Properties

Label 4002.2.a.bf.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.61157024.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 8x^{3} + 17x^{2} - 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.430873\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.56155 q^{5} -1.00000 q^{6} +1.95260 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.56155 q^{5} -1.00000 q^{6} +1.95260 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.56155 q^{10} -1.08018 q^{11} +1.00000 q^{12} -0.218439 q^{13} -1.95260 q^{14} -1.56155 q^{15} +1.00000 q^{16} +7.65567 q^{17} -1.00000 q^{18} -7.93745 q^{19} -1.56155 q^{20} +1.95260 q^{21} +1.08018 q^{22} +1.00000 q^{23} -1.00000 q^{24} -2.56155 q^{25} +0.218439 q^{26} +1.00000 q^{27} +1.95260 q^{28} +1.00000 q^{29} +1.56155 q^{30} +3.20285 q^{31} -1.00000 q^{32} -1.08018 q^{33} -7.65567 q^{34} -3.04909 q^{35} +1.00000 q^{36} -0.314128 q^{37} +7.93745 q^{38} -0.218439 q^{39} +1.56155 q^{40} +11.4749 q^{41} -1.95260 q^{42} +1.34602 q^{43} -1.08018 q^{44} -1.56155 q^{45} -1.00000 q^{46} +6.23438 q^{47} +1.00000 q^{48} -3.18735 q^{49} +2.56155 q^{50} +7.65567 q^{51} -0.218439 q^{52} -8.75180 q^{53} -1.00000 q^{54} +1.68677 q^{55} -1.95260 q^{56} -7.93745 q^{57} -1.00000 q^{58} +12.7224 q^{59} -1.56155 q^{60} +5.49373 q^{61} -3.20285 q^{62} +1.95260 q^{63} +1.00000 q^{64} +0.341103 q^{65} +1.08018 q^{66} +3.05066 q^{67} +7.65567 q^{68} +1.00000 q^{69} +3.04909 q^{70} +5.51706 q^{71} -1.00000 q^{72} -9.40614 q^{73} +0.314128 q^{74} -2.56155 q^{75} -7.93745 q^{76} -2.10917 q^{77} +0.218439 q^{78} -12.4263 q^{79} -1.56155 q^{80} +1.00000 q^{81} -11.4749 q^{82} +4.40445 q^{83} +1.95260 q^{84} -11.9547 q^{85} -1.34602 q^{86} +1.00000 q^{87} +1.08018 q^{88} -1.55379 q^{89} +1.56155 q^{90} -0.426524 q^{91} +1.00000 q^{92} +3.20285 q^{93} -6.23438 q^{94} +12.3948 q^{95} -1.00000 q^{96} +10.1777 q^{97} +3.18735 q^{98} -1.08018 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} - 3 q^{10} + 7 q^{11} + 6 q^{12} + 3 q^{13} - 2 q^{14} + 3 q^{15} + 6 q^{16} + 8 q^{17} - 6 q^{18} - 4 q^{19} + 3 q^{20} + 2 q^{21} - 7 q^{22} + 6 q^{23} - 6 q^{24} - 3 q^{25} - 3 q^{26} + 6 q^{27} + 2 q^{28} + 6 q^{29} - 3 q^{30} + q^{31} - 6 q^{32} + 7 q^{33} - 8 q^{34} + 18 q^{35} + 6 q^{36} + 7 q^{37} + 4 q^{38} + 3 q^{39} - 3 q^{40} + 13 q^{41} - 2 q^{42} + 7 q^{44} + 3 q^{45} - 6 q^{46} + 22 q^{47} + 6 q^{48} + 8 q^{49} + 3 q^{50} + 8 q^{51} + 3 q^{52} + 10 q^{53} - 6 q^{54} - 5 q^{55} - 2 q^{56} - 4 q^{57} - 6 q^{58} + 17 q^{59} + 3 q^{60} + q^{61} - q^{62} + 2 q^{63} + 6 q^{64} - 7 q^{65} - 7 q^{66} + 3 q^{67} + 8 q^{68} + 6 q^{69} - 18 q^{70} + 11 q^{71} - 6 q^{72} - 7 q^{74} - 3 q^{75} - 4 q^{76} - 3 q^{78} + 2 q^{79} + 3 q^{80} + 6 q^{81} - 13 q^{82} + 16 q^{83} + 2 q^{84} + 4 q^{85} + 6 q^{87} - 7 q^{88} + 16 q^{89} - 3 q^{90} - 28 q^{91} + 6 q^{92} + q^{93} - 22 q^{94} + 32 q^{95} - 6 q^{96} + 2 q^{97} - 8 q^{98} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −1.56155 −0.698348 −0.349174 0.937058i \(-0.613538\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(6\) −1.00000 −0.408248
\(7\) 1.95260 0.738014 0.369007 0.929427i \(-0.379698\pi\)
0.369007 + 0.929427i \(0.379698\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.56155 0.493806
\(11\) −1.08018 −0.325688 −0.162844 0.986652i \(-0.552067\pi\)
−0.162844 + 0.986652i \(0.552067\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.218439 −0.0605840 −0.0302920 0.999541i \(-0.509644\pi\)
−0.0302920 + 0.999541i \(0.509644\pi\)
\(14\) −1.95260 −0.521855
\(15\) −1.56155 −0.403191
\(16\) 1.00000 0.250000
\(17\) 7.65567 1.85677 0.928387 0.371616i \(-0.121196\pi\)
0.928387 + 0.371616i \(0.121196\pi\)
\(18\) −1.00000 −0.235702
\(19\) −7.93745 −1.82098 −0.910488 0.413535i \(-0.864294\pi\)
−0.910488 + 0.413535i \(0.864294\pi\)
\(20\) −1.56155 −0.349174
\(21\) 1.95260 0.426093
\(22\) 1.08018 0.230296
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −2.56155 −0.512311
\(26\) 0.218439 0.0428393
\(27\) 1.00000 0.192450
\(28\) 1.95260 0.369007
\(29\) 1.00000 0.185695
\(30\) 1.56155 0.285099
\(31\) 3.20285 0.575249 0.287624 0.957743i \(-0.407135\pi\)
0.287624 + 0.957743i \(0.407135\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.08018 −0.188036
\(34\) −7.65567 −1.31294
\(35\) −3.04909 −0.515390
\(36\) 1.00000 0.166667
\(37\) −0.314128 −0.0516423 −0.0258212 0.999667i \(-0.508220\pi\)
−0.0258212 + 0.999667i \(0.508220\pi\)
\(38\) 7.93745 1.28763
\(39\) −0.218439 −0.0349782
\(40\) 1.56155 0.246903
\(41\) 11.4749 1.79208 0.896042 0.443969i \(-0.146430\pi\)
0.896042 + 0.443969i \(0.146430\pi\)
\(42\) −1.95260 −0.301293
\(43\) 1.34602 0.205266 0.102633 0.994719i \(-0.467273\pi\)
0.102633 + 0.994719i \(0.467273\pi\)
\(44\) −1.08018 −0.162844
\(45\) −1.56155 −0.232783
\(46\) −1.00000 −0.147442
\(47\) 6.23438 0.909378 0.454689 0.890650i \(-0.349750\pi\)
0.454689 + 0.890650i \(0.349750\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.18735 −0.455335
\(50\) 2.56155 0.362258
\(51\) 7.65567 1.07201
\(52\) −0.218439 −0.0302920
\(53\) −8.75180 −1.20215 −0.601076 0.799192i \(-0.705261\pi\)
−0.601076 + 0.799192i \(0.705261\pi\)
\(54\) −1.00000 −0.136083
\(55\) 1.68677 0.227443
\(56\) −1.95260 −0.260927
\(57\) −7.93745 −1.05134
\(58\) −1.00000 −0.131306
\(59\) 12.7224 1.65631 0.828155 0.560499i \(-0.189391\pi\)
0.828155 + 0.560499i \(0.189391\pi\)
\(60\) −1.56155 −0.201596
\(61\) 5.49373 0.703400 0.351700 0.936113i \(-0.385604\pi\)
0.351700 + 0.936113i \(0.385604\pi\)
\(62\) −3.20285 −0.406762
\(63\) 1.95260 0.246005
\(64\) 1.00000 0.125000
\(65\) 0.341103 0.0423087
\(66\) 1.08018 0.132962
\(67\) 3.05066 0.372698 0.186349 0.982484i \(-0.440335\pi\)
0.186349 + 0.982484i \(0.440335\pi\)
\(68\) 7.65567 0.928387
\(69\) 1.00000 0.120386
\(70\) 3.04909 0.364436
\(71\) 5.51706 0.654755 0.327377 0.944894i \(-0.393835\pi\)
0.327377 + 0.944894i \(0.393835\pi\)
\(72\) −1.00000 −0.117851
\(73\) −9.40614 −1.10091 −0.550453 0.834866i \(-0.685545\pi\)
−0.550453 + 0.834866i \(0.685545\pi\)
\(74\) 0.314128 0.0365166
\(75\) −2.56155 −0.295783
\(76\) −7.93745 −0.910488
\(77\) −2.10917 −0.240362
\(78\) 0.218439 0.0247333
\(79\) −12.4263 −1.39806 −0.699032 0.715090i \(-0.746386\pi\)
−0.699032 + 0.715090i \(0.746386\pi\)
\(80\) −1.56155 −0.174587
\(81\) 1.00000 0.111111
\(82\) −11.4749 −1.26719
\(83\) 4.40445 0.483451 0.241725 0.970345i \(-0.422287\pi\)
0.241725 + 0.970345i \(0.422287\pi\)
\(84\) 1.95260 0.213046
\(85\) −11.9547 −1.29667
\(86\) −1.34602 −0.145145
\(87\) 1.00000 0.107211
\(88\) 1.08018 0.115148
\(89\) −1.55379 −0.164701 −0.0823506 0.996603i \(-0.526243\pi\)
−0.0823506 + 0.996603i \(0.526243\pi\)
\(90\) 1.56155 0.164602
\(91\) −0.426524 −0.0447118
\(92\) 1.00000 0.104257
\(93\) 3.20285 0.332120
\(94\) −6.23438 −0.643028
\(95\) 12.3948 1.27167
\(96\) −1.00000 −0.102062
\(97\) 10.1777 1.03338 0.516692 0.856171i \(-0.327163\pi\)
0.516692 + 0.856171i \(0.327163\pi\)
\(98\) 3.18735 0.321970
\(99\) −1.08018 −0.108563
\(100\) −2.56155 −0.256155
\(101\) 4.92800 0.490354 0.245177 0.969478i \(-0.421154\pi\)
0.245177 + 0.969478i \(0.421154\pi\)
\(102\) −7.65567 −0.758024
\(103\) 10.6010 1.04454 0.522271 0.852779i \(-0.325085\pi\)
0.522271 + 0.852779i \(0.325085\pi\)
\(104\) 0.218439 0.0214197
\(105\) −3.04909 −0.297561
\(106\) 8.75180 0.850050
\(107\) 3.47034 0.335490 0.167745 0.985830i \(-0.446351\pi\)
0.167745 + 0.985830i \(0.446351\pi\)
\(108\) 1.00000 0.0962250
\(109\) 7.41070 0.709816 0.354908 0.934901i \(-0.384512\pi\)
0.354908 + 0.934901i \(0.384512\pi\)
\(110\) −1.68677 −0.160827
\(111\) −0.314128 −0.0298157
\(112\) 1.95260 0.184504
\(113\) 5.06424 0.476404 0.238202 0.971216i \(-0.423442\pi\)
0.238202 + 0.971216i \(0.423442\pi\)
\(114\) 7.93745 0.743411
\(115\) −1.56155 −0.145616
\(116\) 1.00000 0.0928477
\(117\) −0.218439 −0.0201947
\(118\) −12.7224 −1.17119
\(119\) 14.9485 1.37033
\(120\) 1.56155 0.142550
\(121\) −9.83320 −0.893927
\(122\) −5.49373 −0.497379
\(123\) 11.4749 1.03466
\(124\) 3.20285 0.287624
\(125\) 11.8078 1.05612
\(126\) −1.95260 −0.173952
\(127\) −14.8620 −1.31878 −0.659392 0.751799i \(-0.729186\pi\)
−0.659392 + 0.751799i \(0.729186\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.34602 0.118511
\(130\) −0.341103 −0.0299167
\(131\) 6.71575 0.586758 0.293379 0.955996i \(-0.405220\pi\)
0.293379 + 0.955996i \(0.405220\pi\)
\(132\) −1.08018 −0.0940180
\(133\) −15.4987 −1.34391
\(134\) −3.05066 −0.263537
\(135\) −1.56155 −0.134397
\(136\) −7.65567 −0.656468
\(137\) −11.3274 −0.967763 −0.483881 0.875134i \(-0.660773\pi\)
−0.483881 + 0.875134i \(0.660773\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 10.8315 0.918712 0.459356 0.888252i \(-0.348080\pi\)
0.459356 + 0.888252i \(0.348080\pi\)
\(140\) −3.04909 −0.257695
\(141\) 6.23438 0.525030
\(142\) −5.51706 −0.462982
\(143\) 0.235954 0.0197315
\(144\) 1.00000 0.0833333
\(145\) −1.56155 −0.129680
\(146\) 9.40614 0.778458
\(147\) −3.18735 −0.262888
\(148\) −0.314128 −0.0258212
\(149\) −8.53591 −0.699289 −0.349645 0.936882i \(-0.613698\pi\)
−0.349645 + 0.936882i \(0.613698\pi\)
\(150\) 2.56155 0.209150
\(151\) 20.9096 1.70160 0.850801 0.525489i \(-0.176118\pi\)
0.850801 + 0.525489i \(0.176118\pi\)
\(152\) 7.93745 0.643813
\(153\) 7.65567 0.618924
\(154\) 2.10917 0.169962
\(155\) −5.00142 −0.401724
\(156\) −0.218439 −0.0174891
\(157\) −12.3989 −0.989541 −0.494770 0.869024i \(-0.664748\pi\)
−0.494770 + 0.869024i \(0.664748\pi\)
\(158\) 12.4263 0.988581
\(159\) −8.75180 −0.694063
\(160\) 1.56155 0.123452
\(161\) 1.95260 0.153887
\(162\) −1.00000 −0.0785674
\(163\) −8.25813 −0.646827 −0.323414 0.946258i \(-0.604830\pi\)
−0.323414 + 0.946258i \(0.604830\pi\)
\(164\) 11.4749 0.896042
\(165\) 1.68677 0.131315
\(166\) −4.40445 −0.341851
\(167\) −6.64361 −0.514098 −0.257049 0.966398i \(-0.582750\pi\)
−0.257049 + 0.966398i \(0.582750\pi\)
\(168\) −1.95260 −0.150647
\(169\) −12.9523 −0.996330
\(170\) 11.9547 0.916886
\(171\) −7.93745 −0.606992
\(172\) 1.34602 0.102633
\(173\) 16.6386 1.26501 0.632505 0.774557i \(-0.282027\pi\)
0.632505 + 0.774557i \(0.282027\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −5.00169 −0.378092
\(176\) −1.08018 −0.0814220
\(177\) 12.7224 0.956271
\(178\) 1.55379 0.116461
\(179\) −3.99928 −0.298920 −0.149460 0.988768i \(-0.547754\pi\)
−0.149460 + 0.988768i \(0.547754\pi\)
\(180\) −1.56155 −0.116391
\(181\) 22.8533 1.69867 0.849335 0.527854i \(-0.177003\pi\)
0.849335 + 0.527854i \(0.177003\pi\)
\(182\) 0.426524 0.0316160
\(183\) 5.49373 0.406108
\(184\) −1.00000 −0.0737210
\(185\) 0.490527 0.0360643
\(186\) −3.20285 −0.234844
\(187\) −8.26954 −0.604729
\(188\) 6.23438 0.454689
\(189\) 1.95260 0.142031
\(190\) −12.3948 −0.899210
\(191\) 9.55865 0.691639 0.345820 0.938301i \(-0.387601\pi\)
0.345820 + 0.938301i \(0.387601\pi\)
\(192\) 1.00000 0.0721688
\(193\) 24.3723 1.75435 0.877177 0.480167i \(-0.159424\pi\)
0.877177 + 0.480167i \(0.159424\pi\)
\(194\) −10.1777 −0.730713
\(195\) 0.341103 0.0244269
\(196\) −3.18735 −0.227668
\(197\) 14.8663 1.05918 0.529589 0.848254i \(-0.322346\pi\)
0.529589 + 0.848254i \(0.322346\pi\)
\(198\) 1.08018 0.0767654
\(199\) 20.6399 1.46313 0.731563 0.681774i \(-0.238791\pi\)
0.731563 + 0.681774i \(0.238791\pi\)
\(200\) 2.56155 0.181129
\(201\) 3.05066 0.215177
\(202\) −4.92800 −0.346733
\(203\) 1.95260 0.137046
\(204\) 7.65567 0.536004
\(205\) −17.9187 −1.25150
\(206\) −10.6010 −0.738603
\(207\) 1.00000 0.0695048
\(208\) −0.218439 −0.0151460
\(209\) 8.57392 0.593070
\(210\) 3.04909 0.210407
\(211\) 9.41556 0.648194 0.324097 0.946024i \(-0.394940\pi\)
0.324097 + 0.946024i \(0.394940\pi\)
\(212\) −8.75180 −0.601076
\(213\) 5.51706 0.378023
\(214\) −3.47034 −0.237228
\(215\) −2.10188 −0.143347
\(216\) −1.00000 −0.0680414
\(217\) 6.25389 0.424542
\(218\) −7.41070 −0.501916
\(219\) −9.40614 −0.635608
\(220\) 1.68677 0.113722
\(221\) −1.67229 −0.112491
\(222\) 0.314128 0.0210829
\(223\) 29.7997 1.99554 0.997769 0.0667571i \(-0.0212652\pi\)
0.997769 + 0.0667571i \(0.0212652\pi\)
\(224\) −1.95260 −0.130464
\(225\) −2.56155 −0.170770
\(226\) −5.06424 −0.336868
\(227\) −23.3062 −1.54689 −0.773443 0.633866i \(-0.781467\pi\)
−0.773443 + 0.633866i \(0.781467\pi\)
\(228\) −7.93745 −0.525671
\(229\) −21.4977 −1.42061 −0.710304 0.703895i \(-0.751443\pi\)
−0.710304 + 0.703895i \(0.751443\pi\)
\(230\) 1.56155 0.102966
\(231\) −2.10917 −0.138773
\(232\) −1.00000 −0.0656532
\(233\) 5.22300 0.342170 0.171085 0.985256i \(-0.445273\pi\)
0.171085 + 0.985256i \(0.445273\pi\)
\(234\) 0.218439 0.0142798
\(235\) −9.73532 −0.635062
\(236\) 12.7224 0.828155
\(237\) −12.4263 −0.807173
\(238\) −14.9485 −0.968966
\(239\) −19.1291 −1.23736 −0.618680 0.785643i \(-0.712332\pi\)
−0.618680 + 0.785643i \(0.712332\pi\)
\(240\) −1.56155 −0.100798
\(241\) 22.2742 1.43481 0.717404 0.696658i \(-0.245330\pi\)
0.717404 + 0.696658i \(0.245330\pi\)
\(242\) 9.83320 0.632102
\(243\) 1.00000 0.0641500
\(244\) 5.49373 0.351700
\(245\) 4.97721 0.317982
\(246\) −11.4749 −0.731615
\(247\) 1.73385 0.110322
\(248\) −3.20285 −0.203381
\(249\) 4.40445 0.279120
\(250\) −11.8078 −0.746789
\(251\) 1.71943 0.108529 0.0542647 0.998527i \(-0.482719\pi\)
0.0542647 + 0.998527i \(0.482719\pi\)
\(252\) 1.95260 0.123002
\(253\) −1.08018 −0.0679106
\(254\) 14.8620 0.932522
\(255\) −11.9547 −0.748635
\(256\) 1.00000 0.0625000
\(257\) −7.47689 −0.466395 −0.233198 0.972429i \(-0.574919\pi\)
−0.233198 + 0.972429i \(0.574919\pi\)
\(258\) −1.34602 −0.0837996
\(259\) −0.613367 −0.0381128
\(260\) 0.341103 0.0211543
\(261\) 1.00000 0.0618984
\(262\) −6.71575 −0.414901
\(263\) 7.33253 0.452143 0.226072 0.974111i \(-0.427412\pi\)
0.226072 + 0.974111i \(0.427412\pi\)
\(264\) 1.08018 0.0664808
\(265\) 13.6664 0.839520
\(266\) 15.4987 0.950286
\(267\) −1.55379 −0.0950903
\(268\) 3.05066 0.186349
\(269\) −1.94389 −0.118521 −0.0592604 0.998243i \(-0.518874\pi\)
−0.0592604 + 0.998243i \(0.518874\pi\)
\(270\) 1.56155 0.0950331
\(271\) 21.8992 1.33028 0.665141 0.746718i \(-0.268371\pi\)
0.665141 + 0.746718i \(0.268371\pi\)
\(272\) 7.65567 0.464193
\(273\) −0.426524 −0.0258144
\(274\) 11.3274 0.684312
\(275\) 2.76695 0.166853
\(276\) 1.00000 0.0601929
\(277\) −16.9916 −1.02093 −0.510463 0.859900i \(-0.670526\pi\)
−0.510463 + 0.859900i \(0.670526\pi\)
\(278\) −10.8315 −0.649627
\(279\) 3.20285 0.191750
\(280\) 3.04909 0.182218
\(281\) 1.32486 0.0790345 0.0395173 0.999219i \(-0.487418\pi\)
0.0395173 + 0.999219i \(0.487418\pi\)
\(282\) −6.23438 −0.371252
\(283\) −33.2575 −1.97696 −0.988478 0.151365i \(-0.951633\pi\)
−0.988478 + 0.151365i \(0.951633\pi\)
\(284\) 5.51706 0.327377
\(285\) 12.3948 0.734202
\(286\) −0.235954 −0.0139523
\(287\) 22.4060 1.32258
\(288\) −1.00000 −0.0589256
\(289\) 41.6093 2.44761
\(290\) 1.56155 0.0916975
\(291\) 10.1777 0.596625
\(292\) −9.40614 −0.550453
\(293\) 30.6145 1.78852 0.894260 0.447548i \(-0.147703\pi\)
0.894260 + 0.447548i \(0.147703\pi\)
\(294\) 3.18735 0.185890
\(295\) −19.8666 −1.15668
\(296\) 0.314128 0.0182583
\(297\) −1.08018 −0.0626787
\(298\) 8.53591 0.494472
\(299\) −0.218439 −0.0126326
\(300\) −2.56155 −0.147891
\(301\) 2.62824 0.151489
\(302\) −20.9096 −1.20321
\(303\) 4.92800 0.283106
\(304\) −7.93745 −0.455244
\(305\) −8.57875 −0.491218
\(306\) −7.65567 −0.437646
\(307\) 27.0042 1.54121 0.770607 0.637311i \(-0.219953\pi\)
0.770607 + 0.637311i \(0.219953\pi\)
\(308\) −2.10917 −0.120181
\(309\) 10.6010 0.603067
\(310\) 5.00142 0.284061
\(311\) 11.6447 0.660313 0.330156 0.943926i \(-0.392899\pi\)
0.330156 + 0.943926i \(0.392899\pi\)
\(312\) 0.218439 0.0123666
\(313\) −13.7637 −0.777973 −0.388986 0.921243i \(-0.627175\pi\)
−0.388986 + 0.921243i \(0.627175\pi\)
\(314\) 12.3989 0.699711
\(315\) −3.04909 −0.171797
\(316\) −12.4263 −0.699032
\(317\) −14.3757 −0.807418 −0.403709 0.914887i \(-0.632279\pi\)
−0.403709 + 0.914887i \(0.632279\pi\)
\(318\) 8.75180 0.490777
\(319\) −1.08018 −0.0604787
\(320\) −1.56155 −0.0872935
\(321\) 3.47034 0.193696
\(322\) −1.95260 −0.108814
\(323\) −60.7665 −3.38114
\(324\) 1.00000 0.0555556
\(325\) 0.559542 0.0310378
\(326\) 8.25813 0.457376
\(327\) 7.41070 0.409813
\(328\) −11.4749 −0.633597
\(329\) 12.1733 0.671134
\(330\) −1.68677 −0.0928534
\(331\) 3.42896 0.188472 0.0942362 0.995550i \(-0.469959\pi\)
0.0942362 + 0.995550i \(0.469959\pi\)
\(332\) 4.40445 0.241725
\(333\) −0.314128 −0.0172141
\(334\) 6.64361 0.363522
\(335\) −4.76377 −0.260272
\(336\) 1.95260 0.106523
\(337\) 22.6181 1.23209 0.616043 0.787713i \(-0.288735\pi\)
0.616043 + 0.787713i \(0.288735\pi\)
\(338\) 12.9523 0.704511
\(339\) 5.06424 0.275052
\(340\) −11.9547 −0.648337
\(341\) −3.45967 −0.187352
\(342\) 7.93745 0.429208
\(343\) −19.8918 −1.07406
\(344\) −1.34602 −0.0725726
\(345\) −1.56155 −0.0840712
\(346\) −16.6386 −0.894497
\(347\) −24.2133 −1.29984 −0.649919 0.760004i \(-0.725197\pi\)
−0.649919 + 0.760004i \(0.725197\pi\)
\(348\) 1.00000 0.0536056
\(349\) −28.4940 −1.52525 −0.762625 0.646840i \(-0.776090\pi\)
−0.762625 + 0.646840i \(0.776090\pi\)
\(350\) 5.00169 0.267352
\(351\) −0.218439 −0.0116594
\(352\) 1.08018 0.0575740
\(353\) 18.5564 0.987657 0.493829 0.869559i \(-0.335597\pi\)
0.493829 + 0.869559i \(0.335597\pi\)
\(354\) −12.7224 −0.676186
\(355\) −8.61518 −0.457246
\(356\) −1.55379 −0.0823506
\(357\) 14.9485 0.791158
\(358\) 3.99928 0.211369
\(359\) −19.7032 −1.03989 −0.519947 0.854198i \(-0.674048\pi\)
−0.519947 + 0.854198i \(0.674048\pi\)
\(360\) 1.56155 0.0823011
\(361\) 44.0032 2.31596
\(362\) −22.8533 −1.20114
\(363\) −9.83320 −0.516109
\(364\) −0.426524 −0.0223559
\(365\) 14.6882 0.768815
\(366\) −5.49373 −0.287162
\(367\) −19.1560 −0.999936 −0.499968 0.866044i \(-0.666655\pi\)
−0.499968 + 0.866044i \(0.666655\pi\)
\(368\) 1.00000 0.0521286
\(369\) 11.4749 0.597361
\(370\) −0.490527 −0.0255013
\(371\) −17.0888 −0.887206
\(372\) 3.20285 0.166060
\(373\) −14.4799 −0.749739 −0.374869 0.927078i \(-0.622312\pi\)
−0.374869 + 0.927078i \(0.622312\pi\)
\(374\) 8.26954 0.427608
\(375\) 11.8078 0.609750
\(376\) −6.23438 −0.321514
\(377\) −0.218439 −0.0112502
\(378\) −1.95260 −0.100431
\(379\) 20.8625 1.07164 0.535818 0.844333i \(-0.320003\pi\)
0.535818 + 0.844333i \(0.320003\pi\)
\(380\) 12.3948 0.635837
\(381\) −14.8620 −0.761401
\(382\) −9.55865 −0.489063
\(383\) −8.98050 −0.458882 −0.229441 0.973323i \(-0.573690\pi\)
−0.229441 + 0.973323i \(0.573690\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 3.29358 0.167856
\(386\) −24.3723 −1.24052
\(387\) 1.34602 0.0684221
\(388\) 10.1777 0.516692
\(389\) 5.48947 0.278327 0.139164 0.990269i \(-0.455559\pi\)
0.139164 + 0.990269i \(0.455559\pi\)
\(390\) −0.341103 −0.0172724
\(391\) 7.65567 0.387164
\(392\) 3.18735 0.160985
\(393\) 6.71575 0.338765
\(394\) −14.8663 −0.748952
\(395\) 19.4043 0.976335
\(396\) −1.08018 −0.0542813
\(397\) −0.752955 −0.0377897 −0.0188949 0.999821i \(-0.506015\pi\)
−0.0188949 + 0.999821i \(0.506015\pi\)
\(398\) −20.6399 −1.03459
\(399\) −15.4987 −0.775905
\(400\) −2.56155 −0.128078
\(401\) −13.2125 −0.659798 −0.329899 0.944016i \(-0.607015\pi\)
−0.329899 + 0.944016i \(0.607015\pi\)
\(402\) −3.05066 −0.152153
\(403\) −0.699626 −0.0348508
\(404\) 4.92800 0.245177
\(405\) −1.56155 −0.0775942
\(406\) −1.95260 −0.0969060
\(407\) 0.339316 0.0168193
\(408\) −7.65567 −0.379012
\(409\) −14.3034 −0.707257 −0.353628 0.935386i \(-0.615052\pi\)
−0.353628 + 0.935386i \(0.615052\pi\)
\(410\) 17.9187 0.884943
\(411\) −11.3274 −0.558738
\(412\) 10.6010 0.522271
\(413\) 24.8417 1.22238
\(414\) −1.00000 −0.0491473
\(415\) −6.87778 −0.337617
\(416\) 0.218439 0.0107098
\(417\) 10.8315 0.530418
\(418\) −8.57392 −0.419364
\(419\) 23.1017 1.12859 0.564296 0.825572i \(-0.309148\pi\)
0.564296 + 0.825572i \(0.309148\pi\)
\(420\) −3.04909 −0.148780
\(421\) 17.8515 0.870027 0.435013 0.900424i \(-0.356744\pi\)
0.435013 + 0.900424i \(0.356744\pi\)
\(422\) −9.41556 −0.458342
\(423\) 6.23438 0.303126
\(424\) 8.75180 0.425025
\(425\) −19.6104 −0.951245
\(426\) −5.51706 −0.267303
\(427\) 10.7271 0.519119
\(428\) 3.47034 0.167745
\(429\) 0.235954 0.0113920
\(430\) 2.10188 0.101362
\(431\) −3.79691 −0.182891 −0.0914455 0.995810i \(-0.529149\pi\)
−0.0914455 + 0.995810i \(0.529149\pi\)
\(432\) 1.00000 0.0481125
\(433\) 23.7716 1.14239 0.571196 0.820814i \(-0.306480\pi\)
0.571196 + 0.820814i \(0.306480\pi\)
\(434\) −6.25389 −0.300196
\(435\) −1.56155 −0.0748707
\(436\) 7.41070 0.354908
\(437\) −7.93745 −0.379700
\(438\) 9.40614 0.449443
\(439\) 29.9716 1.43047 0.715234 0.698885i \(-0.246320\pi\)
0.715234 + 0.698885i \(0.246320\pi\)
\(440\) −1.68677 −0.0804134
\(441\) −3.18735 −0.151778
\(442\) 1.67229 0.0795429
\(443\) 25.1374 1.19432 0.597158 0.802124i \(-0.296297\pi\)
0.597158 + 0.802124i \(0.296297\pi\)
\(444\) −0.314128 −0.0149079
\(445\) 2.42632 0.115019
\(446\) −29.7997 −1.41106
\(447\) −8.53591 −0.403735
\(448\) 1.95260 0.0922518
\(449\) −28.5737 −1.34848 −0.674239 0.738513i \(-0.735528\pi\)
−0.674239 + 0.738513i \(0.735528\pi\)
\(450\) 2.56155 0.120753
\(451\) −12.3951 −0.583660
\(452\) 5.06424 0.238202
\(453\) 20.9096 0.982420
\(454\) 23.3062 1.09381
\(455\) 0.666039 0.0312244
\(456\) 7.93745 0.371705
\(457\) 17.9657 0.840401 0.420201 0.907431i \(-0.361960\pi\)
0.420201 + 0.907431i \(0.361960\pi\)
\(458\) 21.4977 1.00452
\(459\) 7.65567 0.357336
\(460\) −1.56155 −0.0728078
\(461\) 8.44900 0.393509 0.196755 0.980453i \(-0.436960\pi\)
0.196755 + 0.980453i \(0.436960\pi\)
\(462\) 2.10917 0.0981275
\(463\) −15.7530 −0.732102 −0.366051 0.930595i \(-0.619290\pi\)
−0.366051 + 0.930595i \(0.619290\pi\)
\(464\) 1.00000 0.0464238
\(465\) −5.00142 −0.231935
\(466\) −5.22300 −0.241951
\(467\) 5.33447 0.246850 0.123425 0.992354i \(-0.460612\pi\)
0.123425 + 0.992354i \(0.460612\pi\)
\(468\) −0.218439 −0.0100973
\(469\) 5.95673 0.275056
\(470\) 9.73532 0.449057
\(471\) −12.3989 −0.571312
\(472\) −12.7224 −0.585594
\(473\) −1.45395 −0.0668528
\(474\) 12.4263 0.570757
\(475\) 20.3322 0.932906
\(476\) 14.9485 0.685163
\(477\) −8.75180 −0.400718
\(478\) 19.1291 0.874946
\(479\) 21.1083 0.964464 0.482232 0.876044i \(-0.339826\pi\)
0.482232 + 0.876044i \(0.339826\pi\)
\(480\) 1.56155 0.0712748
\(481\) 0.0686177 0.00312870
\(482\) −22.2742 −1.01456
\(483\) 1.95260 0.0888465
\(484\) −9.83320 −0.446964
\(485\) −15.8929 −0.721661
\(486\) −1.00000 −0.0453609
\(487\) 16.1217 0.730544 0.365272 0.930901i \(-0.380976\pi\)
0.365272 + 0.930901i \(0.380976\pi\)
\(488\) −5.49373 −0.248690
\(489\) −8.25813 −0.373446
\(490\) −4.97721 −0.224847
\(491\) −23.3137 −1.05213 −0.526067 0.850443i \(-0.676334\pi\)
−0.526067 + 0.850443i \(0.676334\pi\)
\(492\) 11.4749 0.517330
\(493\) 7.65567 0.344794
\(494\) −1.73385 −0.0780094
\(495\) 1.68677 0.0758145
\(496\) 3.20285 0.143812
\(497\) 10.7726 0.483218
\(498\) −4.40445 −0.197368
\(499\) 3.52795 0.157933 0.0789665 0.996877i \(-0.474838\pi\)
0.0789665 + 0.996877i \(0.474838\pi\)
\(500\) 11.8078 0.528059
\(501\) −6.64361 −0.296815
\(502\) −1.71943 −0.0767419
\(503\) 13.7589 0.613477 0.306738 0.951794i \(-0.400762\pi\)
0.306738 + 0.951794i \(0.400762\pi\)
\(504\) −1.95260 −0.0869758
\(505\) −7.69533 −0.342438
\(506\) 1.08018 0.0480201
\(507\) −12.9523 −0.575231
\(508\) −14.8620 −0.659392
\(509\) −18.2597 −0.809347 −0.404673 0.914461i \(-0.632615\pi\)
−0.404673 + 0.914461i \(0.632615\pi\)
\(510\) 11.9547 0.529365
\(511\) −18.3664 −0.812484
\(512\) −1.00000 −0.0441942
\(513\) −7.93745 −0.350447
\(514\) 7.47689 0.329791
\(515\) −16.5539 −0.729454
\(516\) 1.34602 0.0592553
\(517\) −6.73429 −0.296174
\(518\) 0.613367 0.0269498
\(519\) 16.6386 0.730353
\(520\) −0.341103 −0.0149584
\(521\) −11.6841 −0.511890 −0.255945 0.966691i \(-0.582387\pi\)
−0.255945 + 0.966691i \(0.582387\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −30.3701 −1.32799 −0.663997 0.747736i \(-0.731141\pi\)
−0.663997 + 0.747736i \(0.731141\pi\)
\(524\) 6.71575 0.293379
\(525\) −5.00169 −0.218292
\(526\) −7.33253 −0.319713
\(527\) 24.5200 1.06811
\(528\) −1.08018 −0.0470090
\(529\) 1.00000 0.0434783
\(530\) −13.6664 −0.593631
\(531\) 12.7224 0.552104
\(532\) −15.4987 −0.671953
\(533\) −2.50657 −0.108572
\(534\) 1.55379 0.0672390
\(535\) −5.41912 −0.234289
\(536\) −3.05066 −0.131769
\(537\) −3.99928 −0.172582
\(538\) 1.94389 0.0838069
\(539\) 3.44292 0.148297
\(540\) −1.56155 −0.0671985
\(541\) −24.1991 −1.04040 −0.520200 0.854044i \(-0.674143\pi\)
−0.520200 + 0.854044i \(0.674143\pi\)
\(542\) −21.8992 −0.940652
\(543\) 22.8533 0.980728
\(544\) −7.65567 −0.328234
\(545\) −11.5722 −0.495699
\(546\) 0.426524 0.0182535
\(547\) −16.3303 −0.698234 −0.349117 0.937079i \(-0.613518\pi\)
−0.349117 + 0.937079i \(0.613518\pi\)
\(548\) −11.3274 −0.483881
\(549\) 5.49373 0.234467
\(550\) −2.76695 −0.117983
\(551\) −7.93745 −0.338147
\(552\) −1.00000 −0.0425628
\(553\) −24.2636 −1.03179
\(554\) 16.9916 0.721903
\(555\) 0.490527 0.0208217
\(556\) 10.8315 0.459356
\(557\) 16.2011 0.686464 0.343232 0.939251i \(-0.388478\pi\)
0.343232 + 0.939251i \(0.388478\pi\)
\(558\) −3.20285 −0.135587
\(559\) −0.294023 −0.0124358
\(560\) −3.04909 −0.128848
\(561\) −8.26954 −0.349140
\(562\) −1.32486 −0.0558858
\(563\) 27.6059 1.16345 0.581724 0.813386i \(-0.302378\pi\)
0.581724 + 0.813386i \(0.302378\pi\)
\(564\) 6.23438 0.262515
\(565\) −7.90808 −0.332695
\(566\) 33.2575 1.39792
\(567\) 1.95260 0.0820016
\(568\) −5.51706 −0.231491
\(569\) −8.83747 −0.370486 −0.185243 0.982693i \(-0.559307\pi\)
−0.185243 + 0.982693i \(0.559307\pi\)
\(570\) −12.3948 −0.519159
\(571\) −36.4500 −1.52539 −0.762693 0.646761i \(-0.776123\pi\)
−0.762693 + 0.646761i \(0.776123\pi\)
\(572\) 0.235954 0.00986573
\(573\) 9.55865 0.399318
\(574\) −22.4060 −0.935208
\(575\) −2.56155 −0.106824
\(576\) 1.00000 0.0416667
\(577\) 19.0695 0.793873 0.396936 0.917846i \(-0.370073\pi\)
0.396936 + 0.917846i \(0.370073\pi\)
\(578\) −41.6093 −1.73072
\(579\) 24.3723 1.01288
\(580\) −1.56155 −0.0648400
\(581\) 8.60013 0.356794
\(582\) −10.1777 −0.421877
\(583\) 9.45356 0.391527
\(584\) 9.40614 0.389229
\(585\) 0.341103 0.0141029
\(586\) −30.6145 −1.26467
\(587\) 41.3309 1.70591 0.852955 0.521984i \(-0.174808\pi\)
0.852955 + 0.521984i \(0.174808\pi\)
\(588\) −3.18735 −0.131444
\(589\) −25.4225 −1.04751
\(590\) 19.8666 0.817897
\(591\) 14.8663 0.611517
\(592\) −0.314128 −0.0129106
\(593\) 19.7170 0.809682 0.404841 0.914387i \(-0.367327\pi\)
0.404841 + 0.914387i \(0.367327\pi\)
\(594\) 1.08018 0.0443205
\(595\) −23.3428 −0.956963
\(596\) −8.53591 −0.349645
\(597\) 20.6399 0.844736
\(598\) 0.218439 0.00893262
\(599\) 39.2709 1.60457 0.802283 0.596944i \(-0.203619\pi\)
0.802283 + 0.596944i \(0.203619\pi\)
\(600\) 2.56155 0.104575
\(601\) −29.5200 −1.20415 −0.602073 0.798441i \(-0.705658\pi\)
−0.602073 + 0.798441i \(0.705658\pi\)
\(602\) −2.62824 −0.107119
\(603\) 3.05066 0.124233
\(604\) 20.9096 0.850801
\(605\) 15.3551 0.624272
\(606\) −4.92800 −0.200186
\(607\) −5.41272 −0.219696 −0.109848 0.993948i \(-0.535036\pi\)
−0.109848 + 0.993948i \(0.535036\pi\)
\(608\) 7.93745 0.321906
\(609\) 1.95260 0.0791234
\(610\) 8.57875 0.347344
\(611\) −1.36183 −0.0550937
\(612\) 7.65567 0.309462
\(613\) 36.3092 1.46651 0.733257 0.679952i \(-0.237999\pi\)
0.733257 + 0.679952i \(0.237999\pi\)
\(614\) −27.0042 −1.08980
\(615\) −17.9187 −0.722553
\(616\) 2.10917 0.0849809
\(617\) 40.4961 1.63031 0.815156 0.579242i \(-0.196651\pi\)
0.815156 + 0.579242i \(0.196651\pi\)
\(618\) −10.6010 −0.426433
\(619\) −39.7764 −1.59875 −0.799375 0.600833i \(-0.794836\pi\)
−0.799375 + 0.600833i \(0.794836\pi\)
\(620\) −5.00142 −0.200862
\(621\) 1.00000 0.0401286
\(622\) −11.6447 −0.466911
\(623\) −3.03393 −0.121552
\(624\) −0.218439 −0.00874454
\(625\) −5.63068 −0.225227
\(626\) 13.7637 0.550110
\(627\) 8.57392 0.342409
\(628\) −12.3989 −0.494770
\(629\) −2.40486 −0.0958881
\(630\) 3.04909 0.121479
\(631\) 11.4739 0.456768 0.228384 0.973571i \(-0.426656\pi\)
0.228384 + 0.973571i \(0.426656\pi\)
\(632\) 12.4263 0.494290
\(633\) 9.41556 0.374235
\(634\) 14.3757 0.570931
\(635\) 23.2077 0.920970
\(636\) −8.75180 −0.347032
\(637\) 0.696239 0.0275860
\(638\) 1.08018 0.0427649
\(639\) 5.51706 0.218252
\(640\) 1.56155 0.0617258
\(641\) 4.72976 0.186814 0.0934071 0.995628i \(-0.470224\pi\)
0.0934071 + 0.995628i \(0.470224\pi\)
\(642\) −3.47034 −0.136963
\(643\) −34.9453 −1.37811 −0.689054 0.724710i \(-0.741974\pi\)
−0.689054 + 0.724710i \(0.741974\pi\)
\(644\) 1.95260 0.0769433
\(645\) −2.10188 −0.0827616
\(646\) 60.7665 2.39083
\(647\) 21.6088 0.849531 0.424766 0.905303i \(-0.360357\pi\)
0.424766 + 0.905303i \(0.360357\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −13.7425 −0.539440
\(650\) −0.559542 −0.0219470
\(651\) 6.25389 0.245109
\(652\) −8.25813 −0.323414
\(653\) −35.8402 −1.40253 −0.701267 0.712899i \(-0.747382\pi\)
−0.701267 + 0.712899i \(0.747382\pi\)
\(654\) −7.41070 −0.289781
\(655\) −10.4870 −0.409761
\(656\) 11.4749 0.448021
\(657\) −9.40614 −0.366968
\(658\) −12.1733 −0.474564
\(659\) 27.4818 1.07054 0.535269 0.844682i \(-0.320210\pi\)
0.535269 + 0.844682i \(0.320210\pi\)
\(660\) 1.68677 0.0656573
\(661\) −15.7667 −0.613252 −0.306626 0.951830i \(-0.599200\pi\)
−0.306626 + 0.951830i \(0.599200\pi\)
\(662\) −3.42896 −0.133270
\(663\) −1.67229 −0.0649465
\(664\) −4.40445 −0.170926
\(665\) 24.2020 0.938514
\(666\) 0.314128 0.0121722
\(667\) 1.00000 0.0387202
\(668\) −6.64361 −0.257049
\(669\) 29.7997 1.15212
\(670\) 4.76377 0.184040
\(671\) −5.93425 −0.229089
\(672\) −1.95260 −0.0753233
\(673\) −40.2484 −1.55146 −0.775732 0.631063i \(-0.782619\pi\)
−0.775732 + 0.631063i \(0.782619\pi\)
\(674\) −22.6181 −0.871216
\(675\) −2.56155 −0.0985942
\(676\) −12.9523 −0.498165
\(677\) −45.6225 −1.75342 −0.876708 0.481024i \(-0.840265\pi\)
−0.876708 + 0.481024i \(0.840265\pi\)
\(678\) −5.06424 −0.194491
\(679\) 19.8729 0.762652
\(680\) 11.9547 0.458443
\(681\) −23.3062 −0.893095
\(682\) 3.45967 0.132478
\(683\) −38.0942 −1.45763 −0.728817 0.684709i \(-0.759929\pi\)
−0.728817 + 0.684709i \(0.759929\pi\)
\(684\) −7.93745 −0.303496
\(685\) 17.6883 0.675835
\(686\) 19.8918 0.759474
\(687\) −21.4977 −0.820189
\(688\) 1.34602 0.0513166
\(689\) 1.91173 0.0728312
\(690\) 1.56155 0.0594473
\(691\) 20.2247 0.769383 0.384691 0.923045i \(-0.374308\pi\)
0.384691 + 0.923045i \(0.374308\pi\)
\(692\) 16.6386 0.632505
\(693\) −2.10917 −0.0801208
\(694\) 24.2133 0.919124
\(695\) −16.9139 −0.641580
\(696\) −1.00000 −0.0379049
\(697\) 87.8484 3.32749
\(698\) 28.4940 1.07852
\(699\) 5.22300 0.197552
\(700\) −5.00169 −0.189046
\(701\) 31.0939 1.17440 0.587200 0.809442i \(-0.300230\pi\)
0.587200 + 0.809442i \(0.300230\pi\)
\(702\) 0.218439 0.00824443
\(703\) 2.49338 0.0940395
\(704\) −1.08018 −0.0407110
\(705\) −9.73532 −0.366653
\(706\) −18.5564 −0.698379
\(707\) 9.62242 0.361888
\(708\) 12.7224 0.478136
\(709\) −46.3054 −1.73903 −0.869517 0.493903i \(-0.835570\pi\)
−0.869517 + 0.493903i \(0.835570\pi\)
\(710\) 8.61518 0.323322
\(711\) −12.4263 −0.466021
\(712\) 1.55379 0.0582307
\(713\) 3.20285 0.119948
\(714\) −14.9485 −0.559433
\(715\) −0.368455 −0.0137794
\(716\) −3.99928 −0.149460
\(717\) −19.1291 −0.714390
\(718\) 19.7032 0.735317
\(719\) 11.0579 0.412389 0.206194 0.978511i \(-0.433892\pi\)
0.206194 + 0.978511i \(0.433892\pi\)
\(720\) −1.56155 −0.0581956
\(721\) 20.6994 0.770887
\(722\) −44.0032 −1.63763
\(723\) 22.2742 0.828386
\(724\) 22.8533 0.849335
\(725\) −2.56155 −0.0951337
\(726\) 9.83320 0.364944
\(727\) −27.2847 −1.01193 −0.505967 0.862553i \(-0.668864\pi\)
−0.505967 + 0.862553i \(0.668864\pi\)
\(728\) 0.426524 0.0158080
\(729\) 1.00000 0.0370370
\(730\) −14.6882 −0.543634
\(731\) 10.3047 0.381133
\(732\) 5.49373 0.203054
\(733\) −12.1670 −0.449399 −0.224700 0.974428i \(-0.572140\pi\)
−0.224700 + 0.974428i \(0.572140\pi\)
\(734\) 19.1560 0.707061
\(735\) 4.97721 0.183587
\(736\) −1.00000 −0.0368605
\(737\) −3.29528 −0.121383
\(738\) −11.4749 −0.422398
\(739\) 48.1604 1.77161 0.885805 0.464057i \(-0.153607\pi\)
0.885805 + 0.464057i \(0.153607\pi\)
\(740\) 0.490527 0.0180321
\(741\) 1.73385 0.0636944
\(742\) 17.0888 0.627349
\(743\) 28.5856 1.04870 0.524352 0.851502i \(-0.324308\pi\)
0.524352 + 0.851502i \(0.324308\pi\)
\(744\) −3.20285 −0.117422
\(745\) 13.3293 0.488347
\(746\) 14.4799 0.530145
\(747\) 4.40445 0.161150
\(748\) −8.26954 −0.302364
\(749\) 6.77619 0.247597
\(750\) −11.8078 −0.431159
\(751\) −9.56676 −0.349096 −0.174548 0.984649i \(-0.555846\pi\)
−0.174548 + 0.984649i \(0.555846\pi\)
\(752\) 6.23438 0.227345
\(753\) 1.71943 0.0626595
\(754\) 0.218439 0.00795506
\(755\) −32.6515 −1.18831
\(756\) 1.95260 0.0710155
\(757\) 9.20488 0.334557 0.167279 0.985910i \(-0.446502\pi\)
0.167279 + 0.985910i \(0.446502\pi\)
\(758\) −20.8625 −0.757761
\(759\) −1.08018 −0.0392082
\(760\) −12.3948 −0.449605
\(761\) −18.2963 −0.663242 −0.331621 0.943413i \(-0.607595\pi\)
−0.331621 + 0.943413i \(0.607595\pi\)
\(762\) 14.8620 0.538392
\(763\) 14.4702 0.523855
\(764\) 9.55865 0.345820
\(765\) −11.9547 −0.432224
\(766\) 8.98050 0.324479
\(767\) −2.77905 −0.100346
\(768\) 1.00000 0.0360844
\(769\) −10.3329 −0.372615 −0.186308 0.982491i \(-0.559652\pi\)
−0.186308 + 0.982491i \(0.559652\pi\)
\(770\) −3.29358 −0.118692
\(771\) −7.47689 −0.269274
\(772\) 24.3723 0.877177
\(773\) −10.4851 −0.377124 −0.188562 0.982061i \(-0.560383\pi\)
−0.188562 + 0.982061i \(0.560383\pi\)
\(774\) −1.34602 −0.0483817
\(775\) −8.20427 −0.294706
\(776\) −10.1777 −0.365356
\(777\) −0.613367 −0.0220044
\(778\) −5.48947 −0.196807
\(779\) −91.0818 −3.26334
\(780\) 0.341103 0.0122135
\(781\) −5.95945 −0.213246
\(782\) −7.65567 −0.273766
\(783\) 1.00000 0.0357371
\(784\) −3.18735 −0.113834
\(785\) 19.3616 0.691044
\(786\) −6.71575 −0.239543
\(787\) −18.6908 −0.666254 −0.333127 0.942882i \(-0.608104\pi\)
−0.333127 + 0.942882i \(0.608104\pi\)
\(788\) 14.8663 0.529589
\(789\) 7.33253 0.261045
\(790\) −19.4043 −0.690373
\(791\) 9.88844 0.351593
\(792\) 1.08018 0.0383827
\(793\) −1.20004 −0.0426148
\(794\) 0.752955 0.0267214
\(795\) 13.6664 0.484697
\(796\) 20.6399 0.731563
\(797\) −7.40081 −0.262150 −0.131075 0.991372i \(-0.541843\pi\)
−0.131075 + 0.991372i \(0.541843\pi\)
\(798\) 15.4987 0.548648
\(799\) 47.7284 1.68851
\(800\) 2.56155 0.0905646
\(801\) −1.55379 −0.0549004
\(802\) 13.2125 0.466548
\(803\) 10.1604 0.358552
\(804\) 3.05066 0.107589
\(805\) −3.04909 −0.107466
\(806\) 0.699626 0.0246433
\(807\) −1.94389 −0.0684281
\(808\) −4.92800 −0.173366
\(809\) −9.23840 −0.324805 −0.162402 0.986725i \(-0.551924\pi\)
−0.162402 + 0.986725i \(0.551924\pi\)
\(810\) 1.56155 0.0548674
\(811\) −21.9104 −0.769380 −0.384690 0.923046i \(-0.625692\pi\)
−0.384690 + 0.923046i \(0.625692\pi\)
\(812\) 1.95260 0.0685229
\(813\) 21.8992 0.768039
\(814\) −0.339316 −0.0118930
\(815\) 12.8955 0.451710
\(816\) 7.65567 0.268002
\(817\) −10.6840 −0.373785
\(818\) 14.3034 0.500106
\(819\) −0.426524 −0.0149039
\(820\) −17.9187 −0.625749
\(821\) 3.13743 0.109497 0.0547485 0.998500i \(-0.482564\pi\)
0.0547485 + 0.998500i \(0.482564\pi\)
\(822\) 11.3274 0.395088
\(823\) −48.2908 −1.68331 −0.841655 0.540015i \(-0.818419\pi\)
−0.841655 + 0.540015i \(0.818419\pi\)
\(824\) −10.6010 −0.369302
\(825\) 2.76695 0.0963328
\(826\) −24.8417 −0.864354
\(827\) −20.2922 −0.705629 −0.352814 0.935693i \(-0.614775\pi\)
−0.352814 + 0.935693i \(0.614775\pi\)
\(828\) 1.00000 0.0347524
\(829\) −20.9619 −0.728037 −0.364018 0.931392i \(-0.618595\pi\)
−0.364018 + 0.931392i \(0.618595\pi\)
\(830\) 6.87778 0.238731
\(831\) −16.9916 −0.589431
\(832\) −0.218439 −0.00757299
\(833\) −24.4013 −0.845454
\(834\) −10.8315 −0.375062
\(835\) 10.3743 0.359019
\(836\) 8.57392 0.296535
\(837\) 3.20285 0.110707
\(838\) −23.1017 −0.798035
\(839\) −11.8894 −0.410468 −0.205234 0.978713i \(-0.565796\pi\)
−0.205234 + 0.978713i \(0.565796\pi\)
\(840\) 3.04909 0.105204
\(841\) 1.00000 0.0344828
\(842\) −17.8515 −0.615202
\(843\) 1.32486 0.0456306
\(844\) 9.41556 0.324097
\(845\) 20.2257 0.695784
\(846\) −6.23438 −0.214343
\(847\) −19.2003 −0.659731
\(848\) −8.75180 −0.300538
\(849\) −33.2575 −1.14140
\(850\) 19.6104 0.672631
\(851\) −0.314128 −0.0107682
\(852\) 5.51706 0.189011
\(853\) 17.2828 0.591752 0.295876 0.955226i \(-0.404389\pi\)
0.295876 + 0.955226i \(0.404389\pi\)
\(854\) −10.7271 −0.367073
\(855\) 12.3948 0.423892
\(856\) −3.47034 −0.118614
\(857\) −44.4094 −1.51700 −0.758498 0.651675i \(-0.774067\pi\)
−0.758498 + 0.651675i \(0.774067\pi\)
\(858\) −0.235954 −0.00805534
\(859\) −32.8730 −1.12161 −0.560807 0.827947i \(-0.689509\pi\)
−0.560807 + 0.827947i \(0.689509\pi\)
\(860\) −2.10188 −0.0716736
\(861\) 22.4060 0.763594
\(862\) 3.79691 0.129323
\(863\) 46.4125 1.57990 0.789951 0.613170i \(-0.210106\pi\)
0.789951 + 0.613170i \(0.210106\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −25.9820 −0.883416
\(866\) −23.7716 −0.807793
\(867\) 41.6093 1.41313
\(868\) 6.25389 0.212271
\(869\) 13.4227 0.455333
\(870\) 1.56155 0.0529416
\(871\) −0.666382 −0.0225795
\(872\) −7.41070 −0.250958
\(873\) 10.1777 0.344461
\(874\) 7.93745 0.268488
\(875\) 23.0559 0.779430
\(876\) −9.40614 −0.317804
\(877\) −18.8424 −0.636261 −0.318131 0.948047i \(-0.603055\pi\)
−0.318131 + 0.948047i \(0.603055\pi\)
\(878\) −29.9716 −1.01149
\(879\) 30.6145 1.03260
\(880\) 1.68677 0.0568609
\(881\) −48.0416 −1.61856 −0.809281 0.587422i \(-0.800143\pi\)
−0.809281 + 0.587422i \(0.800143\pi\)
\(882\) 3.18735 0.107323
\(883\) −31.8886 −1.07314 −0.536568 0.843857i \(-0.680279\pi\)
−0.536568 + 0.843857i \(0.680279\pi\)
\(884\) −1.67229 −0.0562453
\(885\) −19.8666 −0.667810
\(886\) −25.1374 −0.844508
\(887\) 21.8677 0.734247 0.367124 0.930172i \(-0.380343\pi\)
0.367124 + 0.930172i \(0.380343\pi\)
\(888\) 0.314128 0.0105414
\(889\) −29.0195 −0.973282
\(890\) −2.42632 −0.0813305
\(891\) −1.08018 −0.0361876
\(892\) 29.7997 0.997769
\(893\) −49.4851 −1.65596
\(894\) 8.53591 0.285484
\(895\) 6.24509 0.208750
\(896\) −1.95260 −0.0652319
\(897\) −0.218439 −0.00729345
\(898\) 28.5737 0.953518
\(899\) 3.20285 0.106821
\(900\) −2.56155 −0.0853851
\(901\) −67.0009 −2.23212
\(902\) 12.3951 0.412710
\(903\) 2.62824 0.0874625
\(904\) −5.06424 −0.168434
\(905\) −35.6866 −1.18626
\(906\) −20.9096 −0.694676
\(907\) 15.8833 0.527396 0.263698 0.964605i \(-0.415058\pi\)
0.263698 + 0.964605i \(0.415058\pi\)
\(908\) −23.3062 −0.773443
\(909\) 4.92800 0.163451
\(910\) −0.666039 −0.0220790
\(911\) 22.9852 0.761533 0.380766 0.924671i \(-0.375660\pi\)
0.380766 + 0.924671i \(0.375660\pi\)
\(912\) −7.93745 −0.262835
\(913\) −4.75762 −0.157454
\(914\) −17.9657 −0.594253
\(915\) −8.57875 −0.283605
\(916\) −21.4977 −0.710304
\(917\) 13.1132 0.433036
\(918\) −7.65567 −0.252675
\(919\) −22.0022 −0.725785 −0.362893 0.931831i \(-0.618211\pi\)
−0.362893 + 0.931831i \(0.618211\pi\)
\(920\) 1.56155 0.0514829
\(921\) 27.0042 0.889820
\(922\) −8.44900 −0.278253
\(923\) −1.20514 −0.0396676
\(924\) −2.10917 −0.0693866
\(925\) 0.804655 0.0264569
\(926\) 15.7530 0.517674
\(927\) 10.6010 0.348181
\(928\) −1.00000 −0.0328266
\(929\) 4.42206 0.145083 0.0725416 0.997365i \(-0.476889\pi\)
0.0725416 + 0.997365i \(0.476889\pi\)
\(930\) 5.00142 0.164003
\(931\) 25.2994 0.829154
\(932\) 5.22300 0.171085
\(933\) 11.6447 0.381232
\(934\) −5.33447 −0.174549
\(935\) 12.9133 0.422311
\(936\) 0.218439 0.00713989
\(937\) −21.1139 −0.689760 −0.344880 0.938647i \(-0.612080\pi\)
−0.344880 + 0.938647i \(0.612080\pi\)
\(938\) −5.95673 −0.194494
\(939\) −13.7637 −0.449163
\(940\) −9.73532 −0.317531
\(941\) −41.3716 −1.34868 −0.674338 0.738422i \(-0.735571\pi\)
−0.674338 + 0.738422i \(0.735571\pi\)
\(942\) 12.3989 0.403978
\(943\) 11.4749 0.373675
\(944\) 12.7224 0.414078
\(945\) −3.04909 −0.0991869
\(946\) 1.45395 0.0472720
\(947\) −49.4503 −1.60692 −0.803460 0.595359i \(-0.797010\pi\)
−0.803460 + 0.595359i \(0.797010\pi\)
\(948\) −12.4263 −0.403586
\(949\) 2.05466 0.0666972
\(950\) −20.3322 −0.659664
\(951\) −14.3757 −0.466163
\(952\) −14.9485 −0.484483
\(953\) −26.6149 −0.862141 −0.431071 0.902318i \(-0.641864\pi\)
−0.431071 + 0.902318i \(0.641864\pi\)
\(954\) 8.75180 0.283350
\(955\) −14.9263 −0.483005
\(956\) −19.1291 −0.618680
\(957\) −1.08018 −0.0349174
\(958\) −21.1083 −0.681979
\(959\) −22.1179 −0.714223
\(960\) −1.56155 −0.0503989
\(961\) −20.7418 −0.669089
\(962\) −0.0686177 −0.00221232
\(963\) 3.47034 0.111830
\(964\) 22.2742 0.717404
\(965\) −38.0586 −1.22515
\(966\) −1.95260 −0.0628239
\(967\) 21.6170 0.695156 0.347578 0.937651i \(-0.387004\pi\)
0.347578 + 0.937651i \(0.387004\pi\)
\(968\) 9.83320 0.316051
\(969\) −60.7665 −1.95210
\(970\) 15.8929 0.510292
\(971\) −38.8126 −1.24555 −0.622777 0.782399i \(-0.713996\pi\)
−0.622777 + 0.782399i \(0.713996\pi\)
\(972\) 1.00000 0.0320750
\(973\) 21.1495 0.678022
\(974\) −16.1217 −0.516573
\(975\) 0.559542 0.0179197
\(976\) 5.49373 0.175850
\(977\) −25.5190 −0.816425 −0.408213 0.912887i \(-0.633848\pi\)
−0.408213 + 0.912887i \(0.633848\pi\)
\(978\) 8.25813 0.264066
\(979\) 1.67838 0.0536412
\(980\) 4.97721 0.158991
\(981\) 7.41070 0.236605
\(982\) 23.3137 0.743970
\(983\) 23.3168 0.743691 0.371846 0.928295i \(-0.378725\pi\)
0.371846 + 0.928295i \(0.378725\pi\)
\(984\) −11.4749 −0.365808
\(985\) −23.2145 −0.739675
\(986\) −7.65567 −0.243806
\(987\) 12.1733 0.387479
\(988\) 1.73385 0.0551610
\(989\) 1.34602 0.0428010
\(990\) −1.68677 −0.0536089
\(991\) −30.5696 −0.971076 −0.485538 0.874215i \(-0.661376\pi\)
−0.485538 + 0.874215i \(0.661376\pi\)
\(992\) −3.20285 −0.101691
\(993\) 3.42896 0.108815
\(994\) −10.7726 −0.341687
\(995\) −32.2303 −1.02177
\(996\) 4.40445 0.139560
\(997\) 39.9078 1.26389 0.631947 0.775012i \(-0.282256\pi\)
0.631947 + 0.775012i \(0.282256\pi\)
\(998\) −3.52795 −0.111675
\(999\) −0.314128 −0.00993857
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bf.1.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bf.1.3 6 1.1 even 1 trivial