) 17.0698 0.617967
\(764\) 20.2770 0.733596
\(765\) −21.8498 −0.789981
\(766\) −33.7745 −1.22032
\(767\) −24.8251 −0.896381
\(768\) −1.00000 −0.0360844
\(769\) 29.8280 1.07563 0.537813 0.843064i \(-0.319251\pi\)
0.537813 + 0.843064i \(0.319251\pi\)
\(770\) 35.2632 1.27080
\(771\) 28.2206 1.01634
\(772\) −17.5746 −0.632523
\(773\) 21.0462 0.756981 0.378490 0.925605i \(-0.376443\pi\)
0.378490 + 0.925605i \(0.376443\pi\)
\(774\) −12.3587 −0.444225
\(775\) −64.3594 −2.31186
\(776\) −3.97037 −0.142528
\(777\) 1.91277 0.0686204
\(778\) 13.3750 0.479518
\(779\) 1.46340 0.0524317
\(780\) −12.4685 −0.446446
\(781\) −5.52880 −0.197836
\(782\) −5.70490 −0.204007
\(783\) −1.00000 −0.0357371
\(784\) 17.1152 0.611256
\(785\) −13.6781 −0.488192
\(786\) 16.7185 0.596329
\(787\) −44.6701 −1.59232 −0.796158 0.605088i \(-0.793138\pi\)
−0.796158 + 0.605088i \(0.793138\pi\)
\(788\) −14.7121 −0.524096
\(789\) −3.91934 −0.139532
\(790\) −21.8637 −0.777874
\(791\) 4.09379 0.145558
\(792\) 1.87490 0.0666216
\(793\) −19.3589 −0.687455
\(794\) 12.4687 0.442496
\(795\) −14.5724 −0.516829
\(796\) −3.40969 −0.120853
\(797\) 0.127673 0.00452240 0.00226120 0.999997i \(-0.499280\pi\)
0.00226120 + 0.999997i \(0.499280\pi\)
\(798\) −2.62191 −0.0928145
\(799\) −18.4625 −0.653155
\(800\) −9.66892 −0.341848
\(801\) 11.3685 0.401687
\(802\) 32.3691 1.14299
\(803\) 16.9818 0.599276
\(804\) 6.17079 0.217627
\(805\) 18.8081 0.662897
\(806\) −21.6696 −0.763279
\(807\) −8.44951 −0.297437
\(808\) −18.8391 −0.662758
\(809\) 13.9555 0.490650 0.245325 0.969441i \(-0.421105\pi\)
0.245325 + 0.969441i \(0.421105\pi\)
\(810\) 3.83000 0.134573
\(811\) 10.2788 0.360939 0.180469 0.983581i \(-0.442238\pi\)
0.180469 + 0.983581i \(0.442238\pi\)
\(812\) −4.91072 −0.172332
\(813\) −0.259889 −0.00911471
\(814\) 0.730292 0.0255967
\(815\) −70.5282 −2.47050
\(816\) −5.70490 −0.199711
\(817\) 6.59850 0.230852
\(818\) −15.8537 −0.554313
\(819\) 15.9868 0.558624
\(820\) −10.4976 −0.366592
\(821\) −20.9582 −0.731447 −0.365723 0.930724i \(-0.619178\pi\)
−0.365723 + 0.930724i \(0.619178\pi\)
\(822\) −0.560201 −0.0195393
\(823\) −36.4060 −1.26903 −0.634517 0.772909i \(-0.718801\pi\)
−0.634517 + 0.772909i \(0.718801\pi\)
\(824\) 7.01135 0.244252
\(825\) 18.1282 0.631144
\(826\) 37.4471 1.30295
\(827\) 45.7934 1.59239 0.796196 0.605039i \(-0.206842\pi\)
0.796196 + 0.605039i \(0.206842\pi\)
\(828\) 1.00000 0.0347524
\(829\) 33.8949 1.17722 0.588610 0.808417i \(-0.299675\pi\)
0.588610 + 0.808417i \(0.299675\pi\)
\(830\) 12.1449 0.421555
\(831\) −18.2011 −0.631388
\(832\) −3.25549 −0.112864
\(833\) 97.6403 3.38303
\(834\) −21.8843 −0.757792
\(835\) −22.7008 −0.785594
\(836\) −1.00104 −0.0346216
\(837\) 6.65632 0.230076
\(838\) 8.75952 0.302592
\(839\) −31.1241 −1.07452 −0.537261 0.843416i \(-0.680541\pi\)
−0.537261 + 0.843416i \(0.680541\pi\)
\(840\) 18.8081 0.648940
\(841\) 1.00000 0.0344828
\(842\) −36.0980 −1.24402
\(843\) −9.68103 −0.333433
\(844\) −12.2627 −0.422099
\(845\) 9.19875 0.316447
\(846\) 3.23624 0.111264
\(847\) 36.7555 1.26293
\(848\) −3.80480 −0.130657
\(849\) 11.0363 0.378765
\(850\) −55.1602 −1.89198
\(851\) 0.389510 0.0133522
\(852\) −2.94885 −0.101026
\(853\) −7.20128 −0.246567 −0.123284 0.992371i \(-0.539342\pi\)
−0.123284 + 0.992371i \(0.539342\pi\)
\(854\) 29.2018 0.999264
\(855\) −2.04490 −0.0699340
\(856\) 8.37729 0.286330
\(857\) 19.4479 0.664328 0.332164 0.943222i \(-0.392221\pi\)
0.332164 + 0.943222i \(0.392221\pi\)
\(858\) 6.10372 0.208378
\(859\) 14.7197 0.502231 0.251116 0.967957i \(-0.419203\pi\)
0.251116 + 0.967957i \(0.419203\pi\)
\(860\) −47.3339 −1.61407
\(861\) 13.4597 0.458705
\(862\) 23.8375 0.811907
\(863\) 12.5146 0.426001 0.213000 0.977052i \(-0.431676\pi\)
0.213000 + 0.977052i \(0.431676\pi\)
\(864\) 1.00000 0.0340207
\(865\) −9.18809 −0.312404
\(866\) 24.9294 0.847136
\(867\) −15.5459 −0.527966
\(868\) 32.6873 1.10948
\(869\) 10.7029 0.363071
\(870\) −3.83000 −0.129849
\(871\) 20.0890 0.680689
\(872\) 3.47602 0.117713
\(873\) 3.97037 0.134377
\(874\) −0.533915 −0.0180599
\(875\) 87.8133 2.96863
\(876\) 9.05747 0.306024
\(877\) 10.4260 0.352061 0.176031 0.984385i \(-0.443674\pi\)
0.176031 + 0.984385i \(0.443674\pi\)
\(878\) −33.4631 −1.12933
\(879\) −4.04428 −0.136410
\(880\) 7.18087 0.242067
\(881\) −3.50332 −0.118030 −0.0590150 0.998257i \(-0.518796\pi\)
−0.0590150 + 0.998257i \(0.518796\pi\)
\(882\) −17.1152 −0.576297
\(883\) 29.6173 0.996700 0.498350 0.866976i \(-0.333939\pi\)
0.498350 + 0.866976i \(0.333939\pi\)
\(884\) −18.5723 −0.624653
\(885\) 29.2060 0.981750
\(886\) 23.2755 0.781957
\(887\) −9.83410 −0.330197 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(888\) 0.389510 0.0130711
\(889\) 82.3542 2.76207
\(890\) 43.5415 1.45951
\(891\) −1.87490 −0.0628115
\(892\) −14.0063 −0.468966
\(893\) −1.72788 −0.0578213
\(894\) −0.858167 −0.0287014
\(895\) 5.06890 0.169434
\(896\) 4.91072 0.164056
\(897\) 3.25549 0.108698
\(898\) −29.2949 −0.977582
\(899\) −6.65632 −0.222001
\(900\) 9.66892 0.322297
\(901\) −21.7060 −0.723131
\(902\) 5.13888 0.171106
\(903\) 60.6901 2.01964
\(904\) 0.833643 0.0277266
\(905\) −77.8405 −2.58750
\(906\) −13.5924 −0.451576
\(907\) 38.6451 1.28319 0.641595 0.767043i \(-0.278273\pi\)
0.641595 + 0.767043i \(0.278273\pi\)
\(908\) 26.1269 0.867052
\(909\) 18.8391 0.624854
\(910\) 61.2295 2.02974
\(911\) 19.3657 0.641614 0.320807 0.947145i \(-0.396046\pi\)
0.320807 + 0.947145i \(0.396046\pi\)
\(912\) −0.533915 −0.0176797
\(913\) −5.94528 −0.196760
\(914\) −27.2353 −0.900864
\(915\) 22.7753 0.752927
\(916\) 18.3486 0.606255
\(917\) −82.0998 −2.71118
\(918\) 5.70490 0.188290
\(919\) −8.54419 −0.281847 −0.140923 0.990020i \(-0.545007\pi\)
−0.140923 + 0.990020i \(0.545007\pi\)
\(920\) 3.83000 0.126271
\(921\) −29.2154 −0.962680
\(922\) 3.22761 0.106296
\(923\) −9.59998 −0.315987
\(924\) −9.20710 −0.302891
\(925\) 3.76614 0.123830
\(926\) −30.1032 −0.989251
\(927\) −7.01135 −0.230283
\(928\) −1.00000 −0.0328266
\(929\) −12.7564 −0.418525 −0.209263 0.977859i \(-0.567106\pi\)
−0.209263 + 0.977859i \(0.567106\pi\)
\(930\) 25.4937 0.835972
\(931\) 9.13804 0.299487
\(932\) 13.5059 0.442402
\(933\) 6.51297 0.213225
\(934\) −6.87890 −0.225085
\(935\) 40.9661 1.33974
\(936\) 3.25549 0.106409
\(937\) −38.1445 −1.24613 −0.623063 0.782172i \(-0.714112\pi\)
−0.623063 + 0.782172i \(0.714112\pi\)
\(938\) −30.3030 −0.989428
\(939\) 7.39447 0.241310
\(940\) 12.3948 0.404275
\(941\) 34.0705 1.11067 0.555334 0.831627i \(-0.312590\pi\)
0.555334 + 0.831627i \(0.312590\pi\)
\(942\) 3.57130 0.116359
\(943\) 2.74088 0.0892554
\(944\) 7.62559 0.248192
\(945\) −18.8081 −0.611826
\(946\) 23.1713 0.753365
\(947\) −8.96900 −0.291453 −0.145727 0.989325i \(-0.546552\pi\)
−0.145727 + 0.989325i \(0.546552\pi\)
\(948\) 5.70853 0.185404
\(949\) 29.4865 0.957174
\(950\) −5.16238 −0.167490
\(951\) 9.04641 0.293350
\(952\) 28.0152 0.907977
\(953\) 22.1281 0.716801 0.358400 0.933568i \(-0.383322\pi\)
0.358400 + 0.933568i \(0.383322\pi\)
\(954\) 3.80480 0.123185
\(955\) −77.6610 −2.51305
\(956\) −25.7537 −0.832934
\(957\) 1.87490 0.0606069
\(958\) −6.31331 −0.203974
\(959\) 2.75099 0.0888341
\(960\) 3.83000 0.123613
\(961\) 13.3066 0.429245
\(962\) 1.26805 0.0408835
\(963\) −8.37729 −0.269954
\(964\) −3.86531 −0.124493
\(965\) 67.3107 2.16681
\(966\) −4.91072 −0.158000
\(967\) −16.4454 −0.528848 −0.264424 0.964406i \(-0.585182\pi\)
−0.264424 + 0.964406i \(0.585182\pi\)
\(968\) 7.48476 0.240569
\(969\) −3.04593 −0.0978495
\(970\) 15.2065 0.488252
\(971\) 50.2627 1.61301 0.806503 0.591229i \(-0.201357\pi\)
0.806503 + 0.591229i \(0.201357\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 107.468 3.44526
\(974\) −27.4092 −0.878248
\(975\) 31.4771 1.00807
\(976\) 5.94654 0.190344
\(977\) −51.2445 −1.63946 −0.819728 0.572753i \(-0.805875\pi\)
−0.819728 + 0.572753i \(0.805875\pi\)
\(978\) 18.4147 0.588836
\(979\) −21.3148 −0.681225
\(980\) −65.5511 −2.09395
\(981\) −3.47602 −0.110981
\(982\) 42.0045 1.34042
\(983\) 41.0361 1.30885 0.654424 0.756128i \(-0.272911\pi\)
0.654424 + 0.756128i \(0.272911\pi\)
\(984\) 2.74088 0.0873761
\(985\) 56.3473 1.79537
\(986\) −5.70490 −0.181681
\(987\) −15.8923 −0.505857
\(988\) −1.73816 −0.0552981
\(989\) 12.3587 0.392984
\(990\) −7.18087 −0.228223
\(991\) 32.0693 1.01871 0.509357 0.860555i \(-0.329883\pi\)
0.509357 + 0.860555i \(0.329883\pi\)
\(992\) 6.65632 0.211338
\(993\) −5.63149 −0.178710
\(994\) 14.4810 0.459309
\(995\) 13.0591 0.414002
\(996\) −3.17099 −0.100477
\(997\) −11.0606 −0.350293 −0.175147 0.984542i \(-0.556040\pi\)
−0.175147 + 0.984542i \(0.556040\pi\)
\(998\) 35.3516 1.11904
\(999\) −0.389510 −0.0123235
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bg.1.1 7
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bg.1.1 7 1.1 even 1 trivial