Properties

Label 4002.2.a.be.1.2
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2389280.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 11x^{3} + 7x^{2} + 26x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-2.11043\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.25808 q^{5} +1.00000 q^{6} +1.35501 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.25808 q^{5} +1.00000 q^{6} +1.35501 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.25808 q^{10} +1.14765 q^{11} -1.00000 q^{12} +0.110434 q^{13} -1.35501 q^{14} +2.25808 q^{15} +1.00000 q^{16} +7.57588 q^{17} -1.00000 q^{18} -7.57588 q^{19} -2.25808 q^{20} -1.35501 q^{21} -1.14765 q^{22} -1.00000 q^{23} +1.00000 q^{24} +0.0989234 q^{25} -0.110434 q^{26} -1.00000 q^{27} +1.35501 q^{28} -1.00000 q^{29} -2.25808 q^{30} -10.2445 q^{31} -1.00000 q^{32} -1.14765 q^{33} -7.57588 q^{34} -3.05972 q^{35} +1.00000 q^{36} +11.0433 q^{37} +7.57588 q^{38} -0.110434 q^{39} +2.25808 q^{40} -6.08053 q^{41} +1.35501 q^{42} -7.97009 q^{43} +1.14765 q^{44} -2.25808 q^{45} +1.00000 q^{46} +4.67200 q^{47} -1.00000 q^{48} -5.16395 q^{49} -0.0989234 q^{50} -7.57588 q^{51} +0.110434 q^{52} +10.7491 q^{53} +1.00000 q^{54} -2.59147 q^{55} -1.35501 q^{56} +7.57588 q^{57} +1.00000 q^{58} +11.8360 q^{59} +2.25808 q^{60} +14.6550 q^{61} +10.2445 q^{62} +1.35501 q^{63} +1.00000 q^{64} -0.249369 q^{65} +1.14765 q^{66} -5.32989 q^{67} +7.57588 q^{68} +1.00000 q^{69} +3.05972 q^{70} -1.59428 q^{71} -1.00000 q^{72} +10.5553 q^{73} -11.0433 q^{74} -0.0989234 q^{75} -7.57588 q^{76} +1.55507 q^{77} +0.110434 q^{78} +0.564367 q^{79} -2.25808 q^{80} +1.00000 q^{81} +6.08053 q^{82} -12.2575 q^{83} -1.35501 q^{84} -17.1069 q^{85} +7.97009 q^{86} +1.00000 q^{87} -1.14765 q^{88} -0.540660 q^{89} +2.25808 q^{90} +0.149639 q^{91} -1.00000 q^{92} +10.2445 q^{93} -4.67200 q^{94} +17.1069 q^{95} +1.00000 q^{96} -14.7491 q^{97} +5.16395 q^{98} +1.14765 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} - 5 q^{3} + 5 q^{4} + q^{5} + 5 q^{6} - 4 q^{7} - 5 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{2} - 5 q^{3} + 5 q^{4} + q^{5} + 5 q^{6} - 4 q^{7} - 5 q^{8} + 5 q^{9} - q^{10} + 5 q^{11} - 5 q^{12} - 11 q^{13} + 4 q^{14} - q^{15} + 5 q^{16} + 4 q^{17} - 5 q^{18} - 4 q^{19} + q^{20} + 4 q^{21} - 5 q^{22} - 5 q^{23} + 5 q^{24} + 12 q^{25} + 11 q^{26} - 5 q^{27} - 4 q^{28} - 5 q^{29} + q^{30} + 5 q^{31} - 5 q^{32} - 5 q^{33} - 4 q^{34} - 6 q^{35} + 5 q^{36} + 9 q^{37} + 4 q^{38} + 11 q^{39} - q^{40} + 5 q^{41} - 4 q^{42} - 16 q^{43} + 5 q^{44} + q^{45} + 5 q^{46} + 8 q^{47} - 5 q^{48} - 5 q^{49} - 12 q^{50} - 4 q^{51} - 11 q^{52} - 4 q^{53} + 5 q^{54} - 33 q^{55} + 4 q^{56} + 4 q^{57} + 5 q^{58} + 23 q^{59} - q^{60} + 7 q^{61} - 5 q^{62} - 4 q^{63} + 5 q^{64} - 5 q^{65} + 5 q^{66} + 5 q^{67} + 4 q^{68} + 5 q^{69} + 6 q^{70} - 21 q^{71} - 5 q^{72} - 8 q^{73} - 9 q^{74} - 12 q^{75} - 4 q^{76} - 11 q^{78} - 8 q^{79} + q^{80} + 5 q^{81} - 5 q^{82} - 18 q^{83} + 4 q^{84} - 10 q^{85} + 16 q^{86} + 5 q^{87} - 5 q^{88} + 32 q^{89} - q^{90} + 10 q^{91} - 5 q^{92} - 5 q^{93} - 8 q^{94} + 10 q^{95} + 5 q^{96} - 16 q^{97} + 5 q^{98} + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.25808 −1.00984 −0.504922 0.863165i \(-0.668479\pi\)
−0.504922 + 0.863165i \(0.668479\pi\)
\(6\) 1.00000 0.408248
\(7\) 1.35501 0.512145 0.256073 0.966658i \(-0.417571\pi\)
0.256073 + 0.966658i \(0.417571\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.25808 0.714067
\(11\) 1.14765 0.346028 0.173014 0.984919i \(-0.444649\pi\)
0.173014 + 0.984919i \(0.444649\pi\)
\(12\) −1.00000 −0.288675
\(13\) 0.110434 0.0306289 0.0153145 0.999883i \(-0.495125\pi\)
0.0153145 + 0.999883i \(0.495125\pi\)
\(14\) −1.35501 −0.362141
\(15\) 2.25808 0.583034
\(16\) 1.00000 0.250000
\(17\) 7.57588 1.83742 0.918710 0.394933i \(-0.129232\pi\)
0.918710 + 0.394933i \(0.129232\pi\)
\(18\) −1.00000 −0.235702
\(19\) −7.57588 −1.73803 −0.869013 0.494790i \(-0.835245\pi\)
−0.869013 + 0.494790i \(0.835245\pi\)
\(20\) −2.25808 −0.504922
\(21\) −1.35501 −0.295687
\(22\) −1.14765 −0.244679
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) 0.0989234 0.0197847
\(26\) −0.110434 −0.0216579
\(27\) −1.00000 −0.192450
\(28\) 1.35501 0.256073
\(29\) −1.00000 −0.185695
\(30\) −2.25808 −0.412267
\(31\) −10.2445 −1.83996 −0.919981 0.391963i \(-0.871796\pi\)
−0.919981 + 0.391963i \(0.871796\pi\)
\(32\) −1.00000 −0.176777
\(33\) −1.14765 −0.199779
\(34\) −7.57588 −1.29925
\(35\) −3.05972 −0.517187
\(36\) 1.00000 0.166667
\(37\) 11.0433 1.81551 0.907755 0.419501i \(-0.137795\pi\)
0.907755 + 0.419501i \(0.137795\pi\)
\(38\) 7.57588 1.22897
\(39\) −0.110434 −0.0176836
\(40\) 2.25808 0.357034
\(41\) −6.08053 −0.949619 −0.474809 0.880089i \(-0.657483\pi\)
−0.474809 + 0.880089i \(0.657483\pi\)
\(42\) 1.35501 0.209082
\(43\) −7.97009 −1.21543 −0.607714 0.794156i \(-0.707913\pi\)
−0.607714 + 0.794156i \(0.707913\pi\)
\(44\) 1.14765 0.173014
\(45\) −2.25808 −0.336615
\(46\) 1.00000 0.147442
\(47\) 4.67200 0.681481 0.340741 0.940157i \(-0.389322\pi\)
0.340741 + 0.940157i \(0.389322\pi\)
\(48\) −1.00000 −0.144338
\(49\) −5.16395 −0.737707
\(50\) −0.0989234 −0.0139899
\(51\) −7.57588 −1.06084
\(52\) 0.110434 0.0153145
\(53\) 10.7491 1.47651 0.738253 0.674524i \(-0.235651\pi\)
0.738253 + 0.674524i \(0.235651\pi\)
\(54\) 1.00000 0.136083
\(55\) −2.59147 −0.349434
\(56\) −1.35501 −0.181071
\(57\) 7.57588 1.00345
\(58\) 1.00000 0.131306
\(59\) 11.8360 1.54091 0.770455 0.637495i \(-0.220029\pi\)
0.770455 + 0.637495i \(0.220029\pi\)
\(60\) 2.25808 0.291517
\(61\) 14.6550 1.87638 0.938190 0.346121i \(-0.112501\pi\)
0.938190 + 0.346121i \(0.112501\pi\)
\(62\) 10.2445 1.30105
\(63\) 1.35501 0.170715
\(64\) 1.00000 0.125000
\(65\) −0.249369 −0.0309304
\(66\) 1.14765 0.141265
\(67\) −5.32989 −0.651150 −0.325575 0.945516i \(-0.605558\pi\)
−0.325575 + 0.945516i \(0.605558\pi\)
\(68\) 7.57588 0.918710
\(69\) 1.00000 0.120386
\(70\) 3.05972 0.365706
\(71\) −1.59428 −0.189206 −0.0946028 0.995515i \(-0.530158\pi\)
−0.0946028 + 0.995515i \(0.530158\pi\)
\(72\) −1.00000 −0.117851
\(73\) 10.5553 1.23540 0.617700 0.786414i \(-0.288065\pi\)
0.617700 + 0.786414i \(0.288065\pi\)
\(74\) −11.0433 −1.28376
\(75\) −0.0989234 −0.0114227
\(76\) −7.57588 −0.869013
\(77\) 1.55507 0.177217
\(78\) 0.110434 0.0125042
\(79\) 0.564367 0.0634962 0.0317481 0.999496i \(-0.489893\pi\)
0.0317481 + 0.999496i \(0.489893\pi\)
\(80\) −2.25808 −0.252461
\(81\) 1.00000 0.111111
\(82\) 6.08053 0.671482
\(83\) −12.2575 −1.34543 −0.672716 0.739901i \(-0.734872\pi\)
−0.672716 + 0.739901i \(0.734872\pi\)
\(84\) −1.35501 −0.147844
\(85\) −17.1069 −1.85551
\(86\) 7.97009 0.859437
\(87\) 1.00000 0.107211
\(88\) −1.14765 −0.122339
\(89\) −0.540660 −0.0573099 −0.0286549 0.999589i \(-0.509122\pi\)
−0.0286549 + 0.999589i \(0.509122\pi\)
\(90\) 2.25808 0.238022
\(91\) 0.149639 0.0156865
\(92\) −1.00000 −0.104257
\(93\) 10.2445 1.06230
\(94\) −4.67200 −0.481880
\(95\) 17.1069 1.75513
\(96\) 1.00000 0.102062
\(97\) −14.7491 −1.49755 −0.748773 0.662826i \(-0.769357\pi\)
−0.748773 + 0.662826i \(0.769357\pi\)
\(98\) 5.16395 0.521638
\(99\) 1.14765 0.115343
\(100\) 0.0989234 0.00989234
\(101\) 8.08673 0.804659 0.402330 0.915495i \(-0.368201\pi\)
0.402330 + 0.915495i \(0.368201\pi\)
\(102\) 7.57588 0.750124
\(103\) −9.15385 −0.901955 −0.450978 0.892535i \(-0.648925\pi\)
−0.450978 + 0.892535i \(0.648925\pi\)
\(104\) −0.110434 −0.0108290
\(105\) 3.05972 0.298598
\(106\) −10.7491 −1.04405
\(107\) 18.5575 1.79402 0.897010 0.442011i \(-0.145735\pi\)
0.897010 + 0.442011i \(0.145735\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −18.5798 −1.77962 −0.889809 0.456332i \(-0.849163\pi\)
−0.889809 + 0.456332i \(0.849163\pi\)
\(110\) 2.59147 0.247087
\(111\) −11.0433 −1.04819
\(112\) 1.35501 0.128036
\(113\) −3.63820 −0.342253 −0.171127 0.985249i \(-0.554741\pi\)
−0.171127 + 0.985249i \(0.554741\pi\)
\(114\) −7.57588 −0.709546
\(115\) 2.25808 0.210567
\(116\) −1.00000 −0.0928477
\(117\) 0.110434 0.0102096
\(118\) −11.8360 −1.08959
\(119\) 10.2654 0.941026
\(120\) −2.25808 −0.206134
\(121\) −9.68291 −0.880265
\(122\) −14.6550 −1.32680
\(123\) 6.08053 0.548263
\(124\) −10.2445 −0.919981
\(125\) 11.0670 0.989864
\(126\) −1.35501 −0.120714
\(127\) 11.4239 1.01371 0.506855 0.862031i \(-0.330808\pi\)
0.506855 + 0.862031i \(0.330808\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.97009 0.701727
\(130\) 0.249369 0.0218711
\(131\) −5.98839 −0.523208 −0.261604 0.965175i \(-0.584251\pi\)
−0.261604 + 0.965175i \(0.584251\pi\)
\(132\) −1.14765 −0.0998897
\(133\) −10.2654 −0.890122
\(134\) 5.32989 0.460433
\(135\) 2.25808 0.194345
\(136\) −7.57588 −0.649626
\(137\) −13.0568 −1.11552 −0.557760 0.830002i \(-0.688339\pi\)
−0.557760 + 0.830002i \(0.688339\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 10.6747 0.905416 0.452708 0.891659i \(-0.350458\pi\)
0.452708 + 0.891659i \(0.350458\pi\)
\(140\) −3.05972 −0.258593
\(141\) −4.67200 −0.393453
\(142\) 1.59428 0.133789
\(143\) 0.126739 0.0105985
\(144\) 1.00000 0.0833333
\(145\) 2.25808 0.187523
\(146\) −10.5553 −0.873560
\(147\) 5.16395 0.425915
\(148\) 11.0433 0.907755
\(149\) −4.67930 −0.383343 −0.191672 0.981459i \(-0.561391\pi\)
−0.191672 + 0.981459i \(0.561391\pi\)
\(150\) 0.0989234 0.00807706
\(151\) −6.30149 −0.512808 −0.256404 0.966570i \(-0.582538\pi\)
−0.256404 + 0.966570i \(0.582538\pi\)
\(152\) 7.57588 0.614485
\(153\) 7.57588 0.612473
\(154\) −1.55507 −0.125311
\(155\) 23.1328 1.85807
\(156\) −0.110434 −0.00884181
\(157\) 12.1563 0.970181 0.485090 0.874464i \(-0.338787\pi\)
0.485090 + 0.874464i \(0.338787\pi\)
\(158\) −0.564367 −0.0448986
\(159\) −10.7491 −0.852461
\(160\) 2.25808 0.178517
\(161\) −1.35501 −0.106790
\(162\) −1.00000 −0.0785674
\(163\) −18.7471 −1.46839 −0.734194 0.678940i \(-0.762440\pi\)
−0.734194 + 0.678940i \(0.762440\pi\)
\(164\) −6.08053 −0.474809
\(165\) 2.59147 0.201746
\(166\) 12.2575 0.951364
\(167\) −4.56378 −0.353156 −0.176578 0.984287i \(-0.556503\pi\)
−0.176578 + 0.984287i \(0.556503\pi\)
\(168\) 1.35501 0.104541
\(169\) −12.9878 −0.999062
\(170\) 17.1069 1.31204
\(171\) −7.57588 −0.579342
\(172\) −7.97009 −0.607714
\(173\) −12.4746 −0.948429 −0.474215 0.880409i \(-0.657268\pi\)
−0.474215 + 0.880409i \(0.657268\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 0.134042 0.0101326
\(176\) 1.14765 0.0865070
\(177\) −11.8360 −0.889645
\(178\) 0.540660 0.0405242
\(179\) 0.201835 0.0150858 0.00754291 0.999972i \(-0.497599\pi\)
0.00754291 + 0.999972i \(0.497599\pi\)
\(180\) −2.25808 −0.168307
\(181\) 20.4652 1.52117 0.760585 0.649239i \(-0.224912\pi\)
0.760585 + 0.649239i \(0.224912\pi\)
\(182\) −0.149639 −0.0110920
\(183\) −14.6550 −1.08333
\(184\) 1.00000 0.0737210
\(185\) −24.9367 −1.83338
\(186\) −10.2445 −0.751161
\(187\) 8.69442 0.635799
\(188\) 4.67200 0.340741
\(189\) −1.35501 −0.0985624
\(190\) −17.1069 −1.24107
\(191\) −9.98650 −0.722597 −0.361299 0.932450i \(-0.617667\pi\)
−0.361299 + 0.932450i \(0.617667\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −17.6204 −1.26834 −0.634172 0.773192i \(-0.718659\pi\)
−0.634172 + 0.773192i \(0.718659\pi\)
\(194\) 14.7491 1.05893
\(195\) 0.249369 0.0178577
\(196\) −5.16395 −0.368854
\(197\) −26.1914 −1.86606 −0.933032 0.359794i \(-0.882847\pi\)
−0.933032 + 0.359794i \(0.882847\pi\)
\(198\) −1.14765 −0.0815596
\(199\) −13.8582 −0.982378 −0.491189 0.871053i \(-0.663438\pi\)
−0.491189 + 0.871053i \(0.663438\pi\)
\(200\) −0.0989234 −0.00699494
\(201\) 5.32989 0.375942
\(202\) −8.08673 −0.568980
\(203\) −1.35501 −0.0951030
\(204\) −7.57588 −0.530418
\(205\) 13.7303 0.958967
\(206\) 9.15385 0.637779
\(207\) −1.00000 −0.0695048
\(208\) 0.110434 0.00765723
\(209\) −8.69442 −0.601406
\(210\) −3.05972 −0.211141
\(211\) −3.37450 −0.232310 −0.116155 0.993231i \(-0.537057\pi\)
−0.116155 + 0.993231i \(0.537057\pi\)
\(212\) 10.7491 0.738253
\(213\) 1.59428 0.109238
\(214\) −18.5575 −1.26856
\(215\) 17.9971 1.22739
\(216\) 1.00000 0.0680414
\(217\) −13.8814 −0.942328
\(218\) 18.5798 1.25838
\(219\) −10.5553 −0.713259
\(220\) −2.59147 −0.174717
\(221\) 0.836636 0.0562782
\(222\) 11.0433 0.741179
\(223\) −19.4445 −1.30210 −0.651051 0.759034i \(-0.725672\pi\)
−0.651051 + 0.759034i \(0.725672\pi\)
\(224\) −1.35501 −0.0905353
\(225\) 0.0989234 0.00659489
\(226\) 3.63820 0.242010
\(227\) 16.5696 1.09976 0.549881 0.835243i \(-0.314673\pi\)
0.549881 + 0.835243i \(0.314673\pi\)
\(228\) 7.57588 0.501725
\(229\) 10.2304 0.676043 0.338021 0.941138i \(-0.390242\pi\)
0.338021 + 0.941138i \(0.390242\pi\)
\(230\) −2.25808 −0.148893
\(231\) −1.55507 −0.102316
\(232\) 1.00000 0.0656532
\(233\) −5.90919 −0.387124 −0.193562 0.981088i \(-0.562004\pi\)
−0.193562 + 0.981088i \(0.562004\pi\)
\(234\) −0.110434 −0.00721931
\(235\) −10.5497 −0.688190
\(236\) 11.8360 0.770455
\(237\) −0.564367 −0.0366595
\(238\) −10.2654 −0.665406
\(239\) 9.98382 0.645799 0.322900 0.946433i \(-0.395342\pi\)
0.322900 + 0.946433i \(0.395342\pi\)
\(240\) 2.25808 0.145758
\(241\) 1.92188 0.123799 0.0618997 0.998082i \(-0.480284\pi\)
0.0618997 + 0.998082i \(0.480284\pi\)
\(242\) 9.68291 0.622441
\(243\) −1.00000 −0.0641500
\(244\) 14.6550 0.938190
\(245\) 11.6606 0.744969
\(246\) −6.08053 −0.387680
\(247\) −0.836636 −0.0532339
\(248\) 10.2445 0.650525
\(249\) 12.2575 0.776785
\(250\) −11.0670 −0.699940
\(251\) −9.12246 −0.575805 −0.287902 0.957660i \(-0.592958\pi\)
−0.287902 + 0.957660i \(0.592958\pi\)
\(252\) 1.35501 0.0853575
\(253\) −1.14765 −0.0721518
\(254\) −11.4239 −0.716801
\(255\) 17.1069 1.07128
\(256\) 1.00000 0.0625000
\(257\) −3.66492 −0.228611 −0.114306 0.993446i \(-0.536464\pi\)
−0.114306 + 0.993446i \(0.536464\pi\)
\(258\) −7.97009 −0.496196
\(259\) 14.9638 0.929805
\(260\) −0.249369 −0.0154652
\(261\) −1.00000 −0.0618984
\(262\) 5.98839 0.369964
\(263\) −25.2675 −1.55806 −0.779030 0.626986i \(-0.784288\pi\)
−0.779030 + 0.626986i \(0.784288\pi\)
\(264\) 1.14765 0.0706327
\(265\) −24.2724 −1.49104
\(266\) 10.2654 0.629411
\(267\) 0.540660 0.0330879
\(268\) −5.32989 −0.325575
\(269\) 5.97491 0.364297 0.182148 0.983271i \(-0.441695\pi\)
0.182148 + 0.983271i \(0.441695\pi\)
\(270\) −2.25808 −0.137422
\(271\) 14.8604 0.902702 0.451351 0.892346i \(-0.350942\pi\)
0.451351 + 0.892346i \(0.350942\pi\)
\(272\) 7.57588 0.459355
\(273\) −0.149639 −0.00905658
\(274\) 13.0568 0.788791
\(275\) 0.113529 0.00684605
\(276\) 1.00000 0.0601929
\(277\) −25.0143 −1.50296 −0.751482 0.659753i \(-0.770661\pi\)
−0.751482 + 0.659753i \(0.770661\pi\)
\(278\) −10.6747 −0.640226
\(279\) −10.2445 −0.613321
\(280\) 3.05972 0.182853
\(281\) −3.08403 −0.183978 −0.0919888 0.995760i \(-0.529322\pi\)
−0.0919888 + 0.995760i \(0.529322\pi\)
\(282\) 4.67200 0.278214
\(283\) −1.10603 −0.0657467 −0.0328733 0.999460i \(-0.510466\pi\)
−0.0328733 + 0.999460i \(0.510466\pi\)
\(284\) −1.59428 −0.0946028
\(285\) −17.1069 −1.01333
\(286\) −0.126739 −0.00749425
\(287\) −8.23917 −0.486343
\(288\) −1.00000 −0.0589256
\(289\) 40.3939 2.37611
\(290\) −2.25808 −0.132599
\(291\) 14.7491 0.864609
\(292\) 10.5553 0.617700
\(293\) 16.4457 0.960769 0.480385 0.877058i \(-0.340497\pi\)
0.480385 + 0.877058i \(0.340497\pi\)
\(294\) −5.16395 −0.301168
\(295\) −26.7265 −1.55608
\(296\) −11.0433 −0.641880
\(297\) −1.14765 −0.0665931
\(298\) 4.67930 0.271065
\(299\) −0.110434 −0.00638657
\(300\) −0.0989234 −0.00571134
\(301\) −10.7995 −0.622475
\(302\) 6.30149 0.362610
\(303\) −8.08673 −0.464570
\(304\) −7.57588 −0.434506
\(305\) −33.0921 −1.89485
\(306\) −7.57588 −0.433084
\(307\) −14.6869 −0.838226 −0.419113 0.907934i \(-0.637659\pi\)
−0.419113 + 0.907934i \(0.637659\pi\)
\(308\) 1.55507 0.0886083
\(309\) 9.15385 0.520744
\(310\) −23.1328 −1.31386
\(311\) −31.6135 −1.79264 −0.896319 0.443410i \(-0.853768\pi\)
−0.896319 + 0.443410i \(0.853768\pi\)
\(312\) 0.110434 0.00625210
\(313\) 3.62659 0.204987 0.102494 0.994734i \(-0.467318\pi\)
0.102494 + 0.994734i \(0.467318\pi\)
\(314\) −12.1563 −0.686021
\(315\) −3.05972 −0.172396
\(316\) 0.564367 0.0317481
\(317\) −0.492551 −0.0276644 −0.0138322 0.999904i \(-0.504403\pi\)
−0.0138322 + 0.999904i \(0.504403\pi\)
\(318\) 10.7491 0.602781
\(319\) −1.14765 −0.0642558
\(320\) −2.25808 −0.126230
\(321\) −18.5575 −1.03578
\(322\) 1.35501 0.0755117
\(323\) −57.3939 −3.19348
\(324\) 1.00000 0.0555556
\(325\) 0.0109245 0.000605983 0
\(326\) 18.7471 1.03831
\(327\) 18.5798 1.02746
\(328\) 6.08053 0.335741
\(329\) 6.33060 0.349017
\(330\) −2.59147 −0.142656
\(331\) −4.70382 −0.258545 −0.129273 0.991609i \(-0.541264\pi\)
−0.129273 + 0.991609i \(0.541264\pi\)
\(332\) −12.2575 −0.672716
\(333\) 11.0433 0.605170
\(334\) 4.56378 0.249719
\(335\) 12.0353 0.657560
\(336\) −1.35501 −0.0739218
\(337\) 15.2000 0.827995 0.413998 0.910278i \(-0.364132\pi\)
0.413998 + 0.910278i \(0.364132\pi\)
\(338\) 12.9878 0.706443
\(339\) 3.63820 0.197600
\(340\) −17.1069 −0.927754
\(341\) −11.7570 −0.636679
\(342\) 7.57588 0.409657
\(343\) −16.4823 −0.889959
\(344\) 7.97009 0.429719
\(345\) −2.25808 −0.121571
\(346\) 12.4746 0.670641
\(347\) −8.19096 −0.439714 −0.219857 0.975532i \(-0.570559\pi\)
−0.219857 + 0.975532i \(0.570559\pi\)
\(348\) 1.00000 0.0536056
\(349\) −19.4050 −1.03873 −0.519364 0.854553i \(-0.673831\pi\)
−0.519364 + 0.854553i \(0.673831\pi\)
\(350\) −0.134042 −0.00716485
\(351\) −0.110434 −0.00589454
\(352\) −1.14765 −0.0611697
\(353\) −4.88219 −0.259853 −0.129926 0.991524i \(-0.541474\pi\)
−0.129926 + 0.991524i \(0.541474\pi\)
\(354\) 11.8360 0.629074
\(355\) 3.60000 0.191068
\(356\) −0.540660 −0.0286549
\(357\) −10.2654 −0.543302
\(358\) −0.201835 −0.0106673
\(359\) −12.6269 −0.666422 −0.333211 0.942852i \(-0.608132\pi\)
−0.333211 + 0.942852i \(0.608132\pi\)
\(360\) 2.25808 0.119011
\(361\) 38.3939 2.02073
\(362\) −20.4652 −1.07563
\(363\) 9.68291 0.508221
\(364\) 0.149639 0.00784323
\(365\) −23.8346 −1.24756
\(366\) 14.6550 0.766029
\(367\) 20.7431 1.08278 0.541391 0.840771i \(-0.317898\pi\)
0.541391 + 0.840771i \(0.317898\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −6.08053 −0.316540
\(370\) 24.9367 1.29640
\(371\) 14.5652 0.756185
\(372\) 10.2445 0.531151
\(373\) −12.0109 −0.621902 −0.310951 0.950426i \(-0.600648\pi\)
−0.310951 + 0.950426i \(0.600648\pi\)
\(374\) −8.69442 −0.449578
\(375\) −11.0670 −0.571499
\(376\) −4.67200 −0.240940
\(377\) −0.110434 −0.00568765
\(378\) 1.35501 0.0696941
\(379\) 32.5185 1.67036 0.835181 0.549975i \(-0.185363\pi\)
0.835181 + 0.549975i \(0.185363\pi\)
\(380\) 17.1069 0.877567
\(381\) −11.4239 −0.585265
\(382\) 9.98650 0.510954
\(383\) 4.66181 0.238207 0.119104 0.992882i \(-0.461998\pi\)
0.119104 + 0.992882i \(0.461998\pi\)
\(384\) 1.00000 0.0510310
\(385\) −3.51147 −0.178961
\(386\) 17.6204 0.896854
\(387\) −7.97009 −0.405143
\(388\) −14.7491 −0.748773
\(389\) −23.1125 −1.17185 −0.585924 0.810366i \(-0.699268\pi\)
−0.585924 + 0.810366i \(0.699268\pi\)
\(390\) −0.249369 −0.0126273
\(391\) −7.57588 −0.383129
\(392\) 5.16395 0.260819
\(393\) 5.98839 0.302074
\(394\) 26.1914 1.31951
\(395\) −1.27438 −0.0641213
\(396\) 1.14765 0.0576714
\(397\) 3.11584 0.156380 0.0781898 0.996938i \(-0.475086\pi\)
0.0781898 + 0.996938i \(0.475086\pi\)
\(398\) 13.8582 0.694646
\(399\) 10.2654 0.513912
\(400\) 0.0989234 0.00494617
\(401\) −13.4720 −0.672762 −0.336381 0.941726i \(-0.609203\pi\)
−0.336381 + 0.941726i \(0.609203\pi\)
\(402\) −5.32989 −0.265831
\(403\) −1.13134 −0.0563561
\(404\) 8.08673 0.402330
\(405\) −2.25808 −0.112205
\(406\) 1.35501 0.0672480
\(407\) 12.6738 0.628217
\(408\) 7.57588 0.375062
\(409\) −31.2822 −1.54680 −0.773402 0.633916i \(-0.781446\pi\)
−0.773402 + 0.633916i \(0.781446\pi\)
\(410\) −13.7303 −0.678092
\(411\) 13.0568 0.644045
\(412\) −9.15385 −0.450978
\(413\) 16.0378 0.789170
\(414\) 1.00000 0.0491473
\(415\) 27.6783 1.35868
\(416\) −0.110434 −0.00541448
\(417\) −10.6747 −0.522742
\(418\) 8.69442 0.425258
\(419\) 0.645785 0.0315487 0.0157743 0.999876i \(-0.494979\pi\)
0.0157743 + 0.999876i \(0.494979\pi\)
\(420\) 3.05972 0.149299
\(421\) −10.0439 −0.489510 −0.244755 0.969585i \(-0.578707\pi\)
−0.244755 + 0.969585i \(0.578707\pi\)
\(422\) 3.37450 0.164268
\(423\) 4.67200 0.227160
\(424\) −10.7491 −0.522024
\(425\) 0.749431 0.0363528
\(426\) −1.59428 −0.0772429
\(427\) 19.8577 0.960979
\(428\) 18.5575 0.897010
\(429\) −0.126739 −0.00611903
\(430\) −17.9971 −0.867897
\(431\) −25.1401 −1.21096 −0.605479 0.795861i \(-0.707018\pi\)
−0.605479 + 0.795861i \(0.707018\pi\)
\(432\) −1.00000 −0.0481125
\(433\) −10.2961 −0.494798 −0.247399 0.968914i \(-0.579576\pi\)
−0.247399 + 0.968914i \(0.579576\pi\)
\(434\) 13.8814 0.666327
\(435\) −2.25808 −0.108267
\(436\) −18.5798 −0.889809
\(437\) 7.57588 0.362403
\(438\) 10.5553 0.504350
\(439\) −19.8410 −0.946958 −0.473479 0.880805i \(-0.657002\pi\)
−0.473479 + 0.880805i \(0.657002\pi\)
\(440\) 2.59147 0.123544
\(441\) −5.16395 −0.245902
\(442\) −0.836636 −0.0397947
\(443\) −22.5283 −1.07035 −0.535175 0.844741i \(-0.679754\pi\)
−0.535175 + 0.844741i \(0.679754\pi\)
\(444\) −11.0433 −0.524093
\(445\) 1.22085 0.0578740
\(446\) 19.4445 0.920726
\(447\) 4.67930 0.221323
\(448\) 1.35501 0.0640182
\(449\) 30.3746 1.43347 0.716733 0.697348i \(-0.245637\pi\)
0.716733 + 0.697348i \(0.245637\pi\)
\(450\) −0.0989234 −0.00466329
\(451\) −6.97829 −0.328595
\(452\) −3.63820 −0.171127
\(453\) 6.30149 0.296070
\(454\) −16.5696 −0.777649
\(455\) −0.337897 −0.0158409
\(456\) −7.57588 −0.354773
\(457\) −20.9017 −0.977739 −0.488869 0.872357i \(-0.662590\pi\)
−0.488869 + 0.872357i \(0.662590\pi\)
\(458\) −10.2304 −0.478035
\(459\) −7.57588 −0.353612
\(460\) 2.25808 0.105284
\(461\) 16.6481 0.775378 0.387689 0.921790i \(-0.373273\pi\)
0.387689 + 0.921790i \(0.373273\pi\)
\(462\) 1.55507 0.0723484
\(463\) −27.3847 −1.27268 −0.636338 0.771410i \(-0.719552\pi\)
−0.636338 + 0.771410i \(0.719552\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −23.1328 −1.07276
\(466\) 5.90919 0.273738
\(467\) −9.57035 −0.442863 −0.221431 0.975176i \(-0.571073\pi\)
−0.221431 + 0.975176i \(0.571073\pi\)
\(468\) 0.110434 0.00510482
\(469\) −7.22206 −0.333484
\(470\) 10.5497 0.486624
\(471\) −12.1563 −0.560134
\(472\) −11.8360 −0.544794
\(473\) −9.14684 −0.420572
\(474\) 0.564367 0.0259222
\(475\) −0.749431 −0.0343863
\(476\) 10.2654 0.470513
\(477\) 10.7491 0.492169
\(478\) −9.98382 −0.456649
\(479\) 4.62400 0.211276 0.105638 0.994405i \(-0.466312\pi\)
0.105638 + 0.994405i \(0.466312\pi\)
\(480\) −2.25808 −0.103067
\(481\) 1.21956 0.0556071
\(482\) −1.92188 −0.0875394
\(483\) 1.35501 0.0616550
\(484\) −9.68291 −0.440132
\(485\) 33.3047 1.51229
\(486\) 1.00000 0.0453609
\(487\) −13.3419 −0.604580 −0.302290 0.953216i \(-0.597751\pi\)
−0.302290 + 0.953216i \(0.597751\pi\)
\(488\) −14.6550 −0.663400
\(489\) 18.7471 0.847774
\(490\) −11.6606 −0.526773
\(491\) 23.0794 1.04156 0.520778 0.853692i \(-0.325642\pi\)
0.520778 + 0.853692i \(0.325642\pi\)
\(492\) 6.08053 0.274131
\(493\) −7.57588 −0.341200
\(494\) 0.836636 0.0376420
\(495\) −2.59147 −0.116478
\(496\) −10.2445 −0.459991
\(497\) −2.16026 −0.0969008
\(498\) −12.2575 −0.549270
\(499\) 25.5016 1.14161 0.570803 0.821087i \(-0.306632\pi\)
0.570803 + 0.821087i \(0.306632\pi\)
\(500\) 11.0670 0.494932
\(501\) 4.56378 0.203895
\(502\) 9.12246 0.407155
\(503\) −41.9313 −1.86962 −0.934812 0.355144i \(-0.884432\pi\)
−0.934812 + 0.355144i \(0.884432\pi\)
\(504\) −1.35501 −0.0603569
\(505\) −18.2605 −0.812580
\(506\) 1.14765 0.0510191
\(507\) 12.9878 0.576809
\(508\) 11.4239 0.506855
\(509\) 0.602691 0.0267138 0.0133569 0.999911i \(-0.495748\pi\)
0.0133569 + 0.999911i \(0.495748\pi\)
\(510\) −17.1069 −0.757508
\(511\) 14.3025 0.632704
\(512\) −1.00000 −0.0441942
\(513\) 7.57588 0.334483
\(514\) 3.66492 0.161653
\(515\) 20.6701 0.910834
\(516\) 7.97009 0.350864
\(517\) 5.36180 0.235812
\(518\) −14.9638 −0.657471
\(519\) 12.4746 0.547576
\(520\) 0.249369 0.0109356
\(521\) 18.6550 0.817291 0.408645 0.912693i \(-0.366001\pi\)
0.408645 + 0.912693i \(0.366001\pi\)
\(522\) 1.00000 0.0437688
\(523\) 32.1886 1.40751 0.703754 0.710444i \(-0.251506\pi\)
0.703754 + 0.710444i \(0.251506\pi\)
\(524\) −5.98839 −0.261604
\(525\) −0.134042 −0.00585008
\(526\) 25.2675 1.10172
\(527\) −77.6109 −3.38078
\(528\) −1.14765 −0.0499449
\(529\) 1.00000 0.0434783
\(530\) 24.2724 1.05432
\(531\) 11.8360 0.513637
\(532\) −10.2654 −0.445061
\(533\) −0.671498 −0.0290858
\(534\) −0.540660 −0.0233966
\(535\) −41.9043 −1.81168
\(536\) 5.32989 0.230216
\(537\) −0.201835 −0.00870980
\(538\) −5.97491 −0.257597
\(539\) −5.92638 −0.255267
\(540\) 2.25808 0.0971723
\(541\) −29.0796 −1.25023 −0.625115 0.780533i \(-0.714948\pi\)
−0.625115 + 0.780533i \(0.714948\pi\)
\(542\) −14.8604 −0.638307
\(543\) −20.4652 −0.878248
\(544\) −7.57588 −0.324813
\(545\) 41.9546 1.79714
\(546\) 0.149639 0.00640397
\(547\) −18.4158 −0.787401 −0.393700 0.919239i \(-0.628805\pi\)
−0.393700 + 0.919239i \(0.628805\pi\)
\(548\) −13.0568 −0.557760
\(549\) 14.6550 0.625460
\(550\) −0.113529 −0.00484089
\(551\) 7.57588 0.322743
\(552\) −1.00000 −0.0425628
\(553\) 0.764722 0.0325193
\(554\) 25.0143 1.06276
\(555\) 24.9367 1.05850
\(556\) 10.6747 0.452708
\(557\) −25.0965 −1.06337 −0.531687 0.846941i \(-0.678442\pi\)
−0.531687 + 0.846941i \(0.678442\pi\)
\(558\) 10.2445 0.433683
\(559\) −0.880171 −0.0372272
\(560\) −3.05972 −0.129297
\(561\) −8.69442 −0.367079
\(562\) 3.08403 0.130092
\(563\) 16.4721 0.694215 0.347107 0.937825i \(-0.387164\pi\)
0.347107 + 0.937825i \(0.387164\pi\)
\(564\) −4.67200 −0.196727
\(565\) 8.21535 0.345622
\(566\) 1.10603 0.0464899
\(567\) 1.35501 0.0569050
\(568\) 1.59428 0.0668943
\(569\) 4.34591 0.182190 0.0910950 0.995842i \(-0.470963\pi\)
0.0910950 + 0.995842i \(0.470963\pi\)
\(570\) 17.1069 0.716531
\(571\) 27.4216 1.14756 0.573780 0.819010i \(-0.305476\pi\)
0.573780 + 0.819010i \(0.305476\pi\)
\(572\) 0.126739 0.00529924
\(573\) 9.98650 0.417192
\(574\) 8.23917 0.343896
\(575\) −0.0989234 −0.00412539
\(576\) 1.00000 0.0416667
\(577\) 27.4219 1.14159 0.570793 0.821094i \(-0.306636\pi\)
0.570793 + 0.821094i \(0.306636\pi\)
\(578\) −40.3939 −1.68017
\(579\) 17.6204 0.732278
\(580\) 2.25808 0.0937617
\(581\) −16.6090 −0.689057
\(582\) −14.7491 −0.611371
\(583\) 12.3362 0.510913
\(584\) −10.5553 −0.436780
\(585\) −0.249369 −0.0103101
\(586\) −16.4457 −0.679367
\(587\) 5.81682 0.240086 0.120043 0.992769i \(-0.461697\pi\)
0.120043 + 0.992769i \(0.461697\pi\)
\(588\) 5.16395 0.212958
\(589\) 77.6109 3.19790
\(590\) 26.7265 1.10031
\(591\) 26.1914 1.07737
\(592\) 11.0433 0.453877
\(593\) −25.5867 −1.05072 −0.525360 0.850880i \(-0.676069\pi\)
−0.525360 + 0.850880i \(0.676069\pi\)
\(594\) 1.14765 0.0470885
\(595\) −23.1801 −0.950289
\(596\) −4.67930 −0.191672
\(597\) 13.8582 0.567176
\(598\) 0.110434 0.00451599
\(599\) −18.4212 −0.752671 −0.376335 0.926483i \(-0.622816\pi\)
−0.376335 + 0.926483i \(0.622816\pi\)
\(600\) 0.0989234 0.00403853
\(601\) 2.34861 0.0958019 0.0479009 0.998852i \(-0.484747\pi\)
0.0479009 + 0.998852i \(0.484747\pi\)
\(602\) 10.7995 0.440157
\(603\) −5.32989 −0.217050
\(604\) −6.30149 −0.256404
\(605\) 21.8648 0.888930
\(606\) 8.08673 0.328501
\(607\) −25.6416 −1.04076 −0.520380 0.853935i \(-0.674210\pi\)
−0.520380 + 0.853935i \(0.674210\pi\)
\(608\) 7.57588 0.307242
\(609\) 1.35501 0.0549077
\(610\) 33.0921 1.33986
\(611\) 0.515949 0.0208730
\(612\) 7.57588 0.306237
\(613\) −29.7235 −1.20052 −0.600261 0.799804i \(-0.704937\pi\)
−0.600261 + 0.799804i \(0.704937\pi\)
\(614\) 14.6869 0.592715
\(615\) −13.7303 −0.553660
\(616\) −1.55507 −0.0626556
\(617\) 11.4087 0.459298 0.229649 0.973274i \(-0.426242\pi\)
0.229649 + 0.973274i \(0.426242\pi\)
\(618\) −9.15385 −0.368222
\(619\) −15.8834 −0.638407 −0.319203 0.947686i \(-0.603415\pi\)
−0.319203 + 0.947686i \(0.603415\pi\)
\(620\) 23.1328 0.929037
\(621\) 1.00000 0.0401286
\(622\) 31.6135 1.26759
\(623\) −0.732599 −0.0293510
\(624\) −0.110434 −0.00442091
\(625\) −25.4848 −1.01939
\(626\) −3.62659 −0.144948
\(627\) 8.69442 0.347222
\(628\) 12.1563 0.485090
\(629\) 83.6628 3.33585
\(630\) 3.05972 0.121902
\(631\) −2.67521 −0.106498 −0.0532491 0.998581i \(-0.516958\pi\)
−0.0532491 + 0.998581i \(0.516958\pi\)
\(632\) −0.564367 −0.0224493
\(633\) 3.37450 0.134124
\(634\) 0.492551 0.0195617
\(635\) −25.7961 −1.02369
\(636\) −10.7491 −0.426231
\(637\) −0.570277 −0.0225952
\(638\) 1.14765 0.0454357
\(639\) −1.59428 −0.0630685
\(640\) 2.25808 0.0892584
\(641\) −13.0040 −0.513628 −0.256814 0.966461i \(-0.582673\pi\)
−0.256814 + 0.966461i \(0.582673\pi\)
\(642\) 18.5575 0.732405
\(643\) −7.29741 −0.287782 −0.143891 0.989594i \(-0.545961\pi\)
−0.143891 + 0.989594i \(0.545961\pi\)
\(644\) −1.35501 −0.0533948
\(645\) −17.9971 −0.708635
\(646\) 57.3939 2.25813
\(647\) 18.4398 0.724944 0.362472 0.931995i \(-0.381933\pi\)
0.362472 + 0.931995i \(0.381933\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 13.5835 0.533198
\(650\) −0.0109245 −0.000428495 0
\(651\) 13.8814 0.544053
\(652\) −18.7471 −0.734194
\(653\) −10.2437 −0.400866 −0.200433 0.979707i \(-0.564235\pi\)
−0.200433 + 0.979707i \(0.564235\pi\)
\(654\) −18.5798 −0.726526
\(655\) 13.5223 0.528359
\(656\) −6.08053 −0.237405
\(657\) 10.5553 0.411800
\(658\) −6.33060 −0.246793
\(659\) 30.5839 1.19138 0.595689 0.803215i \(-0.296879\pi\)
0.595689 + 0.803215i \(0.296879\pi\)
\(660\) 2.59147 0.100873
\(661\) −35.0039 −1.36150 −0.680748 0.732518i \(-0.738345\pi\)
−0.680748 + 0.732518i \(0.738345\pi\)
\(662\) 4.70382 0.182819
\(663\) −0.836636 −0.0324922
\(664\) 12.2575 0.475682
\(665\) 23.1801 0.898884
\(666\) −11.0433 −0.427920
\(667\) 1.00000 0.0387202
\(668\) −4.56378 −0.176578
\(669\) 19.4445 0.751769
\(670\) −12.0353 −0.464965
\(671\) 16.8187 0.649280
\(672\) 1.35501 0.0522706
\(673\) 37.9343 1.46226 0.731129 0.682239i \(-0.238994\pi\)
0.731129 + 0.682239i \(0.238994\pi\)
\(674\) −15.2000 −0.585481
\(675\) −0.0989234 −0.00380756
\(676\) −12.9878 −0.499531
\(677\) −4.38990 −0.168717 −0.0843587 0.996435i \(-0.526884\pi\)
−0.0843587 + 0.996435i \(0.526884\pi\)
\(678\) −3.63820 −0.139724
\(679\) −19.9852 −0.766961
\(680\) 17.1069 0.656021
\(681\) −16.5696 −0.634948
\(682\) 11.7570 0.450200
\(683\) 35.1668 1.34562 0.672809 0.739816i \(-0.265087\pi\)
0.672809 + 0.739816i \(0.265087\pi\)
\(684\) −7.57588 −0.289671
\(685\) 29.4833 1.12650
\(686\) 16.4823 0.629296
\(687\) −10.2304 −0.390314
\(688\) −7.97009 −0.303857
\(689\) 1.18707 0.0452238
\(690\) 2.25808 0.0859636
\(691\) −1.67259 −0.0636282 −0.0318141 0.999494i \(-0.510128\pi\)
−0.0318141 + 0.999494i \(0.510128\pi\)
\(692\) −12.4746 −0.474215
\(693\) 1.55507 0.0590722
\(694\) 8.19096 0.310925
\(695\) −24.1043 −0.914329
\(696\) −1.00000 −0.0379049
\(697\) −46.0653 −1.74485
\(698\) 19.4050 0.734491
\(699\) 5.90919 0.223506
\(700\) 0.134042 0.00506631
\(701\) −5.08522 −0.192066 −0.0960331 0.995378i \(-0.530615\pi\)
−0.0960331 + 0.995378i \(0.530615\pi\)
\(702\) 0.110434 0.00416807
\(703\) −83.6628 −3.15540
\(704\) 1.14765 0.0432535
\(705\) 10.5497 0.397327
\(706\) 4.88219 0.183744
\(707\) 10.9576 0.412103
\(708\) −11.8360 −0.444822
\(709\) −23.1857 −0.870759 −0.435380 0.900247i \(-0.643386\pi\)
−0.435380 + 0.900247i \(0.643386\pi\)
\(710\) −3.60000 −0.135106
\(711\) 0.564367 0.0211654
\(712\) 0.540660 0.0202621
\(713\) 10.2445 0.383659
\(714\) 10.2654 0.384172
\(715\) −0.286187 −0.0107028
\(716\) 0.201835 0.00754291
\(717\) −9.98382 −0.372852
\(718\) 12.6269 0.471231
\(719\) −21.7349 −0.810577 −0.405288 0.914189i \(-0.632829\pi\)
−0.405288 + 0.914189i \(0.632829\pi\)
\(720\) −2.25808 −0.0841537
\(721\) −12.4035 −0.461932
\(722\) −38.3939 −1.42887
\(723\) −1.92188 −0.0714756
\(724\) 20.4652 0.760585
\(725\) −0.0989234 −0.00367392
\(726\) −9.68291 −0.359366
\(727\) −51.2866 −1.90211 −0.951057 0.309016i \(-0.900000\pi\)
−0.951057 + 0.309016i \(0.900000\pi\)
\(728\) −0.149639 −0.00554600
\(729\) 1.00000 0.0370370
\(730\) 23.8346 0.882159
\(731\) −60.3804 −2.23325
\(732\) −14.6550 −0.541664
\(733\) 7.61677 0.281332 0.140666 0.990057i \(-0.455076\pi\)
0.140666 + 0.990057i \(0.455076\pi\)
\(734\) −20.7431 −0.765642
\(735\) −11.6606 −0.430108
\(736\) 1.00000 0.0368605
\(737\) −6.11683 −0.225316
\(738\) 6.08053 0.223827
\(739\) −13.5053 −0.496800 −0.248400 0.968658i \(-0.579905\pi\)
−0.248400 + 0.968658i \(0.579905\pi\)
\(740\) −24.9367 −0.916691
\(741\) 0.836636 0.0307346
\(742\) −14.5652 −0.534704
\(743\) −7.23288 −0.265349 −0.132674 0.991160i \(-0.542356\pi\)
−0.132674 + 0.991160i \(0.542356\pi\)
\(744\) −10.2445 −0.375581
\(745\) 10.5662 0.387117
\(746\) 12.0109 0.439751
\(747\) −12.2575 −0.448477
\(748\) 8.69442 0.317900
\(749\) 25.1456 0.918799
\(750\) 11.0670 0.404110
\(751\) −35.5498 −1.29723 −0.648615 0.761117i \(-0.724651\pi\)
−0.648615 + 0.761117i \(0.724651\pi\)
\(752\) 4.67200 0.170370
\(753\) 9.12246 0.332441
\(754\) 0.110434 0.00402178
\(755\) 14.2293 0.517856
\(756\) −1.35501 −0.0492812
\(757\) 43.6829 1.58768 0.793841 0.608125i \(-0.208078\pi\)
0.793841 + 0.608125i \(0.208078\pi\)
\(758\) −32.5185 −1.18112
\(759\) 1.14765 0.0416569
\(760\) −17.1069 −0.620534
\(761\) 39.5754 1.43461 0.717303 0.696761i \(-0.245376\pi\)
0.717303 + 0.696761i \(0.245376\pi\)
\(762\) 11.4239 0.413845
\(763\) −25.1758 −0.911423
\(764\) −9.98650 −0.361299
\(765\) −17.1069 −0.618503
\(766\) −4.66181 −0.168438
\(767\) 1.30709 0.0471964
\(768\) −1.00000 −0.0360844
\(769\) 48.3069 1.74199 0.870995 0.491292i \(-0.163475\pi\)
0.870995 + 0.491292i \(0.163475\pi\)
\(770\) 3.51147 0.126545
\(771\) 3.66492 0.131989
\(772\) −17.6204 −0.634172
\(773\) 50.8011 1.82719 0.913595 0.406626i \(-0.133295\pi\)
0.913595 + 0.406626i \(0.133295\pi\)
\(774\) 7.97009 0.286479
\(775\) −1.01342 −0.0364031
\(776\) 14.7491 0.529463
\(777\) −14.9638 −0.536823
\(778\) 23.1125 0.828622
\(779\) 46.0653 1.65046
\(780\) 0.249369 0.00892885
\(781\) −1.82966 −0.0654705
\(782\) 7.57588 0.270913
\(783\) 1.00000 0.0357371
\(784\) −5.16395 −0.184427
\(785\) −27.4500 −0.979731
\(786\) −5.98839 −0.213599
\(787\) −33.6083 −1.19801 −0.599003 0.800747i \(-0.704436\pi\)
−0.599003 + 0.800747i \(0.704436\pi\)
\(788\) −26.1914 −0.933032
\(789\) 25.2675 0.899547
\(790\) 1.27438 0.0453406
\(791\) −4.92980 −0.175283
\(792\) −1.14765 −0.0407798
\(793\) 1.61841 0.0574715
\(794\) −3.11584 −0.110577
\(795\) 24.2724 0.860853
\(796\) −13.8582 −0.491189
\(797\) −6.20765 −0.219886 −0.109943 0.993938i \(-0.535067\pi\)
−0.109943 + 0.993938i \(0.535067\pi\)
\(798\) −10.2654 −0.363391
\(799\) 35.3945 1.25217
\(800\) −0.0989234 −0.00349747
\(801\) −0.540660 −0.0191033
\(802\) 13.4720 0.475714
\(803\) 12.1137 0.427483
\(804\) 5.32989 0.187971
\(805\) 3.05972 0.107841
\(806\) 1.13134 0.0398498
\(807\) −5.97491 −0.210327
\(808\) −8.08673 −0.284490
\(809\) −49.0931 −1.72602 −0.863011 0.505185i \(-0.831424\pi\)
−0.863011 + 0.505185i \(0.831424\pi\)
\(810\) 2.25808 0.0793408
\(811\) 8.67470 0.304610 0.152305 0.988334i \(-0.451330\pi\)
0.152305 + 0.988334i \(0.451330\pi\)
\(812\) −1.35501 −0.0475515
\(813\) −14.8604 −0.521175
\(814\) −12.6738 −0.444217
\(815\) 42.3325 1.48284
\(816\) −7.57588 −0.265209
\(817\) 60.3804 2.11244
\(818\) 31.2822 1.09376
\(819\) 0.149639 0.00522882
\(820\) 13.7303 0.479483
\(821\) −18.8347 −0.657336 −0.328668 0.944445i \(-0.606600\pi\)
−0.328668 + 0.944445i \(0.606600\pi\)
\(822\) −13.0568 −0.455409
\(823\) −32.2170 −1.12301 −0.561506 0.827472i \(-0.689778\pi\)
−0.561506 + 0.827472i \(0.689778\pi\)
\(824\) 9.15385 0.318889
\(825\) −0.113529 −0.00395257
\(826\) −16.0378 −0.558027
\(827\) −2.22976 −0.0775364 −0.0387682 0.999248i \(-0.512343\pi\)
−0.0387682 + 0.999248i \(0.512343\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −40.9953 −1.42382 −0.711912 0.702268i \(-0.752171\pi\)
−0.711912 + 0.702268i \(0.752171\pi\)
\(830\) −27.6783 −0.960729
\(831\) 25.0143 0.867737
\(832\) 0.110434 0.00382862
\(833\) −39.1215 −1.35548
\(834\) 10.6747 0.369635
\(835\) 10.3054 0.356632
\(836\) −8.69442 −0.300703
\(837\) 10.2445 0.354101
\(838\) −0.645785 −0.0223083
\(839\) 56.5131 1.95105 0.975524 0.219893i \(-0.0705708\pi\)
0.975524 + 0.219893i \(0.0705708\pi\)
\(840\) −3.05972 −0.105570
\(841\) 1.00000 0.0344828
\(842\) 10.0439 0.346136
\(843\) 3.08403 0.106219
\(844\) −3.37450 −0.116155
\(845\) 29.3275 1.00890
\(846\) −4.67200 −0.160627
\(847\) −13.1204 −0.450823
\(848\) 10.7491 0.369126
\(849\) 1.10603 0.0379589
\(850\) −0.749431 −0.0257053
\(851\) −11.0433 −0.378560
\(852\) 1.59428 0.0546190
\(853\) −7.26696 −0.248816 −0.124408 0.992231i \(-0.539703\pi\)
−0.124408 + 0.992231i \(0.539703\pi\)
\(854\) −19.8577 −0.679515
\(855\) 17.1069 0.585045
\(856\) −18.5575 −0.634282
\(857\) 0.721321 0.0246398 0.0123199 0.999924i \(-0.496078\pi\)
0.0123199 + 0.999924i \(0.496078\pi\)
\(858\) 0.126739 0.00432681
\(859\) 47.3132 1.61431 0.807153 0.590342i \(-0.201007\pi\)
0.807153 + 0.590342i \(0.201007\pi\)
\(860\) 17.9971 0.613696
\(861\) 8.23917 0.280790
\(862\) 25.1401 0.856277
\(863\) −13.4842 −0.459009 −0.229504 0.973308i \(-0.573710\pi\)
−0.229504 + 0.973308i \(0.573710\pi\)
\(864\) 1.00000 0.0340207
\(865\) 28.1687 0.957766
\(866\) 10.2961 0.349875
\(867\) −40.3939 −1.37185
\(868\) −13.8814 −0.471164
\(869\) 0.647693 0.0219715
\(870\) 2.25808 0.0765561
\(871\) −0.588603 −0.0199440
\(872\) 18.5798 0.629190
\(873\) −14.7491 −0.499182
\(874\) −7.57588 −0.256258
\(875\) 14.9959 0.506954
\(876\) −10.5553 −0.356629
\(877\) 18.2360 0.615785 0.307892 0.951421i \(-0.400376\pi\)
0.307892 + 0.951421i \(0.400376\pi\)
\(878\) 19.8410 0.669600
\(879\) −16.4457 −0.554701
\(880\) −2.59147 −0.0873586
\(881\) 26.5759 0.895365 0.447683 0.894193i \(-0.352249\pi\)
0.447683 + 0.894193i \(0.352249\pi\)
\(882\) 5.16395 0.173879
\(883\) −27.5865 −0.928360 −0.464180 0.885741i \(-0.653651\pi\)
−0.464180 + 0.885741i \(0.653651\pi\)
\(884\) 0.836636 0.0281391
\(885\) 26.7265 0.898402
\(886\) 22.5283 0.756852
\(887\) 55.9788 1.87958 0.939792 0.341747i \(-0.111019\pi\)
0.939792 + 0.341747i \(0.111019\pi\)
\(888\) 11.0433 0.370589
\(889\) 15.4795 0.519167
\(890\) −1.22085 −0.0409231
\(891\) 1.14765 0.0384476
\(892\) −19.4445 −0.651051
\(893\) −35.3945 −1.18443
\(894\) −4.67930 −0.156499
\(895\) −0.455759 −0.0152343
\(896\) −1.35501 −0.0452677
\(897\) 0.110434 0.00368729
\(898\) −30.3746 −1.01361
\(899\) 10.2445 0.341672
\(900\) 0.0989234 0.00329745
\(901\) 81.4341 2.71296
\(902\) 6.97829 0.232352
\(903\) 10.7995 0.359386
\(904\) 3.63820 0.121005
\(905\) −46.2122 −1.53614
\(906\) −6.30149 −0.209353
\(907\) −32.2407 −1.07053 −0.535267 0.844683i \(-0.679789\pi\)
−0.535267 + 0.844683i \(0.679789\pi\)
\(908\) 16.5696 0.549881
\(909\) 8.08673 0.268220
\(910\) 0.337897 0.0112012
\(911\) 28.9301 0.958496 0.479248 0.877679i \(-0.340909\pi\)
0.479248 + 0.877679i \(0.340909\pi\)
\(912\) 7.57588 0.250862
\(913\) −14.0672 −0.465557
\(914\) 20.9017 0.691366
\(915\) 33.0921 1.09399
\(916\) 10.2304 0.338021
\(917\) −8.11432 −0.267959
\(918\) 7.57588 0.250041
\(919\) 8.51557 0.280903 0.140451 0.990088i \(-0.455145\pi\)
0.140451 + 0.990088i \(0.455145\pi\)
\(920\) −2.25808 −0.0744467
\(921\) 14.6869 0.483950
\(922\) −16.6481 −0.548275
\(923\) −0.176062 −0.00579517
\(924\) −1.55507 −0.0511580
\(925\) 1.09244 0.0359193
\(926\) 27.3847 0.899918
\(927\) −9.15385 −0.300652
\(928\) 1.00000 0.0328266
\(929\) 15.0772 0.494668 0.247334 0.968930i \(-0.420446\pi\)
0.247334 + 0.968930i \(0.420446\pi\)
\(930\) 23.1328 0.758556
\(931\) 39.1215 1.28215
\(932\) −5.90919 −0.193562
\(933\) 31.6135 1.03498
\(934\) 9.57035 0.313151
\(935\) −19.6327 −0.642058
\(936\) −0.110434 −0.00360965
\(937\) 13.8465 0.452345 0.226172 0.974087i \(-0.427379\pi\)
0.226172 + 0.974087i \(0.427379\pi\)
\(938\) 7.22206 0.235808
\(939\) −3.62659 −0.118349
\(940\) −10.5497 −0.344095
\(941\) 21.6604 0.706109 0.353055 0.935603i \(-0.385143\pi\)
0.353055 + 0.935603i \(0.385143\pi\)
\(942\) 12.1563 0.396075
\(943\) 6.08053 0.198009
\(944\) 11.8360 0.385227
\(945\) 3.05972 0.0995326
\(946\) 9.14684 0.297389
\(947\) −32.3477 −1.05116 −0.525580 0.850744i \(-0.676152\pi\)
−0.525580 + 0.850744i \(0.676152\pi\)
\(948\) −0.564367 −0.0183298
\(949\) 1.16566 0.0378390
\(950\) 0.749431 0.0243148
\(951\) 0.492551 0.0159721
\(952\) −10.2654 −0.332703
\(953\) 39.7210 1.28669 0.643345 0.765576i \(-0.277546\pi\)
0.643345 + 0.765576i \(0.277546\pi\)
\(954\) −10.7491 −0.348016
\(955\) 22.5503 0.729711
\(956\) 9.98382 0.322900
\(957\) 1.14765 0.0370981
\(958\) −4.62400 −0.149395
\(959\) −17.6921 −0.571308
\(960\) 2.25808 0.0728792
\(961\) 73.9493 2.38546
\(962\) −1.21956 −0.0393202
\(963\) 18.5575 0.598006
\(964\) 1.92188 0.0618997
\(965\) 39.7882 1.28083
\(966\) −1.35501 −0.0435967
\(967\) 12.7415 0.409739 0.204870 0.978789i \(-0.434323\pi\)
0.204870 + 0.978789i \(0.434323\pi\)
\(968\) 9.68291 0.311221
\(969\) 57.3939 1.84376
\(970\) −33.3047 −1.06935
\(971\) −46.8168 −1.50242 −0.751212 0.660061i \(-0.770530\pi\)
−0.751212 + 0.660061i \(0.770530\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 14.4643 0.463705
\(974\) 13.3419 0.427503
\(975\) −0.0109245 −0.000349865 0
\(976\) 14.6550 0.469095
\(977\) −46.5547 −1.48942 −0.744709 0.667389i \(-0.767412\pi\)
−0.744709 + 0.667389i \(0.767412\pi\)
\(978\) −18.7471 −0.599467
\(979\) −0.620486 −0.0198308
\(980\) 11.6606 0.372485
\(981\) −18.5798 −0.593206
\(982\) −23.0794 −0.736492
\(983\) 24.1215 0.769357 0.384679 0.923051i \(-0.374312\pi\)
0.384679 + 0.923051i \(0.374312\pi\)
\(984\) −6.08053 −0.193840
\(985\) 59.1424 1.88443
\(986\) 7.57588 0.241265
\(987\) −6.33060 −0.201505
\(988\) −0.836636 −0.0266169
\(989\) 7.97009 0.253434
\(990\) 2.59147 0.0823625
\(991\) 44.8597 1.42501 0.712507 0.701665i \(-0.247560\pi\)
0.712507 + 0.701665i \(0.247560\pi\)
\(992\) 10.2445 0.325262
\(993\) 4.70382 0.149271
\(994\) 2.16026 0.0685192
\(995\) 31.2928 0.992049
\(996\) 12.2575 0.388393
\(997\) 16.4425 0.520740 0.260370 0.965509i \(-0.416155\pi\)
0.260370 + 0.965509i \(0.416155\pi\)
\(998\) −25.5016 −0.807238
\(999\) −11.0433 −0.349395
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.be.1.2 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.be.1.2 5 1.1 even 1 trivial