Properties

Label 4002.2.a.bf.1.4
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.61157024.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 8x^{3} + 17x^{2} - 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.44200\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.56155 q^{5} -1.00000 q^{6} -1.96335 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +2.56155 q^{5} -1.00000 q^{6} -1.96335 q^{7} -1.00000 q^{8} +1.00000 q^{9} -2.56155 q^{10} -1.94852 q^{11} +1.00000 q^{12} +0.935479 q^{13} +1.96335 q^{14} +2.56155 q^{15} +1.00000 q^{16} +2.08949 q^{17} -1.00000 q^{18} +2.20246 q^{19} +2.56155 q^{20} -1.96335 q^{21} +1.94852 q^{22} +1.00000 q^{23} -1.00000 q^{24} +1.56155 q^{25} -0.935479 q^{26} +1.00000 q^{27} -1.96335 q^{28} +1.00000 q^{29} -2.56155 q^{30} +7.28027 q^{31} -1.00000 q^{32} -1.94852 q^{33} -2.08949 q^{34} -5.02924 q^{35} +1.00000 q^{36} -4.14807 q^{37} -2.20246 q^{38} +0.935479 q^{39} -2.56155 q^{40} +5.59024 q^{41} +1.96335 q^{42} +4.97639 q^{43} -1.94852 q^{44} +2.56155 q^{45} -1.00000 q^{46} -2.25531 q^{47} +1.00000 q^{48} -3.14524 q^{49} -1.56155 q^{50} +2.08949 q^{51} +0.935479 q^{52} +3.28182 q^{53} -1.00000 q^{54} -4.99123 q^{55} +1.96335 q^{56} +2.20246 q^{57} -1.00000 q^{58} -1.11938 q^{59} +2.56155 q^{60} -8.24006 q^{61} -7.28027 q^{62} -1.96335 q^{63} +1.00000 q^{64} +2.39628 q^{65} +1.94852 q^{66} +11.4617 q^{67} +2.08949 q^{68} +1.00000 q^{69} +5.02924 q^{70} +4.07756 q^{71} -1.00000 q^{72} -6.10569 q^{73} +4.14807 q^{74} +1.56155 q^{75} +2.20246 q^{76} +3.82563 q^{77} -0.935479 q^{78} +13.0226 q^{79} +2.56155 q^{80} +1.00000 q^{81} -5.59024 q^{82} +3.03980 q^{83} -1.96335 q^{84} +5.35234 q^{85} -4.97639 q^{86} +1.00000 q^{87} +1.94852 q^{88} -10.8368 q^{89} -2.56155 q^{90} -1.83668 q^{91} +1.00000 q^{92} +7.28027 q^{93} +2.25531 q^{94} +5.64173 q^{95} -1.00000 q^{96} +4.74716 q^{97} +3.14524 q^{98} -1.94852 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} - 3 q^{10} + 7 q^{11} + 6 q^{12} + 3 q^{13} - 2 q^{14} + 3 q^{15} + 6 q^{16} + 8 q^{17} - 6 q^{18} - 4 q^{19} + 3 q^{20} + 2 q^{21} - 7 q^{22} + 6 q^{23} - 6 q^{24} - 3 q^{25} - 3 q^{26} + 6 q^{27} + 2 q^{28} + 6 q^{29} - 3 q^{30} + q^{31} - 6 q^{32} + 7 q^{33} - 8 q^{34} + 18 q^{35} + 6 q^{36} + 7 q^{37} + 4 q^{38} + 3 q^{39} - 3 q^{40} + 13 q^{41} - 2 q^{42} + 7 q^{44} + 3 q^{45} - 6 q^{46} + 22 q^{47} + 6 q^{48} + 8 q^{49} + 3 q^{50} + 8 q^{51} + 3 q^{52} + 10 q^{53} - 6 q^{54} - 5 q^{55} - 2 q^{56} - 4 q^{57} - 6 q^{58} + 17 q^{59} + 3 q^{60} + q^{61} - q^{62} + 2 q^{63} + 6 q^{64} - 7 q^{65} - 7 q^{66} + 3 q^{67} + 8 q^{68} + 6 q^{69} - 18 q^{70} + 11 q^{71} - 6 q^{72} - 7 q^{74} - 3 q^{75} - 4 q^{76} - 3 q^{78} + 2 q^{79} + 3 q^{80} + 6 q^{81} - 13 q^{82} + 16 q^{83} + 2 q^{84} + 4 q^{85} + 6 q^{87} - 7 q^{88} + 16 q^{89} - 3 q^{90} - 28 q^{91} + 6 q^{92} + q^{93} - 22 q^{94} + 32 q^{95} - 6 q^{96} + 2 q^{97} - 8 q^{98} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 2.56155 1.14556 0.572781 0.819709i \(-0.305865\pi\)
0.572781 + 0.819709i \(0.305865\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.96335 −0.742078 −0.371039 0.928617i \(-0.620998\pi\)
−0.371039 + 0.928617i \(0.620998\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −2.56155 −0.810034
\(11\) −1.94852 −0.587500 −0.293750 0.955882i \(-0.594903\pi\)
−0.293750 + 0.955882i \(0.594903\pi\)
\(12\) 1.00000 0.288675
\(13\) 0.935479 0.259455 0.129728 0.991550i \(-0.458590\pi\)
0.129728 + 0.991550i \(0.458590\pi\)
\(14\) 1.96335 0.524729
\(15\) 2.56155 0.661390
\(16\) 1.00000 0.250000
\(17\) 2.08949 0.506775 0.253388 0.967365i \(-0.418455\pi\)
0.253388 + 0.967365i \(0.418455\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.20246 0.505280 0.252640 0.967560i \(-0.418701\pi\)
0.252640 + 0.967560i \(0.418701\pi\)
\(20\) 2.56155 0.572781
\(21\) −1.96335 −0.428439
\(22\) 1.94852 0.415425
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) 1.56155 0.312311
\(26\) −0.935479 −0.183462
\(27\) 1.00000 0.192450
\(28\) −1.96335 −0.371039
\(29\) 1.00000 0.185695
\(30\) −2.56155 −0.467673
\(31\) 7.28027 1.30758 0.653788 0.756678i \(-0.273179\pi\)
0.653788 + 0.756678i \(0.273179\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.94852 −0.339193
\(34\) −2.08949 −0.358344
\(35\) −5.02924 −0.850096
\(36\) 1.00000 0.166667
\(37\) −4.14807 −0.681939 −0.340970 0.940074i \(-0.610755\pi\)
−0.340970 + 0.940074i \(0.610755\pi\)
\(38\) −2.20246 −0.357287
\(39\) 0.935479 0.149796
\(40\) −2.56155 −0.405017
\(41\) 5.59024 0.873050 0.436525 0.899692i \(-0.356209\pi\)
0.436525 + 0.899692i \(0.356209\pi\)
\(42\) 1.96335 0.302952
\(43\) 4.97639 0.758893 0.379446 0.925214i \(-0.376114\pi\)
0.379446 + 0.925214i \(0.376114\pi\)
\(44\) −1.94852 −0.293750
\(45\) 2.56155 0.381854
\(46\) −1.00000 −0.147442
\(47\) −2.25531 −0.328970 −0.164485 0.986380i \(-0.552596\pi\)
−0.164485 + 0.986380i \(0.552596\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.14524 −0.449320
\(50\) −1.56155 −0.220837
\(51\) 2.08949 0.292587
\(52\) 0.935479 0.129728
\(53\) 3.28182 0.450793 0.225396 0.974267i \(-0.427632\pi\)
0.225396 + 0.974267i \(0.427632\pi\)
\(54\) −1.00000 −0.136083
\(55\) −4.99123 −0.673017
\(56\) 1.96335 0.262364
\(57\) 2.20246 0.291723
\(58\) −1.00000 −0.131306
\(59\) −1.11938 −0.145731 −0.0728655 0.997342i \(-0.523214\pi\)
−0.0728655 + 0.997342i \(0.523214\pi\)
\(60\) 2.56155 0.330695
\(61\) −8.24006 −1.05503 −0.527516 0.849545i \(-0.676876\pi\)
−0.527516 + 0.849545i \(0.676876\pi\)
\(62\) −7.28027 −0.924596
\(63\) −1.96335 −0.247359
\(64\) 1.00000 0.125000
\(65\) 2.39628 0.297222
\(66\) 1.94852 0.239846
\(67\) 11.4617 1.40028 0.700138 0.714008i \(-0.253122\pi\)
0.700138 + 0.714008i \(0.253122\pi\)
\(68\) 2.08949 0.253388
\(69\) 1.00000 0.120386
\(70\) 5.02924 0.601109
\(71\) 4.07756 0.483917 0.241959 0.970287i \(-0.422210\pi\)
0.241959 + 0.970287i \(0.422210\pi\)
\(72\) −1.00000 −0.117851
\(73\) −6.10569 −0.714616 −0.357308 0.933987i \(-0.616305\pi\)
−0.357308 + 0.933987i \(0.616305\pi\)
\(74\) 4.14807 0.482204
\(75\) 1.56155 0.180313
\(76\) 2.20246 0.252640
\(77\) 3.82563 0.435971
\(78\) −0.935479 −0.105922
\(79\) 13.0226 1.46516 0.732580 0.680680i \(-0.238316\pi\)
0.732580 + 0.680680i \(0.238316\pi\)
\(80\) 2.56155 0.286390
\(81\) 1.00000 0.111111
\(82\) −5.59024 −0.617339
\(83\) 3.03980 0.333662 0.166831 0.985986i \(-0.446647\pi\)
0.166831 + 0.985986i \(0.446647\pi\)
\(84\) −1.96335 −0.214220
\(85\) 5.35234 0.580542
\(86\) −4.97639 −0.536618
\(87\) 1.00000 0.107211
\(88\) 1.94852 0.207713
\(89\) −10.8368 −1.14870 −0.574348 0.818611i \(-0.694744\pi\)
−0.574348 + 0.818611i \(0.694744\pi\)
\(90\) −2.56155 −0.270011
\(91\) −1.83668 −0.192536
\(92\) 1.00000 0.104257
\(93\) 7.28027 0.754929
\(94\) 2.25531 0.232617
\(95\) 5.64173 0.578829
\(96\) −1.00000 −0.102062
\(97\) 4.74716 0.482001 0.241001 0.970525i \(-0.422524\pi\)
0.241001 + 0.970525i \(0.422524\pi\)
\(98\) 3.14524 0.317717
\(99\) −1.94852 −0.195833
\(100\) 1.56155 0.156155
\(101\) 10.1300 1.00797 0.503986 0.863712i \(-0.331866\pi\)
0.503986 + 0.863712i \(0.331866\pi\)
\(102\) −2.08949 −0.206890
\(103\) 3.06961 0.302457 0.151229 0.988499i \(-0.451677\pi\)
0.151229 + 0.988499i \(0.451677\pi\)
\(104\) −0.935479 −0.0917312
\(105\) −5.02924 −0.490803
\(106\) −3.28182 −0.318759
\(107\) 7.38987 0.714406 0.357203 0.934027i \(-0.383730\pi\)
0.357203 + 0.934027i \(0.383730\pi\)
\(108\) 1.00000 0.0962250
\(109\) 7.78988 0.746135 0.373067 0.927804i \(-0.378306\pi\)
0.373067 + 0.927804i \(0.378306\pi\)
\(110\) 4.99123 0.475895
\(111\) −4.14807 −0.393718
\(112\) −1.96335 −0.185520
\(113\) 13.2683 1.24818 0.624090 0.781352i \(-0.285470\pi\)
0.624090 + 0.781352i \(0.285470\pi\)
\(114\) −2.20246 −0.206280
\(115\) 2.56155 0.238866
\(116\) 1.00000 0.0928477
\(117\) 0.935479 0.0864850
\(118\) 1.11938 0.103047
\(119\) −4.10241 −0.376067
\(120\) −2.56155 −0.233837
\(121\) −7.20328 −0.654844
\(122\) 8.24006 0.746020
\(123\) 5.59024 0.504055
\(124\) 7.28027 0.653788
\(125\) −8.80776 −0.787790
\(126\) 1.96335 0.174910
\(127\) 15.3014 1.35778 0.678890 0.734240i \(-0.262461\pi\)
0.678890 + 0.734240i \(0.262461\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 4.97639 0.438147
\(130\) −2.39628 −0.210168
\(131\) −6.76538 −0.591094 −0.295547 0.955328i \(-0.595502\pi\)
−0.295547 + 0.955328i \(0.595502\pi\)
\(132\) −1.94852 −0.169597
\(133\) −4.32422 −0.374957
\(134\) −11.4617 −0.990144
\(135\) 2.56155 0.220463
\(136\) −2.08949 −0.179172
\(137\) 16.4916 1.40898 0.704488 0.709716i \(-0.251177\pi\)
0.704488 + 0.709716i \(0.251177\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 0.405777 0.0344175 0.0172088 0.999852i \(-0.494522\pi\)
0.0172088 + 0.999852i \(0.494522\pi\)
\(140\) −5.02924 −0.425048
\(141\) −2.25531 −0.189931
\(142\) −4.07756 −0.342181
\(143\) −1.82280 −0.152430
\(144\) 1.00000 0.0833333
\(145\) 2.56155 0.212725
\(146\) 6.10569 0.505310
\(147\) −3.14524 −0.259415
\(148\) −4.14807 −0.340970
\(149\) 8.10778 0.664215 0.332108 0.943242i \(-0.392240\pi\)
0.332108 + 0.943242i \(0.392240\pi\)
\(150\) −1.56155 −0.127500
\(151\) 16.3766 1.33271 0.666356 0.745633i \(-0.267853\pi\)
0.666356 + 0.745633i \(0.267853\pi\)
\(152\) −2.20246 −0.178643
\(153\) 2.08949 0.168925
\(154\) −3.82563 −0.308278
\(155\) 18.6488 1.49791
\(156\) 0.935479 0.0748982
\(157\) −21.7649 −1.73703 −0.868516 0.495662i \(-0.834926\pi\)
−0.868516 + 0.495662i \(0.834926\pi\)
\(158\) −13.0226 −1.03603
\(159\) 3.28182 0.260265
\(160\) −2.56155 −0.202509
\(161\) −1.96335 −0.154734
\(162\) −1.00000 −0.0785674
\(163\) 5.52133 0.432464 0.216232 0.976342i \(-0.430623\pi\)
0.216232 + 0.976342i \(0.430623\pi\)
\(164\) 5.59024 0.436525
\(165\) −4.99123 −0.388567
\(166\) −3.03980 −0.235935
\(167\) 11.6501 0.901515 0.450757 0.892647i \(-0.351154\pi\)
0.450757 + 0.892647i \(0.351154\pi\)
\(168\) 1.96335 0.151476
\(169\) −12.1249 −0.932683
\(170\) −5.35234 −0.410505
\(171\) 2.20246 0.168427
\(172\) 4.97639 0.379446
\(173\) 0.521944 0.0396826 0.0198413 0.999803i \(-0.493684\pi\)
0.0198413 + 0.999803i \(0.493684\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −3.06588 −0.231759
\(176\) −1.94852 −0.146875
\(177\) −1.11938 −0.0841378
\(178\) 10.8368 0.812251
\(179\) 20.7278 1.54927 0.774634 0.632409i \(-0.217934\pi\)
0.774634 + 0.632409i \(0.217934\pi\)
\(180\) 2.56155 0.190927
\(181\) −11.6567 −0.866433 −0.433216 0.901290i \(-0.642621\pi\)
−0.433216 + 0.901290i \(0.642621\pi\)
\(182\) 1.83668 0.136144
\(183\) −8.24006 −0.609122
\(184\) −1.00000 −0.0737210
\(185\) −10.6255 −0.781203
\(186\) −7.28027 −0.533816
\(187\) −4.07140 −0.297731
\(188\) −2.25531 −0.164485
\(189\) −1.96335 −0.142813
\(190\) −5.64173 −0.409294
\(191\) −1.16402 −0.0842255 −0.0421128 0.999113i \(-0.513409\pi\)
−0.0421128 + 0.999113i \(0.513409\pi\)
\(192\) 1.00000 0.0721688
\(193\) 7.21731 0.519513 0.259757 0.965674i \(-0.416358\pi\)
0.259757 + 0.965674i \(0.416358\pi\)
\(194\) −4.74716 −0.340826
\(195\) 2.39628 0.171601
\(196\) −3.14524 −0.224660
\(197\) −20.0951 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(198\) 1.94852 0.138475
\(199\) −24.2441 −1.71862 −0.859308 0.511459i \(-0.829105\pi\)
−0.859308 + 0.511459i \(0.829105\pi\)
\(200\) −1.56155 −0.110418
\(201\) 11.4617 0.808449
\(202\) −10.1300 −0.712744
\(203\) −1.96335 −0.137800
\(204\) 2.08949 0.146293
\(205\) 14.3197 1.00013
\(206\) −3.06961 −0.213870
\(207\) 1.00000 0.0695048
\(208\) 0.935479 0.0648638
\(209\) −4.29154 −0.296852
\(210\) 5.02924 0.347050
\(211\) −10.2109 −0.702949 −0.351475 0.936197i \(-0.614320\pi\)
−0.351475 + 0.936197i \(0.614320\pi\)
\(212\) 3.28182 0.225396
\(213\) 4.07756 0.279390
\(214\) −7.38987 −0.505161
\(215\) 12.7473 0.869358
\(216\) −1.00000 −0.0680414
\(217\) −14.2938 −0.970324
\(218\) −7.78988 −0.527597
\(219\) −6.10569 −0.412584
\(220\) −4.99123 −0.336509
\(221\) 1.95467 0.131485
\(222\) 4.14807 0.278400
\(223\) −4.26874 −0.285856 −0.142928 0.989733i \(-0.545652\pi\)
−0.142928 + 0.989733i \(0.545652\pi\)
\(224\) 1.96335 0.131182
\(225\) 1.56155 0.104104
\(226\) −13.2683 −0.882597
\(227\) 10.1317 0.672462 0.336231 0.941779i \(-0.390848\pi\)
0.336231 + 0.941779i \(0.390848\pi\)
\(228\) 2.20246 0.145862
\(229\) −22.5182 −1.48804 −0.744021 0.668156i \(-0.767084\pi\)
−0.744021 + 0.668156i \(0.767084\pi\)
\(230\) −2.56155 −0.168904
\(231\) 3.82563 0.251708
\(232\) −1.00000 −0.0656532
\(233\) −6.71927 −0.440194 −0.220097 0.975478i \(-0.570637\pi\)
−0.220097 + 0.975478i \(0.570637\pi\)
\(234\) −0.935479 −0.0611542
\(235\) −5.77709 −0.376856
\(236\) −1.11938 −0.0728655
\(237\) 13.0226 0.845911
\(238\) 4.10241 0.265920
\(239\) 8.10356 0.524176 0.262088 0.965044i \(-0.415589\pi\)
0.262088 + 0.965044i \(0.415589\pi\)
\(240\) 2.56155 0.165348
\(241\) −21.6758 −1.39626 −0.698129 0.715972i \(-0.745984\pi\)
−0.698129 + 0.715972i \(0.745984\pi\)
\(242\) 7.20328 0.463044
\(243\) 1.00000 0.0641500
\(244\) −8.24006 −0.527516
\(245\) −8.05670 −0.514724
\(246\) −5.59024 −0.356421
\(247\) 2.06036 0.131097
\(248\) −7.28027 −0.462298
\(249\) 3.03980 0.192640
\(250\) 8.80776 0.557052
\(251\) 0.360562 0.0227585 0.0113792 0.999935i \(-0.496378\pi\)
0.0113792 + 0.999935i \(0.496378\pi\)
\(252\) −1.96335 −0.123680
\(253\) −1.94852 −0.122502
\(254\) −15.3014 −0.960095
\(255\) 5.35234 0.335176
\(256\) 1.00000 0.0625000
\(257\) 25.0130 1.56027 0.780135 0.625612i \(-0.215150\pi\)
0.780135 + 0.625612i \(0.215150\pi\)
\(258\) −4.97639 −0.309817
\(259\) 8.14414 0.506052
\(260\) 2.39628 0.148611
\(261\) 1.00000 0.0618984
\(262\) 6.76538 0.417966
\(263\) 1.81901 0.112165 0.0560824 0.998426i \(-0.482139\pi\)
0.0560824 + 0.998426i \(0.482139\pi\)
\(264\) 1.94852 0.119923
\(265\) 8.40656 0.516411
\(266\) 4.32422 0.265135
\(267\) −10.8368 −0.663200
\(268\) 11.4617 0.700138
\(269\) 19.5554 1.19231 0.596156 0.802869i \(-0.296694\pi\)
0.596156 + 0.802869i \(0.296694\pi\)
\(270\) −2.56155 −0.155891
\(271\) 1.71874 0.104406 0.0522031 0.998636i \(-0.483376\pi\)
0.0522031 + 0.998636i \(0.483376\pi\)
\(272\) 2.08949 0.126694
\(273\) −1.83668 −0.111161
\(274\) −16.4916 −0.996296
\(275\) −3.04271 −0.183482
\(276\) 1.00000 0.0601929
\(277\) 9.80904 0.589368 0.294684 0.955595i \(-0.404786\pi\)
0.294684 + 0.955595i \(0.404786\pi\)
\(278\) −0.405777 −0.0243369
\(279\) 7.28027 0.435859
\(280\) 5.02924 0.300554
\(281\) 19.9331 1.18911 0.594555 0.804055i \(-0.297328\pi\)
0.594555 + 0.804055i \(0.297328\pi\)
\(282\) 2.25531 0.134302
\(283\) 1.76647 0.105006 0.0525029 0.998621i \(-0.483280\pi\)
0.0525029 + 0.998621i \(0.483280\pi\)
\(284\) 4.07756 0.241959
\(285\) 5.64173 0.334187
\(286\) 1.82280 0.107784
\(287\) −10.9756 −0.647871
\(288\) −1.00000 −0.0589256
\(289\) −12.6340 −0.743179
\(290\) −2.56155 −0.150420
\(291\) 4.74716 0.278284
\(292\) −6.10569 −0.357308
\(293\) −6.05975 −0.354014 −0.177007 0.984210i \(-0.556642\pi\)
−0.177007 + 0.984210i \(0.556642\pi\)
\(294\) 3.14524 0.183434
\(295\) −2.86735 −0.166944
\(296\) 4.14807 0.241102
\(297\) −1.94852 −0.113064
\(298\) −8.10778 −0.469671
\(299\) 0.935479 0.0541001
\(300\) 1.56155 0.0901563
\(301\) −9.77042 −0.563158
\(302\) −16.3766 −0.942370
\(303\) 10.1300 0.581953
\(304\) 2.20246 0.126320
\(305\) −21.1073 −1.20860
\(306\) −2.08949 −0.119448
\(307\) −5.90674 −0.337116 −0.168558 0.985692i \(-0.553911\pi\)
−0.168558 + 0.985692i \(0.553911\pi\)
\(308\) 3.82563 0.217985
\(309\) 3.06961 0.174624
\(310\) −18.6488 −1.05918
\(311\) 11.2372 0.637205 0.318603 0.947888i \(-0.396786\pi\)
0.318603 + 0.947888i \(0.396786\pi\)
\(312\) −0.935479 −0.0529611
\(313\) −10.5718 −0.597555 −0.298778 0.954323i \(-0.596579\pi\)
−0.298778 + 0.954323i \(0.596579\pi\)
\(314\) 21.7649 1.22827
\(315\) −5.02924 −0.283365
\(316\) 13.0226 0.732580
\(317\) −2.09654 −0.117753 −0.0588766 0.998265i \(-0.518752\pi\)
−0.0588766 + 0.998265i \(0.518752\pi\)
\(318\) −3.28182 −0.184035
\(319\) −1.94852 −0.109096
\(320\) 2.56155 0.143195
\(321\) 7.38987 0.412462
\(322\) 1.96335 0.109413
\(323\) 4.60202 0.256063
\(324\) 1.00000 0.0555556
\(325\) 1.46080 0.0810306
\(326\) −5.52133 −0.305798
\(327\) 7.78988 0.430781
\(328\) −5.59024 −0.308670
\(329\) 4.42797 0.244122
\(330\) 4.99123 0.274758
\(331\) −17.7693 −0.976690 −0.488345 0.872651i \(-0.662399\pi\)
−0.488345 + 0.872651i \(0.662399\pi\)
\(332\) 3.03980 0.166831
\(333\) −4.14807 −0.227313
\(334\) −11.6501 −0.637467
\(335\) 29.3599 1.60410
\(336\) −1.96335 −0.107110
\(337\) 10.1576 0.553319 0.276659 0.960968i \(-0.410773\pi\)
0.276659 + 0.960968i \(0.410773\pi\)
\(338\) 12.1249 0.659506
\(339\) 13.2683 0.720638
\(340\) 5.35234 0.290271
\(341\) −14.1857 −0.768201
\(342\) −2.20246 −0.119096
\(343\) 19.9187 1.07551
\(344\) −4.97639 −0.268309
\(345\) 2.56155 0.137909
\(346\) −0.521944 −0.0280599
\(347\) −12.6032 −0.676574 −0.338287 0.941043i \(-0.609847\pi\)
−0.338287 + 0.941043i \(0.609847\pi\)
\(348\) 1.00000 0.0536056
\(349\) 9.32835 0.499335 0.249668 0.968332i \(-0.419679\pi\)
0.249668 + 0.968332i \(0.419679\pi\)
\(350\) 3.06588 0.163878
\(351\) 0.935479 0.0499322
\(352\) 1.94852 0.103856
\(353\) −22.3402 −1.18905 −0.594524 0.804078i \(-0.702659\pi\)
−0.594524 + 0.804078i \(0.702659\pi\)
\(354\) 1.11938 0.0594944
\(355\) 10.4449 0.554357
\(356\) −10.8368 −0.574348
\(357\) −4.10241 −0.217122
\(358\) −20.7278 −1.09550
\(359\) 4.78176 0.252372 0.126186 0.992007i \(-0.459726\pi\)
0.126186 + 0.992007i \(0.459726\pi\)
\(360\) −2.56155 −0.135006
\(361\) −14.1492 −0.744692
\(362\) 11.6567 0.612661
\(363\) −7.20328 −0.378074
\(364\) −1.83668 −0.0962680
\(365\) −15.6400 −0.818637
\(366\) 8.24006 0.430715
\(367\) 0.504572 0.0263384 0.0131692 0.999913i \(-0.495808\pi\)
0.0131692 + 0.999913i \(0.495808\pi\)
\(368\) 1.00000 0.0521286
\(369\) 5.59024 0.291017
\(370\) 10.6255 0.552394
\(371\) −6.44338 −0.334524
\(372\) 7.28027 0.377465
\(373\) −10.1704 −0.526601 −0.263301 0.964714i \(-0.584811\pi\)
−0.263301 + 0.964714i \(0.584811\pi\)
\(374\) 4.07140 0.210527
\(375\) −8.80776 −0.454831
\(376\) 2.25531 0.116309
\(377\) 0.935479 0.0481796
\(378\) 1.96335 0.100984
\(379\) −9.05632 −0.465192 −0.232596 0.972573i \(-0.574722\pi\)
−0.232596 + 0.972573i \(0.574722\pi\)
\(380\) 5.64173 0.289415
\(381\) 15.3014 0.783914
\(382\) 1.16402 0.0595564
\(383\) 18.6407 0.952496 0.476248 0.879311i \(-0.341996\pi\)
0.476248 + 0.879311i \(0.341996\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 9.79955 0.499431
\(386\) −7.21731 −0.367351
\(387\) 4.97639 0.252964
\(388\) 4.74716 0.241001
\(389\) 30.3872 1.54069 0.770346 0.637626i \(-0.220083\pi\)
0.770346 + 0.637626i \(0.220083\pi\)
\(390\) −2.39628 −0.121340
\(391\) 2.08949 0.105670
\(392\) 3.14524 0.158859
\(393\) −6.76538 −0.341268
\(394\) 20.0951 1.01238
\(395\) 33.3582 1.67843
\(396\) −1.94852 −0.0979167
\(397\) 24.3262 1.22089 0.610447 0.792057i \(-0.290990\pi\)
0.610447 + 0.792057i \(0.290990\pi\)
\(398\) 24.2441 1.21524
\(399\) −4.32422 −0.216482
\(400\) 1.56155 0.0780776
\(401\) −14.1779 −0.708013 −0.354007 0.935243i \(-0.615181\pi\)
−0.354007 + 0.935243i \(0.615181\pi\)
\(402\) −11.4617 −0.571660
\(403\) 6.81054 0.339257
\(404\) 10.1300 0.503986
\(405\) 2.56155 0.127285
\(406\) 1.96335 0.0974396
\(407\) 8.08259 0.400639
\(408\) −2.08949 −0.103445
\(409\) 28.9561 1.43179 0.715894 0.698208i \(-0.246019\pi\)
0.715894 + 0.698208i \(0.246019\pi\)
\(410\) −14.3197 −0.707200
\(411\) 16.4916 0.813473
\(412\) 3.06961 0.151229
\(413\) 2.19774 0.108144
\(414\) −1.00000 −0.0491473
\(415\) 7.78662 0.382230
\(416\) −0.935479 −0.0458656
\(417\) 0.405777 0.0198710
\(418\) 4.29154 0.209906
\(419\) −5.36488 −0.262092 −0.131046 0.991376i \(-0.541834\pi\)
−0.131046 + 0.991376i \(0.541834\pi\)
\(420\) −5.02924 −0.245402
\(421\) −18.6085 −0.906923 −0.453462 0.891276i \(-0.649811\pi\)
−0.453462 + 0.891276i \(0.649811\pi\)
\(422\) 10.2109 0.497060
\(423\) −2.25531 −0.109657
\(424\) −3.28182 −0.159379
\(425\) 3.26285 0.158271
\(426\) −4.07756 −0.197558
\(427\) 16.1782 0.782916
\(428\) 7.38987 0.357203
\(429\) −1.82280 −0.0880054
\(430\) −12.7473 −0.614729
\(431\) 21.0108 1.01205 0.506027 0.862517i \(-0.331113\pi\)
0.506027 + 0.862517i \(0.331113\pi\)
\(432\) 1.00000 0.0481125
\(433\) −40.8723 −1.96420 −0.982099 0.188368i \(-0.939680\pi\)
−0.982099 + 0.188368i \(0.939680\pi\)
\(434\) 14.2938 0.686122
\(435\) 2.56155 0.122817
\(436\) 7.78988 0.373067
\(437\) 2.20246 0.105358
\(438\) 6.10569 0.291741
\(439\) 17.9368 0.856077 0.428039 0.903760i \(-0.359205\pi\)
0.428039 + 0.903760i \(0.359205\pi\)
\(440\) 4.99123 0.237948
\(441\) −3.14524 −0.149773
\(442\) −1.95467 −0.0929743
\(443\) 7.86091 0.373483 0.186742 0.982409i \(-0.440207\pi\)
0.186742 + 0.982409i \(0.440207\pi\)
\(444\) −4.14807 −0.196859
\(445\) −27.7590 −1.31590
\(446\) 4.26874 0.202131
\(447\) 8.10778 0.383485
\(448\) −1.96335 −0.0927598
\(449\) 32.4437 1.53111 0.765556 0.643369i \(-0.222464\pi\)
0.765556 + 0.643369i \(0.222464\pi\)
\(450\) −1.56155 −0.0736123
\(451\) −10.8927 −0.512917
\(452\) 13.2683 0.624090
\(453\) 16.3766 0.769442
\(454\) −10.1317 −0.475503
\(455\) −4.70474 −0.220562
\(456\) −2.20246 −0.103140
\(457\) −9.23644 −0.432062 −0.216031 0.976386i \(-0.569311\pi\)
−0.216031 + 0.976386i \(0.569311\pi\)
\(458\) 22.5182 1.05220
\(459\) 2.08949 0.0975290
\(460\) 2.56155 0.119433
\(461\) −25.5469 −1.18984 −0.594918 0.803787i \(-0.702815\pi\)
−0.594918 + 0.803787i \(0.702815\pi\)
\(462\) −3.82563 −0.177984
\(463\) 11.9448 0.555124 0.277562 0.960708i \(-0.410474\pi\)
0.277562 + 0.960708i \(0.410474\pi\)
\(464\) 1.00000 0.0464238
\(465\) 18.6488 0.864818
\(466\) 6.71927 0.311264
\(467\) 38.6820 1.78999 0.894994 0.446077i \(-0.147179\pi\)
0.894994 + 0.446077i \(0.147179\pi\)
\(468\) 0.935479 0.0432425
\(469\) −22.5035 −1.03911
\(470\) 5.77709 0.266477
\(471\) −21.7649 −1.00288
\(472\) 1.11938 0.0515237
\(473\) −9.69659 −0.445850
\(474\) −13.0226 −0.598149
\(475\) 3.43926 0.157804
\(476\) −4.10241 −0.188033
\(477\) 3.28182 0.150264
\(478\) −8.10356 −0.370648
\(479\) −7.71889 −0.352685 −0.176342 0.984329i \(-0.556427\pi\)
−0.176342 + 0.984329i \(0.556427\pi\)
\(480\) −2.56155 −0.116918
\(481\) −3.88043 −0.176933
\(482\) 21.6758 0.987304
\(483\) −1.96335 −0.0893357
\(484\) −7.20328 −0.327422
\(485\) 12.1601 0.552162
\(486\) −1.00000 −0.0453609
\(487\) −2.02468 −0.0917472 −0.0458736 0.998947i \(-0.514607\pi\)
−0.0458736 + 0.998947i \(0.514607\pi\)
\(488\) 8.24006 0.373010
\(489\) 5.52133 0.249683
\(490\) 8.05670 0.363965
\(491\) −5.05255 −0.228018 −0.114009 0.993480i \(-0.536369\pi\)
−0.114009 + 0.993480i \(0.536369\pi\)
\(492\) 5.59024 0.252028
\(493\) 2.08949 0.0941058
\(494\) −2.06036 −0.0926999
\(495\) −4.99123 −0.224339
\(496\) 7.28027 0.326894
\(497\) −8.00569 −0.359104
\(498\) −3.03980 −0.136217
\(499\) −18.5223 −0.829173 −0.414587 0.910010i \(-0.636074\pi\)
−0.414587 + 0.910010i \(0.636074\pi\)
\(500\) −8.80776 −0.393895
\(501\) 11.6501 0.520490
\(502\) −0.360562 −0.0160927
\(503\) −21.9400 −0.978255 −0.489128 0.872212i \(-0.662685\pi\)
−0.489128 + 0.872212i \(0.662685\pi\)
\(504\) 1.96335 0.0874548
\(505\) 25.9485 1.15469
\(506\) 1.94852 0.0866222
\(507\) −12.1249 −0.538485
\(508\) 15.3014 0.678890
\(509\) 9.15539 0.405806 0.202903 0.979199i \(-0.434962\pi\)
0.202903 + 0.979199i \(0.434962\pi\)
\(510\) −5.35234 −0.237005
\(511\) 11.9876 0.530301
\(512\) −1.00000 −0.0441942
\(513\) 2.20246 0.0972412
\(514\) −25.0130 −1.10328
\(515\) 7.86296 0.346483
\(516\) 4.97639 0.219073
\(517\) 4.39450 0.193270
\(518\) −8.14414 −0.357833
\(519\) 0.521944 0.0229108
\(520\) −2.39628 −0.105084
\(521\) −16.5182 −0.723673 −0.361837 0.932242i \(-0.617850\pi\)
−0.361837 + 0.932242i \(0.617850\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −38.4556 −1.68155 −0.840773 0.541388i \(-0.817899\pi\)
−0.840773 + 0.541388i \(0.817899\pi\)
\(524\) −6.76538 −0.295547
\(525\) −3.06588 −0.133806
\(526\) −1.81901 −0.0793124
\(527\) 15.2121 0.662647
\(528\) −1.94852 −0.0847983
\(529\) 1.00000 0.0434783
\(530\) −8.40656 −0.365158
\(531\) −1.11938 −0.0485770
\(532\) −4.32422 −0.187479
\(533\) 5.22956 0.226517
\(534\) 10.8368 0.468953
\(535\) 18.9295 0.818396
\(536\) −11.4617 −0.495072
\(537\) 20.7278 0.894471
\(538\) −19.5554 −0.843092
\(539\) 6.12855 0.263976
\(540\) 2.56155 0.110232
\(541\) 38.2759 1.64561 0.822805 0.568323i \(-0.192408\pi\)
0.822805 + 0.568323i \(0.192408\pi\)
\(542\) −1.71874 −0.0738264
\(543\) −11.6567 −0.500235
\(544\) −2.08949 −0.0895861
\(545\) 19.9542 0.854743
\(546\) 1.83668 0.0786025
\(547\) 3.90501 0.166966 0.0834831 0.996509i \(-0.473396\pi\)
0.0834831 + 0.996509i \(0.473396\pi\)
\(548\) 16.4916 0.704488
\(549\) −8.24006 −0.351677
\(550\) 3.04271 0.129742
\(551\) 2.20246 0.0938281
\(552\) −1.00000 −0.0425628
\(553\) −25.5680 −1.08726
\(554\) −9.80904 −0.416746
\(555\) −10.6255 −0.451028
\(556\) 0.405777 0.0172088
\(557\) −18.4489 −0.781706 −0.390853 0.920453i \(-0.627820\pi\)
−0.390853 + 0.920453i \(0.627820\pi\)
\(558\) −7.28027 −0.308199
\(559\) 4.65531 0.196899
\(560\) −5.02924 −0.212524
\(561\) −4.07140 −0.171895
\(562\) −19.9331 −0.840828
\(563\) 12.9023 0.543765 0.271883 0.962330i \(-0.412354\pi\)
0.271883 + 0.962330i \(0.412354\pi\)
\(564\) −2.25531 −0.0949656
\(565\) 33.9876 1.42987
\(566\) −1.76647 −0.0742503
\(567\) −1.96335 −0.0824531
\(568\) −4.07756 −0.171091
\(569\) −6.14589 −0.257649 −0.128825 0.991667i \(-0.541120\pi\)
−0.128825 + 0.991667i \(0.541120\pi\)
\(570\) −5.64173 −0.236306
\(571\) −22.7053 −0.950185 −0.475093 0.879936i \(-0.657585\pi\)
−0.475093 + 0.879936i \(0.657585\pi\)
\(572\) −1.82280 −0.0762150
\(573\) −1.16402 −0.0486276
\(574\) 10.9756 0.458114
\(575\) 1.56155 0.0651213
\(576\) 1.00000 0.0416667
\(577\) −13.9189 −0.579453 −0.289727 0.957109i \(-0.593564\pi\)
−0.289727 + 0.957109i \(0.593564\pi\)
\(578\) 12.6340 0.525507
\(579\) 7.21731 0.299941
\(580\) 2.56155 0.106363
\(581\) −5.96821 −0.247603
\(582\) −4.74716 −0.196776
\(583\) −6.39469 −0.264841
\(584\) 6.10569 0.252655
\(585\) 2.39628 0.0990739
\(586\) 6.05975 0.250326
\(587\) −17.9308 −0.740085 −0.370042 0.929015i \(-0.620657\pi\)
−0.370042 + 0.929015i \(0.620657\pi\)
\(588\) −3.14524 −0.129708
\(589\) 16.0345 0.660692
\(590\) 2.86735 0.118047
\(591\) −20.0951 −0.826604
\(592\) −4.14807 −0.170485
\(593\) 16.7395 0.687410 0.343705 0.939078i \(-0.388318\pi\)
0.343705 + 0.939078i \(0.388318\pi\)
\(594\) 1.94852 0.0799486
\(595\) −10.5085 −0.430808
\(596\) 8.10778 0.332108
\(597\) −24.2441 −0.992243
\(598\) −0.935479 −0.0382546
\(599\) −47.6221 −1.94579 −0.972893 0.231255i \(-0.925717\pi\)
−0.972893 + 0.231255i \(0.925717\pi\)
\(600\) −1.56155 −0.0637501
\(601\) 44.2700 1.80581 0.902906 0.429837i \(-0.141429\pi\)
0.902906 + 0.429837i \(0.141429\pi\)
\(602\) 9.77042 0.398213
\(603\) 11.4617 0.466758
\(604\) 16.3766 0.666356
\(605\) −18.4516 −0.750164
\(606\) −10.1300 −0.411503
\(607\) −6.36612 −0.258393 −0.129196 0.991619i \(-0.541240\pi\)
−0.129196 + 0.991619i \(0.541240\pi\)
\(608\) −2.20246 −0.0893217
\(609\) −1.96335 −0.0795591
\(610\) 21.1073 0.854611
\(611\) −2.10979 −0.0853530
\(612\) 2.08949 0.0844626
\(613\) −14.3480 −0.579509 −0.289754 0.957101i \(-0.593574\pi\)
−0.289754 + 0.957101i \(0.593574\pi\)
\(614\) 5.90674 0.238377
\(615\) 14.3197 0.577426
\(616\) −3.82563 −0.154139
\(617\) 19.2302 0.774179 0.387090 0.922042i \(-0.373480\pi\)
0.387090 + 0.922042i \(0.373480\pi\)
\(618\) −3.06961 −0.123478
\(619\) 34.9921 1.40645 0.703226 0.710966i \(-0.251742\pi\)
0.703226 + 0.710966i \(0.251742\pi\)
\(620\) 18.6488 0.748954
\(621\) 1.00000 0.0401286
\(622\) −11.2372 −0.450572
\(623\) 21.2764 0.852423
\(624\) 0.935479 0.0374491
\(625\) −30.3693 −1.21477
\(626\) 10.5718 0.422536
\(627\) −4.29154 −0.171388
\(628\) −21.7649 −0.868516
\(629\) −8.66735 −0.345590
\(630\) 5.02924 0.200370
\(631\) −39.6260 −1.57749 −0.788743 0.614723i \(-0.789268\pi\)
−0.788743 + 0.614723i \(0.789268\pi\)
\(632\) −13.0226 −0.518013
\(633\) −10.2109 −0.405848
\(634\) 2.09654 0.0832640
\(635\) 39.1953 1.55542
\(636\) 3.28182 0.130133
\(637\) −2.94231 −0.116578
\(638\) 1.94852 0.0771425
\(639\) 4.07756 0.161306
\(640\) −2.56155 −0.101254
\(641\) 30.5846 1.20802 0.604010 0.796977i \(-0.293569\pi\)
0.604010 + 0.796977i \(0.293569\pi\)
\(642\) −7.38987 −0.291655
\(643\) −27.8355 −1.09772 −0.548862 0.835913i \(-0.684939\pi\)
−0.548862 + 0.835913i \(0.684939\pi\)
\(644\) −1.96335 −0.0773670
\(645\) 12.7473 0.501924
\(646\) −4.60202 −0.181064
\(647\) −44.7558 −1.75953 −0.879767 0.475405i \(-0.842301\pi\)
−0.879767 + 0.475405i \(0.842301\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 2.18113 0.0856170
\(650\) −1.46080 −0.0572973
\(651\) −14.2938 −0.560217
\(652\) 5.52133 0.216232
\(653\) −30.7452 −1.20315 −0.601576 0.798815i \(-0.705460\pi\)
−0.601576 + 0.798815i \(0.705460\pi\)
\(654\) −7.78988 −0.304608
\(655\) −17.3299 −0.677134
\(656\) 5.59024 0.218262
\(657\) −6.10569 −0.238205
\(658\) −4.42797 −0.172620
\(659\) 35.8380 1.39605 0.698025 0.716073i \(-0.254062\pi\)
0.698025 + 0.716073i \(0.254062\pi\)
\(660\) −4.99123 −0.194283
\(661\) −39.2409 −1.52629 −0.763146 0.646226i \(-0.776347\pi\)
−0.763146 + 0.646226i \(0.776347\pi\)
\(662\) 17.7693 0.690624
\(663\) 1.95467 0.0759132
\(664\) −3.03980 −0.117967
\(665\) −11.0767 −0.429536
\(666\) 4.14807 0.160735
\(667\) 1.00000 0.0387202
\(668\) 11.6501 0.450757
\(669\) −4.26874 −0.165039
\(670\) −29.3599 −1.13427
\(671\) 16.0559 0.619831
\(672\) 1.96335 0.0757380
\(673\) 4.13060 0.159223 0.0796115 0.996826i \(-0.474632\pi\)
0.0796115 + 0.996826i \(0.474632\pi\)
\(674\) −10.1576 −0.391255
\(675\) 1.56155 0.0601042
\(676\) −12.1249 −0.466342
\(677\) 47.3867 1.82122 0.910609 0.413269i \(-0.135613\pi\)
0.910609 + 0.413269i \(0.135613\pi\)
\(678\) −13.2683 −0.509568
\(679\) −9.32036 −0.357683
\(680\) −5.35234 −0.205253
\(681\) 10.1317 0.388246
\(682\) 14.1857 0.543200
\(683\) −18.5528 −0.709903 −0.354951 0.934885i \(-0.615503\pi\)
−0.354951 + 0.934885i \(0.615503\pi\)
\(684\) 2.20246 0.0842133
\(685\) 42.2442 1.61407
\(686\) −19.9187 −0.760500
\(687\) −22.5182 −0.859121
\(688\) 4.97639 0.189723
\(689\) 3.07008 0.116961
\(690\) −2.56155 −0.0975166
\(691\) −14.2501 −0.542101 −0.271050 0.962565i \(-0.587371\pi\)
−0.271050 + 0.962565i \(0.587371\pi\)
\(692\) 0.521944 0.0198413
\(693\) 3.82563 0.145324
\(694\) 12.6032 0.478410
\(695\) 1.03942 0.0394274
\(696\) −1.00000 −0.0379049
\(697\) 11.6808 0.442440
\(698\) −9.32835 −0.353083
\(699\) −6.71927 −0.254146
\(700\) −3.06588 −0.115879
\(701\) −24.6299 −0.930258 −0.465129 0.885243i \(-0.653992\pi\)
−0.465129 + 0.885243i \(0.653992\pi\)
\(702\) −0.935479 −0.0353074
\(703\) −9.13598 −0.344570
\(704\) −1.94852 −0.0734375
\(705\) −5.77709 −0.217578
\(706\) 22.3402 0.840784
\(707\) −19.8888 −0.747994
\(708\) −1.11938 −0.0420689
\(709\) −8.35645 −0.313833 −0.156917 0.987612i \(-0.550155\pi\)
−0.156917 + 0.987612i \(0.550155\pi\)
\(710\) −10.4449 −0.391990
\(711\) 13.0226 0.488387
\(712\) 10.8368 0.406126
\(713\) 7.28027 0.272648
\(714\) 4.10241 0.153529
\(715\) −4.66919 −0.174618
\(716\) 20.7278 0.774634
\(717\) 8.10356 0.302633
\(718\) −4.78176 −0.178454
\(719\) −26.0469 −0.971384 −0.485692 0.874130i \(-0.661432\pi\)
−0.485692 + 0.874130i \(0.661432\pi\)
\(720\) 2.56155 0.0954634
\(721\) −6.02672 −0.224447
\(722\) 14.1492 0.526577
\(723\) −21.6758 −0.806130
\(724\) −11.6567 −0.433216
\(725\) 1.56155 0.0579946
\(726\) 7.20328 0.267339
\(727\) 35.1716 1.30444 0.652221 0.758029i \(-0.273838\pi\)
0.652221 + 0.758029i \(0.273838\pi\)
\(728\) 1.83668 0.0680718
\(729\) 1.00000 0.0370370
\(730\) 15.6400 0.578864
\(731\) 10.3981 0.384588
\(732\) −8.24006 −0.304561
\(733\) 11.2599 0.415894 0.207947 0.978140i \(-0.433322\pi\)
0.207947 + 0.978140i \(0.433322\pi\)
\(734\) −0.504572 −0.0186241
\(735\) −8.05670 −0.297176
\(736\) −1.00000 −0.0368605
\(737\) −22.3334 −0.822662
\(738\) −5.59024 −0.205780
\(739\) 5.07821 0.186805 0.0934025 0.995628i \(-0.470226\pi\)
0.0934025 + 0.995628i \(0.470226\pi\)
\(740\) −10.6255 −0.390601
\(741\) 2.06036 0.0756892
\(742\) 6.44338 0.236544
\(743\) −16.7652 −0.615054 −0.307527 0.951539i \(-0.599502\pi\)
−0.307527 + 0.951539i \(0.599502\pi\)
\(744\) −7.28027 −0.266908
\(745\) 20.7685 0.760899
\(746\) 10.1704 0.372363
\(747\) 3.03980 0.111221
\(748\) −4.07140 −0.148865
\(749\) −14.5089 −0.530145
\(750\) 8.80776 0.321614
\(751\) −34.8620 −1.27213 −0.636067 0.771634i \(-0.719440\pi\)
−0.636067 + 0.771634i \(0.719440\pi\)
\(752\) −2.25531 −0.0822426
\(753\) 0.360562 0.0131396
\(754\) −0.935479 −0.0340681
\(755\) 41.9496 1.52670
\(756\) −1.96335 −0.0714065
\(757\) 14.3867 0.522894 0.261447 0.965218i \(-0.415800\pi\)
0.261447 + 0.965218i \(0.415800\pi\)
\(758\) 9.05632 0.328940
\(759\) −1.94852 −0.0707267
\(760\) −5.64173 −0.204647
\(761\) −10.9546 −0.397105 −0.198552 0.980090i \(-0.563624\pi\)
−0.198552 + 0.980090i \(0.563624\pi\)
\(762\) −15.3014 −0.554311
\(763\) −15.2943 −0.553690
\(764\) −1.16402 −0.0421128
\(765\) 5.35234 0.193514
\(766\) −18.6407 −0.673516
\(767\) −1.04716 −0.0378107
\(768\) 1.00000 0.0360844
\(769\) 2.02142 0.0728944 0.0364472 0.999336i \(-0.488396\pi\)
0.0364472 + 0.999336i \(0.488396\pi\)
\(770\) −9.79955 −0.353151
\(771\) 25.0130 0.900822
\(772\) 7.21731 0.259757
\(773\) 41.0480 1.47639 0.738197 0.674585i \(-0.235677\pi\)
0.738197 + 0.674585i \(0.235677\pi\)
\(774\) −4.97639 −0.178873
\(775\) 11.3685 0.408370
\(776\) −4.74716 −0.170413
\(777\) 8.14414 0.292169
\(778\) −30.3872 −1.08943
\(779\) 12.3123 0.441134
\(780\) 2.39628 0.0858005
\(781\) −7.94520 −0.284301
\(782\) −2.08949 −0.0747200
\(783\) 1.00000 0.0357371
\(784\) −3.14524 −0.112330
\(785\) −55.7520 −1.98988
\(786\) 6.76538 0.241313
\(787\) 22.0159 0.784782 0.392391 0.919798i \(-0.371648\pi\)
0.392391 + 0.919798i \(0.371648\pi\)
\(788\) −20.0951 −0.715860
\(789\) 1.81901 0.0647583
\(790\) −33.3582 −1.18683
\(791\) −26.0505 −0.926248
\(792\) 1.94852 0.0692375
\(793\) −7.70840 −0.273733
\(794\) −24.3262 −0.863303
\(795\) 8.40656 0.298150
\(796\) −24.2441 −0.859308
\(797\) −9.36600 −0.331761 −0.165880 0.986146i \(-0.553047\pi\)
−0.165880 + 0.986146i \(0.553047\pi\)
\(798\) 4.32422 0.153076
\(799\) −4.71244 −0.166714
\(800\) −1.56155 −0.0552092
\(801\) −10.8368 −0.382899
\(802\) 14.1779 0.500641
\(803\) 11.8970 0.419837
\(804\) 11.4617 0.404225
\(805\) −5.02924 −0.177257
\(806\) −6.81054 −0.239891
\(807\) 19.5554 0.688382
\(808\) −10.1300 −0.356372
\(809\) −33.5737 −1.18039 −0.590195 0.807261i \(-0.700949\pi\)
−0.590195 + 0.807261i \(0.700949\pi\)
\(810\) −2.56155 −0.0900038
\(811\) −38.8824 −1.36535 −0.682674 0.730723i \(-0.739183\pi\)
−0.682674 + 0.730723i \(0.739183\pi\)
\(812\) −1.96335 −0.0689002
\(813\) 1.71874 0.0602790
\(814\) −8.08259 −0.283295
\(815\) 14.1432 0.495414
\(816\) 2.08949 0.0731467
\(817\) 10.9603 0.383453
\(818\) −28.9561 −1.01243
\(819\) −1.83668 −0.0641787
\(820\) 14.3197 0.500066
\(821\) −14.1391 −0.493458 −0.246729 0.969085i \(-0.579356\pi\)
−0.246729 + 0.969085i \(0.579356\pi\)
\(822\) −16.4916 −0.575212
\(823\) −33.2984 −1.16071 −0.580354 0.814364i \(-0.697086\pi\)
−0.580354 + 0.814364i \(0.697086\pi\)
\(824\) −3.06961 −0.106935
\(825\) −3.04271 −0.105934
\(826\) −2.19774 −0.0764692
\(827\) −19.1134 −0.664636 −0.332318 0.943167i \(-0.607831\pi\)
−0.332318 + 0.943167i \(0.607831\pi\)
\(828\) 1.00000 0.0347524
\(829\) −22.6211 −0.785665 −0.392832 0.919610i \(-0.628505\pi\)
−0.392832 + 0.919610i \(0.628505\pi\)
\(830\) −7.78662 −0.270278
\(831\) 9.80904 0.340272
\(832\) 0.935479 0.0324319
\(833\) −6.57194 −0.227704
\(834\) −0.405777 −0.0140509
\(835\) 29.8424 1.03274
\(836\) −4.29154 −0.148426
\(837\) 7.28027 0.251643
\(838\) 5.36488 0.185327
\(839\) −29.2218 −1.00885 −0.504425 0.863456i \(-0.668295\pi\)
−0.504425 + 0.863456i \(0.668295\pi\)
\(840\) 5.02924 0.173525
\(841\) 1.00000 0.0344828
\(842\) 18.6085 0.641292
\(843\) 19.9331 0.686533
\(844\) −10.2109 −0.351475
\(845\) −31.0585 −1.06845
\(846\) 2.25531 0.0775390
\(847\) 14.1426 0.485945
\(848\) 3.28182 0.112698
\(849\) 1.76647 0.0606252
\(850\) −3.26285 −0.111915
\(851\) −4.14807 −0.142194
\(852\) 4.07756 0.139695
\(853\) −0.717118 −0.0245536 −0.0122768 0.999925i \(-0.503908\pi\)
−0.0122768 + 0.999925i \(0.503908\pi\)
\(854\) −16.1782 −0.553605
\(855\) 5.64173 0.192943
\(856\) −7.38987 −0.252581
\(857\) −20.3929 −0.696608 −0.348304 0.937382i \(-0.613242\pi\)
−0.348304 + 0.937382i \(0.613242\pi\)
\(858\) 1.82280 0.0622292
\(859\) 9.83161 0.335450 0.167725 0.985834i \(-0.446358\pi\)
0.167725 + 0.985834i \(0.446358\pi\)
\(860\) 12.7473 0.434679
\(861\) −10.9756 −0.374049
\(862\) −21.0108 −0.715631
\(863\) −11.5292 −0.392460 −0.196230 0.980558i \(-0.562870\pi\)
−0.196230 + 0.980558i \(0.562870\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 1.33699 0.0454589
\(866\) 40.8723 1.38890
\(867\) −12.6340 −0.429074
\(868\) −14.2938 −0.485162
\(869\) −25.3748 −0.860782
\(870\) −2.56155 −0.0868448
\(871\) 10.7222 0.363309
\(872\) −7.78988 −0.263798
\(873\) 4.74716 0.160667
\(874\) −2.20246 −0.0744995
\(875\) 17.2928 0.584602
\(876\) −6.10569 −0.206292
\(877\) 47.0392 1.58840 0.794201 0.607656i \(-0.207890\pi\)
0.794201 + 0.607656i \(0.207890\pi\)
\(878\) −17.9368 −0.605338
\(879\) −6.05975 −0.204390
\(880\) −4.99123 −0.168254
\(881\) −23.8871 −0.804778 −0.402389 0.915469i \(-0.631820\pi\)
−0.402389 + 0.915469i \(0.631820\pi\)
\(882\) 3.14524 0.105906
\(883\) −2.05088 −0.0690177 −0.0345089 0.999404i \(-0.510987\pi\)
−0.0345089 + 0.999404i \(0.510987\pi\)
\(884\) 1.95467 0.0657427
\(885\) −2.86735 −0.0963850
\(886\) −7.86091 −0.264092
\(887\) −1.22524 −0.0411397 −0.0205698 0.999788i \(-0.506548\pi\)
−0.0205698 + 0.999788i \(0.506548\pi\)
\(888\) 4.14807 0.139200
\(889\) −30.0421 −1.00758
\(890\) 27.7590 0.930483
\(891\) −1.94852 −0.0652778
\(892\) −4.26874 −0.142928
\(893\) −4.96723 −0.166222
\(894\) −8.10778 −0.271165
\(895\) 53.0954 1.77478
\(896\) 1.96335 0.0655911
\(897\) 0.935479 0.0312347
\(898\) −32.4437 −1.08266
\(899\) 7.28027 0.242811
\(900\) 1.56155 0.0520518
\(901\) 6.85733 0.228451
\(902\) 10.8927 0.362687
\(903\) −9.77042 −0.325139
\(904\) −13.2683 −0.441299
\(905\) −29.8592 −0.992552
\(906\) −16.3766 −0.544078
\(907\) 43.7019 1.45110 0.725549 0.688171i \(-0.241586\pi\)
0.725549 + 0.688171i \(0.241586\pi\)
\(908\) 10.1317 0.336231
\(909\) 10.1300 0.335991
\(910\) 4.70474 0.155961
\(911\) −26.0065 −0.861634 −0.430817 0.902439i \(-0.641775\pi\)
−0.430817 + 0.902439i \(0.641775\pi\)
\(912\) 2.20246 0.0729309
\(913\) −5.92311 −0.196026
\(914\) 9.23644 0.305514
\(915\) −21.1073 −0.697787
\(916\) −22.5182 −0.744021
\(917\) 13.2828 0.438638
\(918\) −2.08949 −0.0689634
\(919\) −44.1297 −1.45571 −0.727853 0.685734i \(-0.759482\pi\)
−0.727853 + 0.685734i \(0.759482\pi\)
\(920\) −2.56155 −0.0844519
\(921\) −5.90674 −0.194634
\(922\) 25.5469 0.841341
\(923\) 3.81447 0.125555
\(924\) 3.82563 0.125854
\(925\) −6.47744 −0.212977
\(926\) −11.9448 −0.392532
\(927\) 3.06961 0.100819
\(928\) −1.00000 −0.0328266
\(929\) 24.7176 0.810957 0.405478 0.914105i \(-0.367105\pi\)
0.405478 + 0.914105i \(0.367105\pi\)
\(930\) −18.6488 −0.611518
\(931\) −6.92728 −0.227032
\(932\) −6.71927 −0.220097
\(933\) 11.2372 0.367891
\(934\) −38.6820 −1.26571
\(935\) −10.4291 −0.341069
\(936\) −0.935479 −0.0305771
\(937\) −28.3431 −0.925929 −0.462965 0.886377i \(-0.653214\pi\)
−0.462965 + 0.886377i \(0.653214\pi\)
\(938\) 22.5035 0.734764
\(939\) −10.5718 −0.344999
\(940\) −5.77709 −0.188428
\(941\) −7.58661 −0.247316 −0.123658 0.992325i \(-0.539463\pi\)
−0.123658 + 0.992325i \(0.539463\pi\)
\(942\) 21.7649 0.709140
\(943\) 5.59024 0.182043
\(944\) −1.11938 −0.0364327
\(945\) −5.02924 −0.163601
\(946\) 9.69659 0.315263
\(947\) −58.4041 −1.89788 −0.948939 0.315459i \(-0.897841\pi\)
−0.948939 + 0.315459i \(0.897841\pi\)
\(948\) 13.0226 0.422956
\(949\) −5.71174 −0.185411
\(950\) −3.43926 −0.111584
\(951\) −2.09654 −0.0679848
\(952\) 4.10241 0.132960
\(953\) 14.1596 0.458674 0.229337 0.973347i \(-0.426344\pi\)
0.229337 + 0.973347i \(0.426344\pi\)
\(954\) −3.28182 −0.106253
\(955\) −2.98170 −0.0964855
\(956\) 8.10356 0.262088
\(957\) −1.94852 −0.0629866
\(958\) 7.71889 0.249386
\(959\) −32.3789 −1.04557
\(960\) 2.56155 0.0826738
\(961\) 22.0024 0.709755
\(962\) 3.88043 0.125110
\(963\) 7.38987 0.238135
\(964\) −21.6758 −0.698129
\(965\) 18.4875 0.595134
\(966\) 1.96335 0.0631699
\(967\) 2.99758 0.0963958 0.0481979 0.998838i \(-0.484652\pi\)
0.0481979 + 0.998838i \(0.484652\pi\)
\(968\) 7.20328 0.231522
\(969\) 4.60202 0.147838
\(970\) −12.1601 −0.390438
\(971\) 11.5402 0.370342 0.185171 0.982706i \(-0.440716\pi\)
0.185171 + 0.982706i \(0.440716\pi\)
\(972\) 1.00000 0.0320750
\(973\) −0.796684 −0.0255405
\(974\) 2.02468 0.0648751
\(975\) 1.46080 0.0467830
\(976\) −8.24006 −0.263758
\(977\) −36.2200 −1.15878 −0.579390 0.815051i \(-0.696709\pi\)
−0.579390 + 0.815051i \(0.696709\pi\)
\(978\) −5.52133 −0.176553
\(979\) 21.1157 0.674859
\(980\) −8.05670 −0.257362
\(981\) 7.78988 0.248712
\(982\) 5.05255 0.161233
\(983\) −20.5304 −0.654817 −0.327409 0.944883i \(-0.606175\pi\)
−0.327409 + 0.944883i \(0.606175\pi\)
\(984\) −5.59024 −0.178210
\(985\) −51.4748 −1.64012
\(986\) −2.08949 −0.0665429
\(987\) 4.42797 0.140944
\(988\) 2.06036 0.0655487
\(989\) 4.97639 0.158240
\(990\) 4.99123 0.158632
\(991\) 19.1727 0.609041 0.304521 0.952506i \(-0.401504\pi\)
0.304521 + 0.952506i \(0.401504\pi\)
\(992\) −7.28027 −0.231149
\(993\) −17.7693 −0.563892
\(994\) 8.00569 0.253925
\(995\) −62.1024 −1.96878
\(996\) 3.03980 0.0963199
\(997\) 38.4443 1.21754 0.608771 0.793346i \(-0.291663\pi\)
0.608771 + 0.793346i \(0.291663\pi\)
\(998\) 18.5223 0.586314
\(999\) −4.14807 −0.131239
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bf.1.4 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bf.1.4 6 1.1 even 1 trivial