Properties

Label 4002.2.a.bf.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.6.61157024.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 8x^{4} + 8x^{3} + 17x^{2} - 4x - 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(3.25648\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.56155 q^{5} -1.00000 q^{6} -1.09168 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -1.56155 q^{5} -1.00000 q^{6} -1.09168 q^{7} -1.00000 q^{8} +1.00000 q^{9} +1.56155 q^{10} +4.17571 q^{11} +1.00000 q^{12} -2.33724 q^{13} +1.09168 q^{14} -1.56155 q^{15} +1.00000 q^{16} -0.0496005 q^{17} -1.00000 q^{18} +2.48153 q^{19} -1.56155 q^{20} -1.09168 q^{21} -4.17571 q^{22} +1.00000 q^{23} -1.00000 q^{24} -2.56155 q^{25} +2.33724 q^{26} +1.00000 q^{27} -1.09168 q^{28} +1.00000 q^{29} +1.56155 q^{30} -0.863232 q^{31} -1.00000 q^{32} +4.17571 q^{33} +0.0496005 q^{34} +1.70472 q^{35} +1.00000 q^{36} +9.50994 q^{37} -2.48153 q^{38} -2.33724 q^{39} +1.56155 q^{40} -10.0507 q^{41} +1.09168 q^{42} +1.25320 q^{43} +4.17571 q^{44} -1.56155 q^{45} -1.00000 q^{46} +0.476395 q^{47} +1.00000 q^{48} -5.80823 q^{49} +2.56155 q^{50} -0.0496005 q^{51} -2.33724 q^{52} +12.0862 q^{53} -1.00000 q^{54} -6.52060 q^{55} +1.09168 q^{56} +2.48153 q^{57} -1.00000 q^{58} +1.02075 q^{59} -1.56155 q^{60} +12.5379 q^{61} +0.863232 q^{62} -1.09168 q^{63} +1.00000 q^{64} +3.64972 q^{65} -4.17571 q^{66} -5.94074 q^{67} -0.0496005 q^{68} +1.00000 q^{69} -1.70472 q^{70} +4.49876 q^{71} -1.00000 q^{72} -0.0841599 q^{73} -9.50994 q^{74} -2.56155 q^{75} +2.48153 q^{76} -4.55855 q^{77} +2.33724 q^{78} -12.4528 q^{79} -1.56155 q^{80} +1.00000 q^{81} +10.0507 q^{82} +2.88056 q^{83} -1.09168 q^{84} +0.0774538 q^{85} -1.25320 q^{86} +1.00000 q^{87} -4.17571 q^{88} +6.00654 q^{89} +1.56155 q^{90} +2.55152 q^{91} +1.00000 q^{92} -0.863232 q^{93} -0.476395 q^{94} -3.87503 q^{95} -1.00000 q^{96} -1.94736 q^{97} +5.80823 q^{98} +4.17571 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 6 q - 6 q^{2} + 6 q^{3} + 6 q^{4} + 3 q^{5} - 6 q^{6} + 2 q^{7} - 6 q^{8} + 6 q^{9} - 3 q^{10} + 7 q^{11} + 6 q^{12} + 3 q^{13} - 2 q^{14} + 3 q^{15} + 6 q^{16} + 8 q^{17} - 6 q^{18} - 4 q^{19} + 3 q^{20} + 2 q^{21} - 7 q^{22} + 6 q^{23} - 6 q^{24} - 3 q^{25} - 3 q^{26} + 6 q^{27} + 2 q^{28} + 6 q^{29} - 3 q^{30} + q^{31} - 6 q^{32} + 7 q^{33} - 8 q^{34} + 18 q^{35} + 6 q^{36} + 7 q^{37} + 4 q^{38} + 3 q^{39} - 3 q^{40} + 13 q^{41} - 2 q^{42} + 7 q^{44} + 3 q^{45} - 6 q^{46} + 22 q^{47} + 6 q^{48} + 8 q^{49} + 3 q^{50} + 8 q^{51} + 3 q^{52} + 10 q^{53} - 6 q^{54} - 5 q^{55} - 2 q^{56} - 4 q^{57} - 6 q^{58} + 17 q^{59} + 3 q^{60} + q^{61} - q^{62} + 2 q^{63} + 6 q^{64} - 7 q^{65} - 7 q^{66} + 3 q^{67} + 8 q^{68} + 6 q^{69} - 18 q^{70} + 11 q^{71} - 6 q^{72} - 7 q^{74} - 3 q^{75} - 4 q^{76} - 3 q^{78} + 2 q^{79} + 3 q^{80} + 6 q^{81} - 13 q^{82} + 16 q^{83} + 2 q^{84} + 4 q^{85} + 6 q^{87} - 7 q^{88} + 16 q^{89} - 3 q^{90} - 28 q^{91} + 6 q^{92} + q^{93} - 22 q^{94} + 32 q^{95} - 6 q^{96} + 2 q^{97} - 8 q^{98} + 7 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −1.56155 −0.698348 −0.349174 0.937058i \(-0.613538\pi\)
−0.349174 + 0.937058i \(0.613538\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.09168 −0.412616 −0.206308 0.978487i \(-0.566145\pi\)
−0.206308 + 0.978487i \(0.566145\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 1.56155 0.493806
\(11\) 4.17571 1.25903 0.629513 0.776990i \(-0.283255\pi\)
0.629513 + 0.776990i \(0.283255\pi\)
\(12\) 1.00000 0.288675
\(13\) −2.33724 −0.648233 −0.324116 0.946017i \(-0.605067\pi\)
−0.324116 + 0.946017i \(0.605067\pi\)
\(14\) 1.09168 0.291764
\(15\) −1.56155 −0.403191
\(16\) 1.00000 0.250000
\(17\) −0.0496005 −0.0120299 −0.00601495 0.999982i \(-0.501915\pi\)
−0.00601495 + 0.999982i \(0.501915\pi\)
\(18\) −1.00000 −0.235702
\(19\) 2.48153 0.569301 0.284650 0.958631i \(-0.408122\pi\)
0.284650 + 0.958631i \(0.408122\pi\)
\(20\) −1.56155 −0.349174
\(21\) −1.09168 −0.238224
\(22\) −4.17571 −0.890265
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −2.56155 −0.512311
\(26\) 2.33724 0.458370
\(27\) 1.00000 0.192450
\(28\) −1.09168 −0.206308
\(29\) 1.00000 0.185695
\(30\) 1.56155 0.285099
\(31\) −0.863232 −0.155041 −0.0775205 0.996991i \(-0.524700\pi\)
−0.0775205 + 0.996991i \(0.524700\pi\)
\(32\) −1.00000 −0.176777
\(33\) 4.17571 0.726898
\(34\) 0.0496005 0.00850642
\(35\) 1.70472 0.288150
\(36\) 1.00000 0.166667
\(37\) 9.50994 1.56342 0.781712 0.623639i \(-0.214346\pi\)
0.781712 + 0.623639i \(0.214346\pi\)
\(38\) −2.48153 −0.402557
\(39\) −2.33724 −0.374257
\(40\) 1.56155 0.246903
\(41\) −10.0507 −1.56966 −0.784831 0.619709i \(-0.787251\pi\)
−0.784831 + 0.619709i \(0.787251\pi\)
\(42\) 1.09168 0.168450
\(43\) 1.25320 0.191112 0.0955559 0.995424i \(-0.469537\pi\)
0.0955559 + 0.995424i \(0.469537\pi\)
\(44\) 4.17571 0.629513
\(45\) −1.56155 −0.232783
\(46\) −1.00000 −0.147442
\(47\) 0.476395 0.0694893 0.0347447 0.999396i \(-0.488938\pi\)
0.0347447 + 0.999396i \(0.488938\pi\)
\(48\) 1.00000 0.144338
\(49\) −5.80823 −0.829748
\(50\) 2.56155 0.362258
\(51\) −0.0496005 −0.00694546
\(52\) −2.33724 −0.324116
\(53\) 12.0862 1.66016 0.830081 0.557643i \(-0.188294\pi\)
0.830081 + 0.557643i \(0.188294\pi\)
\(54\) −1.00000 −0.136083
\(55\) −6.52060 −0.879237
\(56\) 1.09168 0.145882
\(57\) 2.48153 0.328686
\(58\) −1.00000 −0.131306
\(59\) 1.02075 0.132890 0.0664451 0.997790i \(-0.478834\pi\)
0.0664451 + 0.997790i \(0.478834\pi\)
\(60\) −1.56155 −0.201596
\(61\) 12.5379 1.60531 0.802654 0.596445i \(-0.203421\pi\)
0.802654 + 0.596445i \(0.203421\pi\)
\(62\) 0.863232 0.109631
\(63\) −1.09168 −0.137539
\(64\) 1.00000 0.125000
\(65\) 3.64972 0.452692
\(66\) −4.17571 −0.513995
\(67\) −5.94074 −0.725777 −0.362889 0.931833i \(-0.618209\pi\)
−0.362889 + 0.931833i \(0.618209\pi\)
\(68\) −0.0496005 −0.00601495
\(69\) 1.00000 0.120386
\(70\) −1.70472 −0.203753
\(71\) 4.49876 0.533905 0.266952 0.963710i \(-0.413983\pi\)
0.266952 + 0.963710i \(0.413983\pi\)
\(72\) −1.00000 −0.117851
\(73\) −0.0841599 −0.00985017 −0.00492508 0.999988i \(-0.501568\pi\)
−0.00492508 + 0.999988i \(0.501568\pi\)
\(74\) −9.50994 −1.10551
\(75\) −2.56155 −0.295783
\(76\) 2.48153 0.284650
\(77\) −4.55855 −0.519494
\(78\) 2.33724 0.264640
\(79\) −12.4528 −1.40105 −0.700527 0.713626i \(-0.747052\pi\)
−0.700527 + 0.713626i \(0.747052\pi\)
\(80\) −1.56155 −0.174587
\(81\) 1.00000 0.111111
\(82\) 10.0507 1.10992
\(83\) 2.88056 0.316182 0.158091 0.987425i \(-0.449466\pi\)
0.158091 + 0.987425i \(0.449466\pi\)
\(84\) −1.09168 −0.119112
\(85\) 0.0774538 0.00840105
\(86\) −1.25320 −0.135136
\(87\) 1.00000 0.107211
\(88\) −4.17571 −0.445133
\(89\) 6.00654 0.636692 0.318346 0.947975i \(-0.396873\pi\)
0.318346 + 0.947975i \(0.396873\pi\)
\(90\) 1.56155 0.164602
\(91\) 2.55152 0.267472
\(92\) 1.00000 0.104257
\(93\) −0.863232 −0.0895130
\(94\) −0.476395 −0.0491364
\(95\) −3.87503 −0.397570
\(96\) −1.00000 −0.102062
\(97\) −1.94736 −0.197724 −0.0988620 0.995101i \(-0.531520\pi\)
−0.0988620 + 0.995101i \(0.531520\pi\)
\(98\) 5.80823 0.586720
\(99\) 4.17571 0.419675
\(100\) −2.56155 −0.256155
\(101\) −5.25322 −0.522715 −0.261358 0.965242i \(-0.584170\pi\)
−0.261358 + 0.965242i \(0.584170\pi\)
\(102\) 0.0496005 0.00491118
\(103\) −8.89875 −0.876820 −0.438410 0.898775i \(-0.644458\pi\)
−0.438410 + 0.898775i \(0.644458\pi\)
\(104\) 2.33724 0.229185
\(105\) 1.70472 0.166363
\(106\) −12.0862 −1.17391
\(107\) 13.2016 1.27625 0.638123 0.769934i \(-0.279711\pi\)
0.638123 + 0.769934i \(0.279711\pi\)
\(108\) 1.00000 0.0962250
\(109\) 8.74896 0.837998 0.418999 0.907987i \(-0.362381\pi\)
0.418999 + 0.907987i \(0.362381\pi\)
\(110\) 6.52060 0.621715
\(111\) 9.50994 0.902644
\(112\) −1.09168 −0.103154
\(113\) 7.68513 0.722956 0.361478 0.932381i \(-0.382272\pi\)
0.361478 + 0.932381i \(0.382272\pi\)
\(114\) −2.48153 −0.232416
\(115\) −1.56155 −0.145616
\(116\) 1.00000 0.0928477
\(117\) −2.33724 −0.216078
\(118\) −1.02075 −0.0939676
\(119\) 0.0541479 0.00496373
\(120\) 1.56155 0.142550
\(121\) 6.43659 0.585144
\(122\) −12.5379 −1.13512
\(123\) −10.0507 −0.906245
\(124\) −0.863232 −0.0775205
\(125\) 11.8078 1.05612
\(126\) 1.09168 0.0972546
\(127\) 8.68622 0.770777 0.385389 0.922754i \(-0.374067\pi\)
0.385389 + 0.922754i \(0.374067\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 1.25320 0.110338
\(130\) −3.64972 −0.320101
\(131\) 6.21366 0.542890 0.271445 0.962454i \(-0.412498\pi\)
0.271445 + 0.962454i \(0.412498\pi\)
\(132\) 4.17571 0.363449
\(133\) −2.70903 −0.234903
\(134\) 5.94074 0.513202
\(135\) −1.56155 −0.134397
\(136\) 0.0496005 0.00425321
\(137\) −0.911891 −0.0779081 −0.0389541 0.999241i \(-0.512403\pi\)
−0.0389541 + 0.999241i \(0.512403\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −11.2926 −0.957829 −0.478915 0.877861i \(-0.658970\pi\)
−0.478915 + 0.877861i \(0.658970\pi\)
\(140\) 1.70472 0.144075
\(141\) 0.476395 0.0401197
\(142\) −4.49876 −0.377528
\(143\) −9.75963 −0.816141
\(144\) 1.00000 0.0833333
\(145\) −1.56155 −0.129680
\(146\) 0.0841599 0.00696512
\(147\) −5.80823 −0.479055
\(148\) 9.50994 0.781712
\(149\) 23.8180 1.95125 0.975624 0.219447i \(-0.0704254\pi\)
0.975624 + 0.219447i \(0.0704254\pi\)
\(150\) 2.56155 0.209150
\(151\) −1.04295 −0.0848742 −0.0424371 0.999099i \(-0.513512\pi\)
−0.0424371 + 0.999099i \(0.513512\pi\)
\(152\) −2.48153 −0.201278
\(153\) −0.0496005 −0.00400996
\(154\) 4.55855 0.367338
\(155\) 1.34798 0.108273
\(156\) −2.33724 −0.187129
\(157\) 8.45317 0.674636 0.337318 0.941391i \(-0.390480\pi\)
0.337318 + 0.941391i \(0.390480\pi\)
\(158\) 12.4528 0.990695
\(159\) 12.0862 0.958495
\(160\) 1.56155 0.123452
\(161\) −1.09168 −0.0860365
\(162\) −1.00000 −0.0785674
\(163\) −11.2362 −0.880085 −0.440043 0.897977i \(-0.645037\pi\)
−0.440043 + 0.897977i \(0.645037\pi\)
\(164\) −10.0507 −0.784831
\(165\) −6.52060 −0.507628
\(166\) −2.88056 −0.223575
\(167\) 21.8033 1.68719 0.843595 0.536979i \(-0.180435\pi\)
0.843595 + 0.536979i \(0.180435\pi\)
\(168\) 1.09168 0.0842250
\(169\) −7.53732 −0.579794
\(170\) −0.0774538 −0.00594044
\(171\) 2.48153 0.189767
\(172\) 1.25320 0.0955559
\(173\) 19.8579 1.50977 0.754884 0.655859i \(-0.227693\pi\)
0.754884 + 0.655859i \(0.227693\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 2.79640 0.211388
\(176\) 4.17571 0.314756
\(177\) 1.02075 0.0767242
\(178\) −6.00654 −0.450209
\(179\) 18.8470 1.40869 0.704347 0.709856i \(-0.251240\pi\)
0.704347 + 0.709856i \(0.251240\pi\)
\(180\) −1.56155 −0.116391
\(181\) 2.27965 0.169445 0.0847224 0.996405i \(-0.473000\pi\)
0.0847224 + 0.996405i \(0.473000\pi\)
\(182\) −2.55152 −0.189131
\(183\) 12.5379 0.926825
\(184\) −1.00000 −0.0737210
\(185\) −14.8503 −1.09181
\(186\) 0.863232 0.0632952
\(187\) −0.207118 −0.0151459
\(188\) 0.476395 0.0347447
\(189\) −1.09168 −0.0794081
\(190\) 3.87503 0.281124
\(191\) 7.53267 0.545045 0.272522 0.962149i \(-0.412142\pi\)
0.272522 + 0.962149i \(0.412142\pi\)
\(192\) 1.00000 0.0721688
\(193\) 9.96590 0.717361 0.358681 0.933460i \(-0.383227\pi\)
0.358681 + 0.933460i \(0.383227\pi\)
\(194\) 1.94736 0.139812
\(195\) 3.64972 0.261362
\(196\) −5.80823 −0.414874
\(197\) 26.3071 1.87430 0.937150 0.348927i \(-0.113454\pi\)
0.937150 + 0.348927i \(0.113454\pi\)
\(198\) −4.17571 −0.296755
\(199\) −20.8469 −1.47779 −0.738897 0.673818i \(-0.764653\pi\)
−0.738897 + 0.673818i \(0.764653\pi\)
\(200\) 2.56155 0.181129
\(201\) −5.94074 −0.419028
\(202\) 5.25322 0.369616
\(203\) −1.09168 −0.0766209
\(204\) −0.0496005 −0.00347273
\(205\) 15.6948 1.09617
\(206\) 8.89875 0.620006
\(207\) 1.00000 0.0695048
\(208\) −2.33724 −0.162058
\(209\) 10.3621 0.716764
\(210\) −1.70472 −0.117637
\(211\) 16.2882 1.12132 0.560662 0.828045i \(-0.310547\pi\)
0.560662 + 0.828045i \(0.310547\pi\)
\(212\) 12.0862 0.830081
\(213\) 4.49876 0.308250
\(214\) −13.2016 −0.902442
\(215\) −1.95694 −0.133462
\(216\) −1.00000 −0.0680414
\(217\) 0.942373 0.0639725
\(218\) −8.74896 −0.592554
\(219\) −0.0841599 −0.00568700
\(220\) −6.52060 −0.439619
\(221\) 0.115928 0.00779817
\(222\) −9.50994 −0.638266
\(223\) 25.2440 1.69047 0.845233 0.534399i \(-0.179462\pi\)
0.845233 + 0.534399i \(0.179462\pi\)
\(224\) 1.09168 0.0729410
\(225\) −2.56155 −0.170770
\(226\) −7.68513 −0.511207
\(227\) 3.68658 0.244687 0.122343 0.992488i \(-0.460959\pi\)
0.122343 + 0.992488i \(0.460959\pi\)
\(228\) 2.48153 0.164343
\(229\) −13.8676 −0.916399 −0.458200 0.888849i \(-0.651506\pi\)
−0.458200 + 0.888849i \(0.651506\pi\)
\(230\) 1.56155 0.102966
\(231\) −4.55855 −0.299930
\(232\) −1.00000 −0.0656532
\(233\) −7.48280 −0.490214 −0.245107 0.969496i \(-0.578823\pi\)
−0.245107 + 0.969496i \(0.578823\pi\)
\(234\) 2.33724 0.152790
\(235\) −0.743916 −0.0485277
\(236\) 1.02075 0.0664451
\(237\) −12.4528 −0.808899
\(238\) −0.0541479 −0.00350989
\(239\) −7.00761 −0.453285 −0.226642 0.973978i \(-0.572775\pi\)
−0.226642 + 0.973978i \(0.572775\pi\)
\(240\) −1.56155 −0.100798
\(241\) −11.6699 −0.751722 −0.375861 0.926676i \(-0.622653\pi\)
−0.375861 + 0.926676i \(0.622653\pi\)
\(242\) −6.43659 −0.413759
\(243\) 1.00000 0.0641500
\(244\) 12.5379 0.802654
\(245\) 9.06986 0.579452
\(246\) 10.0507 0.640812
\(247\) −5.79991 −0.369040
\(248\) 0.863232 0.0548153
\(249\) 2.88056 0.182548
\(250\) −11.8078 −0.746789
\(251\) −11.2276 −0.708681 −0.354341 0.935116i \(-0.615295\pi\)
−0.354341 + 0.935116i \(0.615295\pi\)
\(252\) −1.09168 −0.0687694
\(253\) 4.17571 0.262525
\(254\) −8.68622 −0.545022
\(255\) 0.0774538 0.00485035
\(256\) 1.00000 0.0625000
\(257\) 10.5404 0.657494 0.328747 0.944418i \(-0.393374\pi\)
0.328747 + 0.944418i \(0.393374\pi\)
\(258\) −1.25320 −0.0780210
\(259\) −10.3818 −0.645095
\(260\) 3.64972 0.226346
\(261\) 1.00000 0.0618984
\(262\) −6.21366 −0.383881
\(263\) 8.49927 0.524087 0.262044 0.965056i \(-0.415604\pi\)
0.262044 + 0.965056i \(0.415604\pi\)
\(264\) −4.17571 −0.256997
\(265\) −18.8732 −1.15937
\(266\) 2.70903 0.166101
\(267\) 6.00654 0.367595
\(268\) −5.94074 −0.362889
\(269\) 21.0059 1.28075 0.640375 0.768062i \(-0.278779\pi\)
0.640375 + 0.768062i \(0.278779\pi\)
\(270\) 1.56155 0.0950331
\(271\) −12.1608 −0.738713 −0.369356 0.929288i \(-0.620422\pi\)
−0.369356 + 0.929288i \(0.620422\pi\)
\(272\) −0.0496005 −0.00300747
\(273\) 2.55152 0.154425
\(274\) 0.911891 0.0550894
\(275\) −10.6963 −0.645012
\(276\) 1.00000 0.0601929
\(277\) −17.4450 −1.04817 −0.524086 0.851666i \(-0.675593\pi\)
−0.524086 + 0.851666i \(0.675593\pi\)
\(278\) 11.2926 0.677288
\(279\) −0.863232 −0.0516803
\(280\) −1.70472 −0.101876
\(281\) −7.84868 −0.468213 −0.234107 0.972211i \(-0.575216\pi\)
−0.234107 + 0.972211i \(0.575216\pi\)
\(282\) −0.476395 −0.0283689
\(283\) 12.7594 0.758468 0.379234 0.925301i \(-0.376187\pi\)
0.379234 + 0.925301i \(0.376187\pi\)
\(284\) 4.49876 0.266952
\(285\) −3.87503 −0.229537
\(286\) 9.75963 0.577099
\(287\) 10.9722 0.647669
\(288\) −1.00000 −0.0589256
\(289\) −16.9975 −0.999855
\(290\) 1.56155 0.0916975
\(291\) −1.94736 −0.114156
\(292\) −0.0841599 −0.00492508
\(293\) −28.2425 −1.64995 −0.824973 0.565171i \(-0.808810\pi\)
−0.824973 + 0.565171i \(0.808810\pi\)
\(294\) 5.80823 0.338743
\(295\) −1.59395 −0.0928036
\(296\) −9.50994 −0.552754
\(297\) 4.17571 0.242299
\(298\) −23.8180 −1.37974
\(299\) −2.33724 −0.135166
\(300\) −2.56155 −0.147891
\(301\) −1.36810 −0.0788558
\(302\) 1.04295 0.0600151
\(303\) −5.25322 −0.301790
\(304\) 2.48153 0.142325
\(305\) −19.5785 −1.12106
\(306\) 0.0496005 0.00283547
\(307\) 27.0167 1.54192 0.770962 0.636881i \(-0.219776\pi\)
0.770962 + 0.636881i \(0.219776\pi\)
\(308\) −4.55855 −0.259747
\(309\) −8.89875 −0.506232
\(310\) −1.34798 −0.0765602
\(311\) −19.8500 −1.12559 −0.562794 0.826597i \(-0.690274\pi\)
−0.562794 + 0.826597i \(0.690274\pi\)
\(312\) 2.33724 0.132320
\(313\) 22.0844 1.24829 0.624143 0.781310i \(-0.285448\pi\)
0.624143 + 0.781310i \(0.285448\pi\)
\(314\) −8.45317 −0.477040
\(315\) 1.70472 0.0960499
\(316\) −12.4528 −0.700527
\(317\) −14.4579 −0.812034 −0.406017 0.913865i \(-0.633083\pi\)
−0.406017 + 0.913865i \(0.633083\pi\)
\(318\) −12.0862 −0.677758
\(319\) 4.17571 0.233795
\(320\) −1.56155 −0.0872935
\(321\) 13.2016 0.736841
\(322\) 1.09168 0.0608370
\(323\) −0.123085 −0.00684863
\(324\) 1.00000 0.0555556
\(325\) 5.98696 0.332097
\(326\) 11.2362 0.622314
\(327\) 8.74896 0.483818
\(328\) 10.0507 0.554960
\(329\) −0.520071 −0.0286724
\(330\) 6.52060 0.358947
\(331\) 11.8220 0.649793 0.324897 0.945750i \(-0.394670\pi\)
0.324897 + 0.945750i \(0.394670\pi\)
\(332\) 2.88056 0.158091
\(333\) 9.50994 0.521142
\(334\) −21.8033 −1.19302
\(335\) 9.27678 0.506845
\(336\) −1.09168 −0.0595561
\(337\) 23.0539 1.25583 0.627914 0.778283i \(-0.283909\pi\)
0.627914 + 0.778283i \(0.283909\pi\)
\(338\) 7.53732 0.409976
\(339\) 7.68513 0.417399
\(340\) 0.0774538 0.00420052
\(341\) −3.60461 −0.195201
\(342\) −2.48153 −0.134186
\(343\) 13.9825 0.754984
\(344\) −1.25320 −0.0675682
\(345\) −1.56155 −0.0840712
\(346\) −19.8579 −1.06757
\(347\) 7.83831 0.420783 0.210391 0.977617i \(-0.432526\pi\)
0.210391 + 0.977617i \(0.432526\pi\)
\(348\) 1.00000 0.0536056
\(349\) 31.4883 1.68553 0.842764 0.538283i \(-0.180927\pi\)
0.842764 + 0.538283i \(0.180927\pi\)
\(350\) −2.79640 −0.149474
\(351\) −2.33724 −0.124752
\(352\) −4.17571 −0.222566
\(353\) −18.5107 −0.985223 −0.492611 0.870249i \(-0.663958\pi\)
−0.492611 + 0.870249i \(0.663958\pi\)
\(354\) −1.02075 −0.0542522
\(355\) −7.02505 −0.372851
\(356\) 6.00654 0.318346
\(357\) 0.0541479 0.00286581
\(358\) −18.8470 −0.996097
\(359\) 14.0031 0.739056 0.369528 0.929220i \(-0.379519\pi\)
0.369528 + 0.929220i \(0.379519\pi\)
\(360\) 1.56155 0.0823011
\(361\) −12.8420 −0.675896
\(362\) −2.27965 −0.119816
\(363\) 6.43659 0.337833
\(364\) 2.55152 0.133736
\(365\) 0.131420 0.00687884
\(366\) −12.5379 −0.655364
\(367\) −7.29534 −0.380814 −0.190407 0.981705i \(-0.560981\pi\)
−0.190407 + 0.981705i \(0.560981\pi\)
\(368\) 1.00000 0.0521286
\(369\) −10.0507 −0.523221
\(370\) 14.8503 0.772029
\(371\) −13.1942 −0.685010
\(372\) −0.863232 −0.0447565
\(373\) 10.4473 0.540939 0.270469 0.962729i \(-0.412821\pi\)
0.270469 + 0.962729i \(0.412821\pi\)
\(374\) 0.207118 0.0107098
\(375\) 11.8078 0.609750
\(376\) −0.476395 −0.0245682
\(377\) −2.33724 −0.120374
\(378\) 1.09168 0.0561500
\(379\) −23.0878 −1.18594 −0.592969 0.805225i \(-0.702044\pi\)
−0.592969 + 0.805225i \(0.702044\pi\)
\(380\) −3.87503 −0.198785
\(381\) 8.68622 0.445008
\(382\) −7.53267 −0.385405
\(383\) −0.256923 −0.0131282 −0.00656408 0.999978i \(-0.502089\pi\)
−0.00656408 + 0.999978i \(0.502089\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 7.11841 0.362788
\(386\) −9.96590 −0.507251
\(387\) 1.25320 0.0637039
\(388\) −1.94736 −0.0988620
\(389\) 7.92122 0.401622 0.200811 0.979630i \(-0.435642\pi\)
0.200811 + 0.979630i \(0.435642\pi\)
\(390\) −3.64972 −0.184811
\(391\) −0.0496005 −0.00250841
\(392\) 5.80823 0.293360
\(393\) 6.21366 0.313438
\(394\) −26.3071 −1.32533
\(395\) 19.4458 0.978423
\(396\) 4.17571 0.209838
\(397\) 1.32515 0.0665072 0.0332536 0.999447i \(-0.489413\pi\)
0.0332536 + 0.999447i \(0.489413\pi\)
\(398\) 20.8469 1.04496
\(399\) −2.70903 −0.135621
\(400\) −2.56155 −0.128078
\(401\) −12.8447 −0.641433 −0.320716 0.947175i \(-0.603924\pi\)
−0.320716 + 0.947175i \(0.603924\pi\)
\(402\) 5.94074 0.296297
\(403\) 2.01758 0.100503
\(404\) −5.25322 −0.261358
\(405\) −1.56155 −0.0775942
\(406\) 1.09168 0.0541792
\(407\) 39.7108 1.96839
\(408\) 0.0496005 0.00245559
\(409\) 19.8318 0.980618 0.490309 0.871549i \(-0.336884\pi\)
0.490309 + 0.871549i \(0.336884\pi\)
\(410\) −15.6948 −0.775110
\(411\) −0.911891 −0.0449803
\(412\) −8.89875 −0.438410
\(413\) −1.11433 −0.0548327
\(414\) −1.00000 −0.0491473
\(415\) −4.49814 −0.220805
\(416\) 2.33724 0.114592
\(417\) −11.2926 −0.553003
\(418\) −10.3621 −0.506829
\(419\) −26.4475 −1.29205 −0.646023 0.763318i \(-0.723569\pi\)
−0.646023 + 0.763318i \(0.723569\pi\)
\(420\) 1.70472 0.0831817
\(421\) −30.6760 −1.49505 −0.747527 0.664231i \(-0.768759\pi\)
−0.747527 + 0.664231i \(0.768759\pi\)
\(422\) −16.2882 −0.792895
\(423\) 0.476395 0.0231631
\(424\) −12.0862 −0.586956
\(425\) 0.127054 0.00616304
\(426\) −4.49876 −0.217966
\(427\) −13.6873 −0.662376
\(428\) 13.2016 0.638123
\(429\) −9.75963 −0.471199
\(430\) 1.95694 0.0943722
\(431\) 7.12066 0.342990 0.171495 0.985185i \(-0.445140\pi\)
0.171495 + 0.985185i \(0.445140\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.3538 −0.785914 −0.392957 0.919557i \(-0.628548\pi\)
−0.392957 + 0.919557i \(0.628548\pi\)
\(434\) −0.942373 −0.0452354
\(435\) −1.56155 −0.0748707
\(436\) 8.74896 0.418999
\(437\) 2.48153 0.118707
\(438\) 0.0841599 0.00402131
\(439\) 1.08369 0.0517216 0.0258608 0.999666i \(-0.491767\pi\)
0.0258608 + 0.999666i \(0.491767\pi\)
\(440\) 6.52060 0.310857
\(441\) −5.80823 −0.276583
\(442\) −0.115928 −0.00551414
\(443\) 33.3307 1.58359 0.791794 0.610788i \(-0.209147\pi\)
0.791794 + 0.610788i \(0.209147\pi\)
\(444\) 9.50994 0.451322
\(445\) −9.37954 −0.444633
\(446\) −25.2440 −1.19534
\(447\) 23.8180 1.12655
\(448\) −1.09168 −0.0515771
\(449\) 28.8753 1.36271 0.681356 0.731952i \(-0.261391\pi\)
0.681356 + 0.731952i \(0.261391\pi\)
\(450\) 2.56155 0.120753
\(451\) −41.9690 −1.97624
\(452\) 7.68513 0.361478
\(453\) −1.04295 −0.0490021
\(454\) −3.68658 −0.173020
\(455\) −3.98433 −0.186788
\(456\) −2.48153 −0.116208
\(457\) 17.8905 0.836883 0.418442 0.908244i \(-0.362576\pi\)
0.418442 + 0.908244i \(0.362576\pi\)
\(458\) 13.8676 0.647992
\(459\) −0.0496005 −0.00231515
\(460\) −1.56155 −0.0728078
\(461\) 13.3187 0.620314 0.310157 0.950685i \(-0.399618\pi\)
0.310157 + 0.950685i \(0.399618\pi\)
\(462\) 4.55855 0.212083
\(463\) 34.3982 1.59862 0.799309 0.600920i \(-0.205199\pi\)
0.799309 + 0.600920i \(0.205199\pi\)
\(464\) 1.00000 0.0464238
\(465\) 1.34798 0.0625112
\(466\) 7.48280 0.346634
\(467\) −1.96503 −0.0909307 −0.0454653 0.998966i \(-0.514477\pi\)
−0.0454653 + 0.998966i \(0.514477\pi\)
\(468\) −2.33724 −0.108039
\(469\) 6.48539 0.299468
\(470\) 0.743916 0.0343143
\(471\) 8.45317 0.389501
\(472\) −1.02075 −0.0469838
\(473\) 5.23302 0.240614
\(474\) 12.4528 0.571978
\(475\) −6.35656 −0.291659
\(476\) 0.0541479 0.00248187
\(477\) 12.0862 0.553387
\(478\) 7.00761 0.320521
\(479\) −39.6404 −1.81122 −0.905608 0.424115i \(-0.860585\pi\)
−0.905608 + 0.424115i \(0.860585\pi\)
\(480\) 1.56155 0.0712748
\(481\) −22.2270 −1.01346
\(482\) 11.6699 0.531548
\(483\) −1.09168 −0.0496732
\(484\) 6.43659 0.292572
\(485\) 3.04090 0.138080
\(486\) −1.00000 −0.0453609
\(487\) −3.79426 −0.171934 −0.0859672 0.996298i \(-0.527398\pi\)
−0.0859672 + 0.996298i \(0.527398\pi\)
\(488\) −12.5379 −0.567562
\(489\) −11.2362 −0.508117
\(490\) −9.06986 −0.409735
\(491\) 11.5859 0.522865 0.261432 0.965222i \(-0.415805\pi\)
0.261432 + 0.965222i \(0.415805\pi\)
\(492\) −10.0507 −0.453123
\(493\) −0.0496005 −0.00223390
\(494\) 5.79991 0.260950
\(495\) −6.52060 −0.293079
\(496\) −0.863232 −0.0387603
\(497\) −4.91121 −0.220298
\(498\) −2.88056 −0.129081
\(499\) 17.2466 0.772063 0.386032 0.922485i \(-0.373846\pi\)
0.386032 + 0.922485i \(0.373846\pi\)
\(500\) 11.8078 0.528059
\(501\) 21.8033 0.974100
\(502\) 11.2276 0.501113
\(503\) 3.11973 0.139102 0.0695510 0.997578i \(-0.477843\pi\)
0.0695510 + 0.997578i \(0.477843\pi\)
\(504\) 1.09168 0.0486273
\(505\) 8.20319 0.365037
\(506\) −4.17571 −0.185633
\(507\) −7.53732 −0.334744
\(508\) 8.68622 0.385389
\(509\) −32.6519 −1.44727 −0.723636 0.690182i \(-0.757530\pi\)
−0.723636 + 0.690182i \(0.757530\pi\)
\(510\) −0.0774538 −0.00342971
\(511\) 0.0918757 0.00406434
\(512\) −1.00000 −0.0441942
\(513\) 2.48153 0.109562
\(514\) −10.5404 −0.464918
\(515\) 13.8959 0.612325
\(516\) 1.25320 0.0551692
\(517\) 1.98929 0.0874888
\(518\) 10.3818 0.456151
\(519\) 19.8579 0.871665
\(520\) −3.64972 −0.160051
\(521\) 31.6386 1.38611 0.693056 0.720884i \(-0.256264\pi\)
0.693056 + 0.720884i \(0.256264\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −2.36350 −0.103348 −0.0516742 0.998664i \(-0.516456\pi\)
−0.0516742 + 0.998664i \(0.516456\pi\)
\(524\) 6.21366 0.271445
\(525\) 2.79640 0.122045
\(526\) −8.49927 −0.370586
\(527\) 0.0428168 0.00186513
\(528\) 4.17571 0.181725
\(529\) 1.00000 0.0434783
\(530\) 18.8732 0.819798
\(531\) 1.02075 0.0442967
\(532\) −2.70903 −0.117451
\(533\) 23.4910 1.01751
\(534\) −6.00654 −0.259929
\(535\) −20.6150 −0.891264
\(536\) 5.94074 0.256601
\(537\) 18.8470 0.813310
\(538\) −21.0059 −0.905628
\(539\) −24.2535 −1.04467
\(540\) −1.56155 −0.0671985
\(541\) 5.29517 0.227657 0.113829 0.993500i \(-0.463689\pi\)
0.113829 + 0.993500i \(0.463689\pi\)
\(542\) 12.1608 0.522349
\(543\) 2.27965 0.0978290
\(544\) 0.0496005 0.00212661
\(545\) −13.6620 −0.585214
\(546\) −2.55152 −0.109195
\(547\) 8.49153 0.363071 0.181536 0.983384i \(-0.441893\pi\)
0.181536 + 0.983384i \(0.441893\pi\)
\(548\) −0.911891 −0.0389541
\(549\) 12.5379 0.535103
\(550\) 10.6963 0.456092
\(551\) 2.48153 0.105717
\(552\) −1.00000 −0.0425628
\(553\) 13.5945 0.578098
\(554\) 17.4450 0.741169
\(555\) −14.8503 −0.630359
\(556\) −11.2926 −0.478915
\(557\) 28.0884 1.19014 0.595071 0.803673i \(-0.297124\pi\)
0.595071 + 0.803673i \(0.297124\pi\)
\(558\) 0.863232 0.0365435
\(559\) −2.92903 −0.123885
\(560\) 1.70472 0.0720374
\(561\) −0.207118 −0.00874451
\(562\) 7.84868 0.331077
\(563\) −25.3800 −1.06964 −0.534820 0.844966i \(-0.679621\pi\)
−0.534820 + 0.844966i \(0.679621\pi\)
\(564\) 0.476395 0.0200598
\(565\) −12.0007 −0.504875
\(566\) −12.7594 −0.536318
\(567\) −1.09168 −0.0458463
\(568\) −4.49876 −0.188764
\(569\) −39.3891 −1.65128 −0.825638 0.564201i \(-0.809184\pi\)
−0.825638 + 0.564201i \(0.809184\pi\)
\(570\) 3.87503 0.162307
\(571\) −21.0685 −0.881689 −0.440845 0.897583i \(-0.645321\pi\)
−0.440845 + 0.897583i \(0.645321\pi\)
\(572\) −9.75963 −0.408071
\(573\) 7.53267 0.314682
\(574\) −10.9722 −0.457971
\(575\) −2.56155 −0.106824
\(576\) 1.00000 0.0416667
\(577\) 12.3825 0.515491 0.257745 0.966213i \(-0.417020\pi\)
0.257745 + 0.966213i \(0.417020\pi\)
\(578\) 16.9975 0.707004
\(579\) 9.96590 0.414169
\(580\) −1.56155 −0.0648400
\(581\) −3.14465 −0.130462
\(582\) 1.94736 0.0807205
\(583\) 50.4683 2.09018
\(584\) 0.0841599 0.00348256
\(585\) 3.64972 0.150897
\(586\) 28.2425 1.16669
\(587\) −25.5585 −1.05491 −0.527456 0.849583i \(-0.676854\pi\)
−0.527456 + 0.849583i \(0.676854\pi\)
\(588\) −5.80823 −0.239528
\(589\) −2.14213 −0.0882650
\(590\) 1.59395 0.0656220
\(591\) 26.3071 1.08213
\(592\) 9.50994 0.390856
\(593\) −3.82566 −0.157101 −0.0785506 0.996910i \(-0.525029\pi\)
−0.0785506 + 0.996910i \(0.525029\pi\)
\(594\) −4.17571 −0.171332
\(595\) −0.0845548 −0.00346641
\(596\) 23.8180 0.975624
\(597\) −20.8469 −0.853205
\(598\) 2.33724 0.0955767
\(599\) 11.6902 0.477650 0.238825 0.971063i \(-0.423238\pi\)
0.238825 + 0.971063i \(0.423238\pi\)
\(600\) 2.56155 0.104575
\(601\) −0.585128 −0.0238679 −0.0119339 0.999929i \(-0.503799\pi\)
−0.0119339 + 0.999929i \(0.503799\pi\)
\(602\) 1.36810 0.0557595
\(603\) −5.94074 −0.241926
\(604\) −1.04295 −0.0424371
\(605\) −10.0511 −0.408634
\(606\) 5.25322 0.213398
\(607\) 39.8131 1.61596 0.807981 0.589208i \(-0.200560\pi\)
0.807981 + 0.589208i \(0.200560\pi\)
\(608\) −2.48153 −0.100639
\(609\) −1.09168 −0.0442371
\(610\) 19.5785 0.792711
\(611\) −1.11345 −0.0450453
\(612\) −0.0496005 −0.00200498
\(613\) −1.27058 −0.0513184 −0.0256592 0.999671i \(-0.508168\pi\)
−0.0256592 + 0.999671i \(0.508168\pi\)
\(614\) −27.0167 −1.09031
\(615\) 15.6948 0.632874
\(616\) 4.55855 0.183669
\(617\) −33.8494 −1.36273 −0.681363 0.731946i \(-0.738612\pi\)
−0.681363 + 0.731946i \(0.738612\pi\)
\(618\) 8.89875 0.357960
\(619\) −15.4618 −0.621463 −0.310732 0.950498i \(-0.600574\pi\)
−0.310732 + 0.950498i \(0.600574\pi\)
\(620\) 1.34798 0.0541363
\(621\) 1.00000 0.0401286
\(622\) 19.8500 0.795911
\(623\) −6.55723 −0.262710
\(624\) −2.33724 −0.0935643
\(625\) −5.63068 −0.225227
\(626\) −22.0844 −0.882672
\(627\) 10.3621 0.413824
\(628\) 8.45317 0.337318
\(629\) −0.471698 −0.0188078
\(630\) −1.70472 −0.0679175
\(631\) 46.4443 1.84892 0.924458 0.381283i \(-0.124518\pi\)
0.924458 + 0.381283i \(0.124518\pi\)
\(632\) 12.4528 0.495348
\(633\) 16.2882 0.647396
\(634\) 14.4579 0.574195
\(635\) −13.5640 −0.538270
\(636\) 12.0862 0.479247
\(637\) 13.5752 0.537870
\(638\) −4.17571 −0.165318
\(639\) 4.49876 0.177968
\(640\) 1.56155 0.0617258
\(641\) −22.8093 −0.900913 −0.450456 0.892798i \(-0.648739\pi\)
−0.450456 + 0.892798i \(0.648739\pi\)
\(642\) −13.2016 −0.521025
\(643\) −24.7068 −0.974341 −0.487170 0.873307i \(-0.661971\pi\)
−0.487170 + 0.873307i \(0.661971\pi\)
\(644\) −1.09168 −0.0430182
\(645\) −1.95694 −0.0770546
\(646\) 0.123085 0.00484271
\(647\) 45.9049 1.80471 0.902354 0.430997i \(-0.141838\pi\)
0.902354 + 0.430997i \(0.141838\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 4.26236 0.167312
\(650\) −5.98696 −0.234828
\(651\) 0.942373 0.0369345
\(652\) −11.2362 −0.440043
\(653\) 5.69081 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(654\) −8.74896 −0.342111
\(655\) −9.70296 −0.379126
\(656\) −10.0507 −0.392416
\(657\) −0.0841599 −0.00328339
\(658\) 0.520071 0.0202745
\(659\) 27.7285 1.08015 0.540074 0.841617i \(-0.318396\pi\)
0.540074 + 0.841617i \(0.318396\pi\)
\(660\) −6.52060 −0.253814
\(661\) 33.7073 1.31106 0.655532 0.755168i \(-0.272444\pi\)
0.655532 + 0.755168i \(0.272444\pi\)
\(662\) −11.8220 −0.459473
\(663\) 0.115928 0.00450228
\(664\) −2.88056 −0.111787
\(665\) 4.23030 0.164044
\(666\) −9.50994 −0.368503
\(667\) 1.00000 0.0387202
\(668\) 21.8033 0.843595
\(669\) 25.2440 0.975990
\(670\) −9.27678 −0.358393
\(671\) 52.3545 2.02112
\(672\) 1.09168 0.0421125
\(673\) −45.6883 −1.76116 −0.880578 0.473902i \(-0.842845\pi\)
−0.880578 + 0.473902i \(0.842845\pi\)
\(674\) −23.0539 −0.888005
\(675\) −2.56155 −0.0985942
\(676\) −7.53732 −0.289897
\(677\) −20.8448 −0.801133 −0.400566 0.916268i \(-0.631187\pi\)
−0.400566 + 0.916268i \(0.631187\pi\)
\(678\) −7.68513 −0.295146
\(679\) 2.12589 0.0815842
\(680\) −0.0774538 −0.00297022
\(681\) 3.68658 0.141270
\(682\) 3.60461 0.138028
\(683\) −13.1760 −0.504167 −0.252083 0.967706i \(-0.581116\pi\)
−0.252083 + 0.967706i \(0.581116\pi\)
\(684\) 2.48153 0.0948835
\(685\) 1.42397 0.0544070
\(686\) −13.9825 −0.533854
\(687\) −13.8676 −0.529083
\(688\) 1.25320 0.0477779
\(689\) −28.2482 −1.07617
\(690\) 1.56155 0.0594473
\(691\) −7.77578 −0.295804 −0.147902 0.989002i \(-0.547252\pi\)
−0.147902 + 0.989002i \(0.547252\pi\)
\(692\) 19.8579 0.754884
\(693\) −4.55855 −0.173165
\(694\) −7.83831 −0.297538
\(695\) 17.6341 0.668898
\(696\) −1.00000 −0.0379049
\(697\) 0.498522 0.0188829
\(698\) −31.4883 −1.19185
\(699\) −7.48280 −0.283025
\(700\) 2.79640 0.105694
\(701\) −17.8604 −0.674578 −0.337289 0.941401i \(-0.609510\pi\)
−0.337289 + 0.941401i \(0.609510\pi\)
\(702\) 2.33724 0.0882133
\(703\) 23.5992 0.890059
\(704\) 4.17571 0.157378
\(705\) −0.743916 −0.0280175
\(706\) 18.5107 0.696658
\(707\) 5.73484 0.215681
\(708\) 1.02075 0.0383621
\(709\) 22.5614 0.847312 0.423656 0.905823i \(-0.360747\pi\)
0.423656 + 0.905823i \(0.360747\pi\)
\(710\) 7.02505 0.263645
\(711\) −12.4528 −0.467018
\(712\) −6.00654 −0.225105
\(713\) −0.863232 −0.0323283
\(714\) −0.0541479 −0.00202644
\(715\) 15.2402 0.569950
\(716\) 18.8470 0.704347
\(717\) −7.00761 −0.261704
\(718\) −14.0031 −0.522592
\(719\) −33.2124 −1.23861 −0.619306 0.785150i \(-0.712586\pi\)
−0.619306 + 0.785150i \(0.712586\pi\)
\(720\) −1.56155 −0.0581956
\(721\) 9.71460 0.361790
\(722\) 12.8420 0.477931
\(723\) −11.6699 −0.434007
\(724\) 2.27965 0.0847224
\(725\) −2.56155 −0.0951337
\(726\) −6.43659 −0.238884
\(727\) −22.1393 −0.821100 −0.410550 0.911838i \(-0.634663\pi\)
−0.410550 + 0.911838i \(0.634663\pi\)
\(728\) −2.55152 −0.0945655
\(729\) 1.00000 0.0370370
\(730\) −0.131420 −0.00486408
\(731\) −0.0621595 −0.00229905
\(732\) 12.5379 0.463412
\(733\) 5.72493 0.211455 0.105728 0.994395i \(-0.466283\pi\)
0.105728 + 0.994395i \(0.466283\pi\)
\(734\) 7.29534 0.269276
\(735\) 9.06986 0.334547
\(736\) −1.00000 −0.0368605
\(737\) −24.8068 −0.913772
\(738\) 10.0507 0.369973
\(739\) −44.3614 −1.63186 −0.815931 0.578149i \(-0.803775\pi\)
−0.815931 + 0.578149i \(0.803775\pi\)
\(740\) −14.8503 −0.545907
\(741\) −5.79991 −0.213065
\(742\) 13.1942 0.484375
\(743\) −7.11662 −0.261083 −0.130542 0.991443i \(-0.541672\pi\)
−0.130542 + 0.991443i \(0.541672\pi\)
\(744\) 0.863232 0.0316476
\(745\) −37.1931 −1.36265
\(746\) −10.4473 −0.382501
\(747\) 2.88056 0.105394
\(748\) −0.207118 −0.00757297
\(749\) −14.4119 −0.526600
\(750\) −11.8078 −0.431159
\(751\) 13.2716 0.484289 0.242144 0.970240i \(-0.422149\pi\)
0.242144 + 0.970240i \(0.422149\pi\)
\(752\) 0.476395 0.0173723
\(753\) −11.2276 −0.409157
\(754\) 2.33724 0.0851171
\(755\) 1.62862 0.0592717
\(756\) −1.09168 −0.0397040
\(757\) −18.2769 −0.664285 −0.332142 0.943229i \(-0.607771\pi\)
−0.332142 + 0.943229i \(0.607771\pi\)
\(758\) 23.0878 0.838585
\(759\) 4.17571 0.151569
\(760\) 3.87503 0.140562
\(761\) −13.2747 −0.481207 −0.240604 0.970623i \(-0.577345\pi\)
−0.240604 + 0.970623i \(0.577345\pi\)
\(762\) −8.68622 −0.314668
\(763\) −9.55106 −0.345772
\(764\) 7.53267 0.272522
\(765\) 0.0774538 0.00280035
\(766\) 0.256923 0.00928301
\(767\) −2.38573 −0.0861438
\(768\) 1.00000 0.0360844
\(769\) 14.3944 0.519076 0.259538 0.965733i \(-0.416430\pi\)
0.259538 + 0.965733i \(0.416430\pi\)
\(770\) −7.11841 −0.256530
\(771\) 10.5404 0.379604
\(772\) 9.96590 0.358681
\(773\) −16.6515 −0.598911 −0.299456 0.954110i \(-0.596805\pi\)
−0.299456 + 0.954110i \(0.596805\pi\)
\(774\) −1.25320 −0.0450455
\(775\) 2.21121 0.0794292
\(776\) 1.94736 0.0699060
\(777\) −10.3818 −0.372446
\(778\) −7.92122 −0.283990
\(779\) −24.9412 −0.893611
\(780\) 3.64972 0.130681
\(781\) 18.7855 0.672199
\(782\) 0.0496005 0.00177371
\(783\) 1.00000 0.0357371
\(784\) −5.80823 −0.207437
\(785\) −13.2001 −0.471131
\(786\) −6.21366 −0.221634
\(787\) −19.4411 −0.693000 −0.346500 0.938050i \(-0.612630\pi\)
−0.346500 + 0.938050i \(0.612630\pi\)
\(788\) 26.3071 0.937150
\(789\) 8.49927 0.302582
\(790\) −19.4458 −0.691850
\(791\) −8.38970 −0.298304
\(792\) −4.17571 −0.148378
\(793\) −29.3039 −1.04061
\(794\) −1.32515 −0.0470277
\(795\) −18.8732 −0.669362
\(796\) −20.8469 −0.738897
\(797\) −27.3744 −0.969650 −0.484825 0.874611i \(-0.661117\pi\)
−0.484825 + 0.874611i \(0.661117\pi\)
\(798\) 2.70903 0.0958987
\(799\) −0.0236294 −0.000835949 0
\(800\) 2.56155 0.0905646
\(801\) 6.00654 0.212231
\(802\) 12.8447 0.453561
\(803\) −0.351428 −0.0124016
\(804\) −5.94074 −0.209514
\(805\) 1.70472 0.0600834
\(806\) −2.01758 −0.0710661
\(807\) 21.0059 0.739442
\(808\) 5.25322 0.184808
\(809\) −45.9317 −1.61487 −0.807436 0.589955i \(-0.799146\pi\)
−0.807436 + 0.589955i \(0.799146\pi\)
\(810\) 1.56155 0.0548674
\(811\) −17.6878 −0.621102 −0.310551 0.950557i \(-0.600514\pi\)
−0.310551 + 0.950557i \(0.600514\pi\)
\(812\) −1.09168 −0.0383105
\(813\) −12.1608 −0.426496
\(814\) −39.7108 −1.39186
\(815\) 17.5459 0.614605
\(816\) −0.0496005 −0.00173637
\(817\) 3.10986 0.108800
\(818\) −19.8318 −0.693402
\(819\) 2.55152 0.0891572
\(820\) 15.6948 0.548085
\(821\) 11.3307 0.395443 0.197722 0.980258i \(-0.436646\pi\)
0.197722 + 0.980258i \(0.436646\pi\)
\(822\) 0.911891 0.0318059
\(823\) −2.61686 −0.0912180 −0.0456090 0.998959i \(-0.514523\pi\)
−0.0456090 + 0.998959i \(0.514523\pi\)
\(824\) 8.89875 0.310003
\(825\) −10.6963 −0.372398
\(826\) 1.11433 0.0387726
\(827\) 9.62649 0.334746 0.167373 0.985894i \(-0.446472\pi\)
0.167373 + 0.985894i \(0.446472\pi\)
\(828\) 1.00000 0.0347524
\(829\) 21.8914 0.760319 0.380160 0.924921i \(-0.375869\pi\)
0.380160 + 0.924921i \(0.375869\pi\)
\(830\) 4.49814 0.156133
\(831\) −17.4450 −0.605162
\(832\) −2.33724 −0.0810291
\(833\) 0.288091 0.00998178
\(834\) 11.2926 0.391032
\(835\) −34.0470 −1.17825
\(836\) 10.3621 0.358382
\(837\) −0.863232 −0.0298377
\(838\) 26.4475 0.913614
\(839\) 23.5229 0.812102 0.406051 0.913850i \(-0.366906\pi\)
0.406051 + 0.913850i \(0.366906\pi\)
\(840\) −1.70472 −0.0588183
\(841\) 1.00000 0.0344828
\(842\) 30.6760 1.05716
\(843\) −7.84868 −0.270323
\(844\) 16.2882 0.560662
\(845\) 11.7699 0.404898
\(846\) −0.476395 −0.0163788
\(847\) −7.02669 −0.241440
\(848\) 12.0862 0.415040
\(849\) 12.7594 0.437902
\(850\) −0.127054 −0.00435793
\(851\) 9.50994 0.325997
\(852\) 4.49876 0.154125
\(853\) 6.80470 0.232988 0.116494 0.993191i \(-0.462834\pi\)
0.116494 + 0.993191i \(0.462834\pi\)
\(854\) 13.6873 0.468371
\(855\) −3.87503 −0.132523
\(856\) −13.2016 −0.451221
\(857\) −40.2595 −1.37524 −0.687619 0.726072i \(-0.741344\pi\)
−0.687619 + 0.726072i \(0.741344\pi\)
\(858\) 9.75963 0.333188
\(859\) −13.1215 −0.447699 −0.223849 0.974624i \(-0.571862\pi\)
−0.223849 + 0.974624i \(0.571862\pi\)
\(860\) −1.95694 −0.0667312
\(861\) 10.9722 0.373932
\(862\) −7.12066 −0.242531
\(863\) −15.3580 −0.522792 −0.261396 0.965232i \(-0.584183\pi\)
−0.261396 + 0.965232i \(0.584183\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −31.0091 −1.05434
\(866\) 16.3538 0.555725
\(867\) −16.9975 −0.577267
\(868\) 0.942373 0.0319862
\(869\) −51.9995 −1.76396
\(870\) 1.56155 0.0529416
\(871\) 13.8849 0.470473
\(872\) −8.74896 −0.296277
\(873\) −1.94736 −0.0659080
\(874\) −2.48153 −0.0839388
\(875\) −12.8903 −0.435772
\(876\) −0.0841599 −0.00284350
\(877\) −37.4236 −1.26370 −0.631852 0.775089i \(-0.717705\pi\)
−0.631852 + 0.775089i \(0.717705\pi\)
\(878\) −1.08369 −0.0365727
\(879\) −28.2425 −0.952597
\(880\) −6.52060 −0.219809
\(881\) 40.3515 1.35948 0.679738 0.733455i \(-0.262094\pi\)
0.679738 + 0.733455i \(0.262094\pi\)
\(882\) 5.80823 0.195573
\(883\) −35.5348 −1.19584 −0.597920 0.801556i \(-0.704006\pi\)
−0.597920 + 0.801556i \(0.704006\pi\)
\(884\) 0.115928 0.00389909
\(885\) −1.59395 −0.0535802
\(886\) −33.3307 −1.11977
\(887\) 20.3598 0.683615 0.341808 0.939770i \(-0.388961\pi\)
0.341808 + 0.939770i \(0.388961\pi\)
\(888\) −9.50994 −0.319133
\(889\) −9.48257 −0.318035
\(890\) 9.37954 0.314403
\(891\) 4.17571 0.139892
\(892\) 25.2440 0.845233
\(893\) 1.18219 0.0395603
\(894\) −23.8180 −0.796594
\(895\) −29.4306 −0.983758
\(896\) 1.09168 0.0364705
\(897\) −2.33724 −0.0780381
\(898\) −28.8753 −0.963583
\(899\) −0.863232 −0.0287904
\(900\) −2.56155 −0.0853851
\(901\) −0.599480 −0.0199716
\(902\) 41.9690 1.39742
\(903\) −1.36810 −0.0455274
\(904\) −7.68513 −0.255604
\(905\) −3.55979 −0.118331
\(906\) 1.04295 0.0346497
\(907\) −18.4551 −0.612792 −0.306396 0.951904i \(-0.599123\pi\)
−0.306396 + 0.951904i \(0.599123\pi\)
\(908\) 3.68658 0.122343
\(909\) −5.25322 −0.174238
\(910\) 3.98433 0.132079
\(911\) 9.70405 0.321510 0.160755 0.986994i \(-0.448607\pi\)
0.160755 + 0.986994i \(0.448607\pi\)
\(912\) 2.48153 0.0821715
\(913\) 12.0284 0.398081
\(914\) −17.8905 −0.591766
\(915\) −19.5785 −0.647246
\(916\) −13.8676 −0.458200
\(917\) −6.78333 −0.224005
\(918\) 0.0496005 0.00163706
\(919\) −6.41496 −0.211610 −0.105805 0.994387i \(-0.533742\pi\)
−0.105805 + 0.994387i \(0.533742\pi\)
\(920\) 1.56155 0.0514829
\(921\) 27.0167 0.890231
\(922\) −13.3187 −0.438628
\(923\) −10.5147 −0.346094
\(924\) −4.55855 −0.149965
\(925\) −24.3602 −0.800959
\(926\) −34.3982 −1.13039
\(927\) −8.89875 −0.292273
\(928\) −1.00000 −0.0328266
\(929\) −34.5843 −1.13468 −0.567338 0.823485i \(-0.692027\pi\)
−0.567338 + 0.823485i \(0.692027\pi\)
\(930\) −1.34798 −0.0442021
\(931\) −14.4133 −0.472376
\(932\) −7.48280 −0.245107
\(933\) −19.8500 −0.649858
\(934\) 1.96503 0.0642977
\(935\) 0.323425 0.0105771
\(936\) 2.33724 0.0763950
\(937\) −28.8387 −0.942120 −0.471060 0.882101i \(-0.656128\pi\)
−0.471060 + 0.882101i \(0.656128\pi\)
\(938\) −6.48539 −0.211756
\(939\) 22.0844 0.720699
\(940\) −0.743916 −0.0242639
\(941\) 46.7340 1.52348 0.761742 0.647880i \(-0.224344\pi\)
0.761742 + 0.647880i \(0.224344\pi\)
\(942\) −8.45317 −0.275419
\(943\) −10.0507 −0.327297
\(944\) 1.02075 0.0332226
\(945\) 1.70472 0.0554544
\(946\) −5.23302 −0.170140
\(947\) −16.1878 −0.526032 −0.263016 0.964791i \(-0.584717\pi\)
−0.263016 + 0.964791i \(0.584717\pi\)
\(948\) −12.4528 −0.404450
\(949\) 0.196702 0.00638520
\(950\) 6.35656 0.206234
\(951\) −14.4579 −0.468828
\(952\) −0.0541479 −0.00175494
\(953\) −26.4735 −0.857560 −0.428780 0.903409i \(-0.641056\pi\)
−0.428780 + 0.903409i \(0.641056\pi\)
\(954\) −12.0862 −0.391304
\(955\) −11.7627 −0.380631
\(956\) −7.00761 −0.226642
\(957\) 4.17571 0.134982
\(958\) 39.6404 1.28072
\(959\) 0.995494 0.0321462
\(960\) −1.56155 −0.0503989
\(961\) −30.2548 −0.975962
\(962\) 22.2270 0.716627
\(963\) 13.2016 0.425415
\(964\) −11.6699 −0.375861
\(965\) −15.5623 −0.500967
\(966\) 1.09168 0.0351242
\(967\) −34.0243 −1.09415 −0.547074 0.837085i \(-0.684258\pi\)
−0.547074 + 0.837085i \(0.684258\pi\)
\(968\) −6.43659 −0.206880
\(969\) −0.123085 −0.00395406
\(970\) −3.04090 −0.0976374
\(971\) −30.6945 −0.985034 −0.492517 0.870303i \(-0.663923\pi\)
−0.492517 + 0.870303i \(0.663923\pi\)
\(972\) 1.00000 0.0320750
\(973\) 12.3280 0.395216
\(974\) 3.79426 0.121576
\(975\) 5.98696 0.191736
\(976\) 12.5379 0.401327
\(977\) 48.7627 1.56006 0.780029 0.625743i \(-0.215204\pi\)
0.780029 + 0.625743i \(0.215204\pi\)
\(978\) 11.2362 0.359293
\(979\) 25.0816 0.801612
\(980\) 9.06986 0.289726
\(981\) 8.74896 0.279333
\(982\) −11.5859 −0.369721
\(983\) −25.7303 −0.820669 −0.410334 0.911935i \(-0.634588\pi\)
−0.410334 + 0.911935i \(0.634588\pi\)
\(984\) 10.0507 0.320406
\(985\) −41.0799 −1.30891
\(986\) 0.0496005 0.00157960
\(987\) −0.520071 −0.0165540
\(988\) −5.79991 −0.184520
\(989\) 1.25320 0.0398495
\(990\) 6.52060 0.207238
\(991\) −61.8691 −1.96534 −0.982668 0.185373i \(-0.940651\pi\)
−0.982668 + 0.185373i \(0.940651\pi\)
\(992\) 0.863232 0.0274076
\(993\) 11.8220 0.375158
\(994\) 4.91121 0.155774
\(995\) 32.5535 1.03201
\(996\) 2.88056 0.0912739
\(997\) 5.94512 0.188284 0.0941420 0.995559i \(-0.469989\pi\)
0.0941420 + 0.995559i \(0.469989\pi\)
\(998\) −17.2466 −0.545931
\(999\) 9.50994 0.300881
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bf.1.2 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bf.1.2 6 1.1 even 1 trivial