Properties

Label 4002.2.a.be.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $5$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(5\)
Coefficient field: 5.5.2389280.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{5} - x^{4} - 11x^{3} + 7x^{2} + 26x - 18 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(1.61972\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.88781 q^{5} +1.00000 q^{6} -3.71597 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} -2.88781 q^{5} +1.00000 q^{6} -3.71597 q^{7} -1.00000 q^{8} +1.00000 q^{9} +2.88781 q^{10} +5.50753 q^{11} -1.00000 q^{12} -3.61972 q^{13} +3.71597 q^{14} +2.88781 q^{15} +1.00000 q^{16} -4.95541 q^{17} -1.00000 q^{18} +4.95541 q^{19} -2.88781 q^{20} +3.71597 q^{21} -5.50753 q^{22} -1.00000 q^{23} +1.00000 q^{24} +3.33946 q^{25} +3.61972 q^{26} -1.00000 q^{27} -3.71597 q^{28} -1.00000 q^{29} -2.88781 q^{30} +6.02907 q^{31} -1.00000 q^{32} -5.50753 q^{33} +4.95541 q^{34} +10.7310 q^{35} +1.00000 q^{36} -1.34786 q^{37} -4.95541 q^{38} +3.61972 q^{39} +2.88781 q^{40} -1.77939 q^{41} -3.71597 q^{42} -7.39911 q^{43} +5.50753 q^{44} -2.88781 q^{45} +1.00000 q^{46} +13.6841 q^{47} -1.00000 q^{48} +6.80846 q^{49} -3.33946 q^{50} +4.95541 q^{51} -3.61972 q^{52} +2.70574 q^{53} +1.00000 q^{54} -15.9047 q^{55} +3.71597 q^{56} -4.95541 q^{57} +1.00000 q^{58} +8.87565 q^{59} +2.88781 q^{60} -5.99054 q^{61} -6.02907 q^{62} -3.71597 q^{63} +1.00000 q^{64} +10.4531 q^{65} +5.50753 q^{66} +9.67367 q^{67} -4.95541 q^{68} +1.00000 q^{69} -10.7310 q^{70} +3.39534 q^{71} -1.00000 q^{72} +13.9133 q^{73} +1.34786 q^{74} -3.33946 q^{75} +4.95541 q^{76} -20.4658 q^{77} -3.61972 q^{78} -4.99623 q^{79} -2.88781 q^{80} +1.00000 q^{81} +1.77939 q^{82} +9.98492 q^{83} +3.71597 q^{84} +14.3103 q^{85} +7.39911 q^{86} +1.00000 q^{87} -5.50753 q^{88} +11.1394 q^{89} +2.88781 q^{90} +13.4508 q^{91} -1.00000 q^{92} -6.02907 q^{93} -13.6841 q^{94} -14.3103 q^{95} +1.00000 q^{96} -6.70574 q^{97} -6.80846 q^{98} +5.50753 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 5 q - 5 q^{2} - 5 q^{3} + 5 q^{4} + q^{5} + 5 q^{6} - 4 q^{7} - 5 q^{8} + 5 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 5 q - 5 q^{2} - 5 q^{3} + 5 q^{4} + q^{5} + 5 q^{6} - 4 q^{7} - 5 q^{8} + 5 q^{9} - q^{10} + 5 q^{11} - 5 q^{12} - 11 q^{13} + 4 q^{14} - q^{15} + 5 q^{16} + 4 q^{17} - 5 q^{18} - 4 q^{19} + q^{20} + 4 q^{21} - 5 q^{22} - 5 q^{23} + 5 q^{24} + 12 q^{25} + 11 q^{26} - 5 q^{27} - 4 q^{28} - 5 q^{29} + q^{30} + 5 q^{31} - 5 q^{32} - 5 q^{33} - 4 q^{34} - 6 q^{35} + 5 q^{36} + 9 q^{37} + 4 q^{38} + 11 q^{39} - q^{40} + 5 q^{41} - 4 q^{42} - 16 q^{43} + 5 q^{44} + q^{45} + 5 q^{46} + 8 q^{47} - 5 q^{48} - 5 q^{49} - 12 q^{50} - 4 q^{51} - 11 q^{52} - 4 q^{53} + 5 q^{54} - 33 q^{55} + 4 q^{56} + 4 q^{57} + 5 q^{58} + 23 q^{59} - q^{60} + 7 q^{61} - 5 q^{62} - 4 q^{63} + 5 q^{64} - 5 q^{65} + 5 q^{66} + 5 q^{67} + 4 q^{68} + 5 q^{69} + 6 q^{70} - 21 q^{71} - 5 q^{72} - 8 q^{73} - 9 q^{74} - 12 q^{75} - 4 q^{76} - 11 q^{78} - 8 q^{79} + q^{80} + 5 q^{81} - 5 q^{82} - 18 q^{83} + 4 q^{84} - 10 q^{85} + 16 q^{86} + 5 q^{87} - 5 q^{88} + 32 q^{89} - q^{90} + 10 q^{91} - 5 q^{92} - 5 q^{93} - 8 q^{94} + 10 q^{95} + 5 q^{96} - 16 q^{97} + 5 q^{98} + 5 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) −2.88781 −1.29147 −0.645734 0.763562i \(-0.723449\pi\)
−0.645734 + 0.763562i \(0.723449\pi\)
\(6\) 1.00000 0.408248
\(7\) −3.71597 −1.40451 −0.702253 0.711927i \(-0.747822\pi\)
−0.702253 + 0.711927i \(0.747822\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) 2.88781 0.913206
\(11\) 5.50753 1.66058 0.830291 0.557329i \(-0.188174\pi\)
0.830291 + 0.557329i \(0.188174\pi\)
\(12\) −1.00000 −0.288675
\(13\) −3.61972 −1.00393 −0.501965 0.864888i \(-0.667389\pi\)
−0.501965 + 0.864888i \(0.667389\pi\)
\(14\) 3.71597 0.993136
\(15\) 2.88781 0.745630
\(16\) 1.00000 0.250000
\(17\) −4.95541 −1.20186 −0.600932 0.799300i \(-0.705204\pi\)
−0.600932 + 0.799300i \(0.705204\pi\)
\(18\) −1.00000 −0.235702
\(19\) 4.95541 1.13685 0.568425 0.822735i \(-0.307553\pi\)
0.568425 + 0.822735i \(0.307553\pi\)
\(20\) −2.88781 −0.645734
\(21\) 3.71597 0.810892
\(22\) −5.50753 −1.17421
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) 3.33946 0.667892
\(26\) 3.61972 0.709885
\(27\) −1.00000 −0.192450
\(28\) −3.71597 −0.702253
\(29\) −1.00000 −0.185695
\(30\) −2.88781 −0.527240
\(31\) 6.02907 1.08285 0.541426 0.840748i \(-0.317885\pi\)
0.541426 + 0.840748i \(0.317885\pi\)
\(32\) −1.00000 −0.176777
\(33\) −5.50753 −0.958738
\(34\) 4.95541 0.849846
\(35\) 10.7310 1.81388
\(36\) 1.00000 0.166667
\(37\) −1.34786 −0.221586 −0.110793 0.993844i \(-0.535339\pi\)
−0.110793 + 0.993844i \(0.535339\pi\)
\(38\) −4.95541 −0.803874
\(39\) 3.61972 0.579619
\(40\) 2.88781 0.456603
\(41\) −1.77939 −0.277895 −0.138947 0.990300i \(-0.544372\pi\)
−0.138947 + 0.990300i \(0.544372\pi\)
\(42\) −3.71597 −0.573387
\(43\) −7.39911 −1.12835 −0.564177 0.825654i \(-0.690806\pi\)
−0.564177 + 0.825654i \(0.690806\pi\)
\(44\) 5.50753 0.830291
\(45\) −2.88781 −0.430490
\(46\) 1.00000 0.147442
\(47\) 13.6841 1.99603 0.998016 0.0629568i \(-0.0200530\pi\)
0.998016 + 0.0629568i \(0.0200530\pi\)
\(48\) −1.00000 −0.144338
\(49\) 6.80846 0.972637
\(50\) −3.33946 −0.472271
\(51\) 4.95541 0.693896
\(52\) −3.61972 −0.501965
\(53\) 2.70574 0.371662 0.185831 0.982582i \(-0.440502\pi\)
0.185831 + 0.982582i \(0.440502\pi\)
\(54\) 1.00000 0.136083
\(55\) −15.9047 −2.14459
\(56\) 3.71597 0.496568
\(57\) −4.95541 −0.656360
\(58\) 1.00000 0.131306
\(59\) 8.87565 1.15551 0.577756 0.816210i \(-0.303929\pi\)
0.577756 + 0.816210i \(0.303929\pi\)
\(60\) 2.88781 0.372815
\(61\) −5.99054 −0.767009 −0.383505 0.923539i \(-0.625283\pi\)
−0.383505 + 0.923539i \(0.625283\pi\)
\(62\) −6.02907 −0.765692
\(63\) −3.71597 −0.468169
\(64\) 1.00000 0.125000
\(65\) 10.4531 1.29654
\(66\) 5.50753 0.677930
\(67\) 9.67367 1.18183 0.590914 0.806735i \(-0.298767\pi\)
0.590914 + 0.806735i \(0.298767\pi\)
\(68\) −4.95541 −0.600932
\(69\) 1.00000 0.120386
\(70\) −10.7310 −1.28260
\(71\) 3.39534 0.402953 0.201477 0.979493i \(-0.435426\pi\)
0.201477 + 0.979493i \(0.435426\pi\)
\(72\) −1.00000 −0.117851
\(73\) 13.9133 1.62843 0.814215 0.580564i \(-0.197168\pi\)
0.814215 + 0.580564i \(0.197168\pi\)
\(74\) 1.34786 0.156685
\(75\) −3.33946 −0.385608
\(76\) 4.95541 0.568425
\(77\) −20.4658 −2.33230
\(78\) −3.61972 −0.409852
\(79\) −4.99623 −0.562120 −0.281060 0.959690i \(-0.590686\pi\)
−0.281060 + 0.959690i \(0.590686\pi\)
\(80\) −2.88781 −0.322867
\(81\) 1.00000 0.111111
\(82\) 1.77939 0.196501
\(83\) 9.98492 1.09599 0.547994 0.836482i \(-0.315392\pi\)
0.547994 + 0.836482i \(0.315392\pi\)
\(84\) 3.71597 0.405446
\(85\) 14.3103 1.55217
\(86\) 7.39911 0.797867
\(87\) 1.00000 0.107211
\(88\) −5.50753 −0.587105
\(89\) 11.1394 1.18078 0.590388 0.807120i \(-0.298975\pi\)
0.590388 + 0.807120i \(0.298975\pi\)
\(90\) 2.88781 0.304402
\(91\) 13.4508 1.41002
\(92\) −1.00000 −0.104257
\(93\) −6.02907 −0.625185
\(94\) −13.6841 −1.41141
\(95\) −14.3103 −1.46821
\(96\) 1.00000 0.102062
\(97\) −6.70574 −0.680864 −0.340432 0.940269i \(-0.610573\pi\)
−0.340432 + 0.940269i \(0.610573\pi\)
\(98\) −6.80846 −0.687758
\(99\) 5.50753 0.553528
\(100\) 3.33946 0.333946
\(101\) −1.76290 −0.175415 −0.0877075 0.996146i \(-0.527954\pi\)
−0.0877075 + 0.996146i \(0.527954\pi\)
\(102\) −4.95541 −0.490659
\(103\) −7.96524 −0.784838 −0.392419 0.919787i \(-0.628362\pi\)
−0.392419 + 0.919787i \(0.628362\pi\)
\(104\) 3.61972 0.354943
\(105\) −10.7310 −1.04724
\(106\) −2.70574 −0.262804
\(107\) −1.51548 −0.146507 −0.0732533 0.997313i \(-0.523338\pi\)
−0.0732533 + 0.997313i \(0.523338\pi\)
\(108\) −1.00000 −0.0962250
\(109\) −8.99827 −0.861878 −0.430939 0.902381i \(-0.641818\pi\)
−0.430939 + 0.902381i \(0.641818\pi\)
\(110\) 15.9047 1.51646
\(111\) 1.34786 0.127933
\(112\) −3.71597 −0.351127
\(113\) −9.12954 −0.858835 −0.429417 0.903106i \(-0.641281\pi\)
−0.429417 + 0.903106i \(0.641281\pi\)
\(114\) 4.95541 0.464117
\(115\) 2.88781 0.269290
\(116\) −1.00000 −0.0928477
\(117\) −3.61972 −0.334643
\(118\) −8.87565 −0.817070
\(119\) 18.4142 1.68802
\(120\) −2.88781 −0.263620
\(121\) 19.3329 1.75754
\(122\) 5.99054 0.542358
\(123\) 1.77939 0.160443
\(124\) 6.02907 0.541426
\(125\) 4.79533 0.428907
\(126\) 3.71597 0.331045
\(127\) −5.91021 −0.524446 −0.262223 0.965007i \(-0.584456\pi\)
−0.262223 + 0.965007i \(0.584456\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 7.39911 0.651455
\(130\) −10.4531 −0.916795
\(131\) 1.97363 0.172437 0.0862185 0.996276i \(-0.472522\pi\)
0.0862185 + 0.996276i \(0.472522\pi\)
\(132\) −5.50753 −0.479369
\(133\) −18.4142 −1.59671
\(134\) −9.67367 −0.835678
\(135\) 2.88781 0.248543
\(136\) 4.95541 0.424923
\(137\) −2.63621 −0.225227 −0.112613 0.993639i \(-0.535922\pi\)
−0.112613 + 0.993639i \(0.535922\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −13.5488 −1.14919 −0.574595 0.818438i \(-0.694841\pi\)
−0.574595 + 0.818438i \(0.694841\pi\)
\(140\) 10.7310 0.906938
\(141\) −13.6841 −1.15241
\(142\) −3.39534 −0.284931
\(143\) −19.9357 −1.66711
\(144\) 1.00000 0.0833333
\(145\) 2.88781 0.239820
\(146\) −13.9133 −1.15147
\(147\) −6.80846 −0.561552
\(148\) −1.34786 −0.110793
\(149\) −21.2105 −1.73763 −0.868815 0.495137i \(-0.835118\pi\)
−0.868815 + 0.495137i \(0.835118\pi\)
\(150\) 3.33946 0.272666
\(151\) −9.47277 −0.770883 −0.385441 0.922732i \(-0.625951\pi\)
−0.385441 + 0.922732i \(0.625951\pi\)
\(152\) −4.95541 −0.401937
\(153\) −4.95541 −0.400621
\(154\) 20.4658 1.64918
\(155\) −17.4108 −1.39847
\(156\) 3.61972 0.289809
\(157\) 10.1044 0.806419 0.403210 0.915108i \(-0.367895\pi\)
0.403210 + 0.915108i \(0.367895\pi\)
\(158\) 4.99623 0.397479
\(159\) −2.70574 −0.214579
\(160\) 2.88781 0.228302
\(161\) 3.71597 0.292860
\(162\) −1.00000 −0.0785674
\(163\) −9.94758 −0.779154 −0.389577 0.920994i \(-0.627379\pi\)
−0.389577 + 0.920994i \(0.627379\pi\)
\(164\) −1.77939 −0.138947
\(165\) 15.9047 1.23818
\(166\) −9.98492 −0.774980
\(167\) 6.12496 0.473964 0.236982 0.971514i \(-0.423842\pi\)
0.236982 + 0.971514i \(0.423842\pi\)
\(168\) −3.71597 −0.286694
\(169\) 0.102360 0.00787384
\(170\) −14.3103 −1.09755
\(171\) 4.95541 0.378950
\(172\) −7.39911 −0.564177
\(173\) −5.20110 −0.395433 −0.197716 0.980259i \(-0.563352\pi\)
−0.197716 + 0.980259i \(0.563352\pi\)
\(174\) −1.00000 −0.0758098
\(175\) −12.4093 −0.938059
\(176\) 5.50753 0.415146
\(177\) −8.87565 −0.667135
\(178\) −11.1394 −0.834934
\(179\) 24.5654 1.83611 0.918053 0.396458i \(-0.129761\pi\)
0.918053 + 0.396458i \(0.129761\pi\)
\(180\) −2.88781 −0.215245
\(181\) −18.2013 −1.35289 −0.676447 0.736492i \(-0.736481\pi\)
−0.676447 + 0.736492i \(0.736481\pi\)
\(182\) −13.4508 −0.997038
\(183\) 5.99054 0.442833
\(184\) 1.00000 0.0737210
\(185\) 3.89235 0.286171
\(186\) 6.02907 0.442073
\(187\) −27.2921 −1.99579
\(188\) 13.6841 0.998016
\(189\) 3.71597 0.270297
\(190\) 14.3103 1.03818
\(191\) −8.01593 −0.580012 −0.290006 0.957025i \(-0.593657\pi\)
−0.290006 + 0.957025i \(0.593657\pi\)
\(192\) −1.00000 −0.0721688
\(193\) −20.6982 −1.48989 −0.744945 0.667126i \(-0.767524\pi\)
−0.744945 + 0.667126i \(0.767524\pi\)
\(194\) 6.70574 0.481444
\(195\) −10.4531 −0.748560
\(196\) 6.80846 0.486319
\(197\) −8.35559 −0.595311 −0.297656 0.954673i \(-0.596205\pi\)
−0.297656 + 0.954673i \(0.596205\pi\)
\(198\) −5.50753 −0.391403
\(199\) 1.72850 0.122530 0.0612650 0.998122i \(-0.480487\pi\)
0.0612650 + 0.998122i \(0.480487\pi\)
\(200\) −3.33946 −0.236136
\(201\) −9.67367 −0.682328
\(202\) 1.76290 0.124037
\(203\) 3.71597 0.260810
\(204\) 4.95541 0.346948
\(205\) 5.13856 0.358892
\(206\) 7.96524 0.554964
\(207\) −1.00000 −0.0695048
\(208\) −3.61972 −0.250982
\(209\) 27.2921 1.88783
\(210\) 10.7310 0.740512
\(211\) −27.0978 −1.86549 −0.932746 0.360534i \(-0.882594\pi\)
−0.932746 + 0.360534i \(0.882594\pi\)
\(212\) 2.70574 0.185831
\(213\) −3.39534 −0.232645
\(214\) 1.51548 0.103596
\(215\) 21.3672 1.45723
\(216\) 1.00000 0.0680414
\(217\) −22.4039 −1.52087
\(218\) 8.99827 0.609440
\(219\) −13.9133 −0.940174
\(220\) −15.9047 −1.07230
\(221\) 17.9372 1.20659
\(222\) −1.34786 −0.0904621
\(223\) 13.7789 0.922706 0.461353 0.887217i \(-0.347364\pi\)
0.461353 + 0.887217i \(0.347364\pi\)
\(224\) 3.71597 0.248284
\(225\) 3.33946 0.222631
\(226\) 9.12954 0.607288
\(227\) −5.34593 −0.354822 −0.177411 0.984137i \(-0.556772\pi\)
−0.177411 + 0.984137i \(0.556772\pi\)
\(228\) −4.95541 −0.328180
\(229\) −13.1419 −0.868439 −0.434219 0.900807i \(-0.642976\pi\)
−0.434219 + 0.900807i \(0.642976\pi\)
\(230\) −2.88781 −0.190417
\(231\) 20.4658 1.34655
\(232\) 1.00000 0.0656532
\(233\) 17.0564 1.11740 0.558701 0.829369i \(-0.311300\pi\)
0.558701 + 0.829369i \(0.311300\pi\)
\(234\) 3.61972 0.236628
\(235\) −39.5171 −2.57781
\(236\) 8.87565 0.577756
\(237\) 4.99623 0.324540
\(238\) −18.4142 −1.19361
\(239\) −20.9889 −1.35766 −0.678828 0.734297i \(-0.737512\pi\)
−0.678828 + 0.734297i \(0.737512\pi\)
\(240\) 2.88781 0.186407
\(241\) 8.17097 0.526338 0.263169 0.964750i \(-0.415232\pi\)
0.263169 + 0.964750i \(0.415232\pi\)
\(242\) −19.3329 −1.24277
\(243\) −1.00000 −0.0641500
\(244\) −5.99054 −0.383505
\(245\) −19.6616 −1.25613
\(246\) −1.77939 −0.113450
\(247\) −17.9372 −1.14132
\(248\) −6.02907 −0.382846
\(249\) −9.98492 −0.632769
\(250\) −4.79533 −0.303283
\(251\) −6.36103 −0.401505 −0.200752 0.979642i \(-0.564339\pi\)
−0.200752 + 0.979642i \(0.564339\pi\)
\(252\) −3.71597 −0.234084
\(253\) −5.50753 −0.346255
\(254\) 5.91021 0.370840
\(255\) −14.3103 −0.896145
\(256\) 1.00000 0.0625000
\(257\) 27.2143 1.69758 0.848790 0.528730i \(-0.177331\pi\)
0.848790 + 0.528730i \(0.177331\pi\)
\(258\) −7.39911 −0.460649
\(259\) 5.00859 0.311219
\(260\) 10.4531 0.648272
\(261\) −1.00000 −0.0618984
\(262\) −1.97363 −0.121931
\(263\) 4.94742 0.305071 0.152536 0.988298i \(-0.451256\pi\)
0.152536 + 0.988298i \(0.451256\pi\)
\(264\) 5.50753 0.338965
\(265\) −7.81366 −0.479989
\(266\) 18.4142 1.12905
\(267\) −11.1394 −0.681721
\(268\) 9.67367 0.590914
\(269\) 13.7863 0.840566 0.420283 0.907393i \(-0.361931\pi\)
0.420283 + 0.907393i \(0.361931\pi\)
\(270\) −2.88781 −0.175747
\(271\) −15.9722 −0.970242 −0.485121 0.874447i \(-0.661224\pi\)
−0.485121 + 0.874447i \(0.661224\pi\)
\(272\) −4.95541 −0.300466
\(273\) −13.4508 −0.814078
\(274\) 2.63621 0.159259
\(275\) 18.3922 1.10909
\(276\) 1.00000 0.0601929
\(277\) 0.259238 0.0155761 0.00778804 0.999970i \(-0.497521\pi\)
0.00778804 + 0.999970i \(0.497521\pi\)
\(278\) 13.5488 0.812601
\(279\) 6.02907 0.360951
\(280\) −10.7310 −0.641302
\(281\) −26.4700 −1.57907 −0.789533 0.613708i \(-0.789677\pi\)
−0.789533 + 0.613708i \(0.789677\pi\)
\(282\) 13.6841 0.814877
\(283\) 13.5133 0.803284 0.401642 0.915797i \(-0.368440\pi\)
0.401642 + 0.915797i \(0.368440\pi\)
\(284\) 3.39534 0.201477
\(285\) 14.3103 0.847669
\(286\) 19.9357 1.17882
\(287\) 6.61218 0.390305
\(288\) −1.00000 −0.0589256
\(289\) 7.55609 0.444476
\(290\) −2.88781 −0.169578
\(291\) 6.70574 0.393097
\(292\) 13.9133 0.814215
\(293\) 19.4076 1.13381 0.566903 0.823785i \(-0.308142\pi\)
0.566903 + 0.823785i \(0.308142\pi\)
\(294\) 6.80846 0.397077
\(295\) −25.6312 −1.49231
\(296\) 1.34786 0.0783425
\(297\) −5.50753 −0.319579
\(298\) 21.2105 1.22869
\(299\) 3.61972 0.209334
\(300\) −3.33946 −0.192804
\(301\) 27.4949 1.58478
\(302\) 9.47277 0.545097
\(303\) 1.76290 0.101276
\(304\) 4.95541 0.284212
\(305\) 17.2995 0.990569
\(306\) 4.95541 0.283282
\(307\) −3.55360 −0.202815 −0.101407 0.994845i \(-0.532335\pi\)
−0.101407 + 0.994845i \(0.532335\pi\)
\(308\) −20.4658 −1.16615
\(309\) 7.96524 0.453127
\(310\) 17.4108 0.988868
\(311\) −20.1790 −1.14424 −0.572122 0.820169i \(-0.693880\pi\)
−0.572122 + 0.820169i \(0.693880\pi\)
\(312\) −3.61972 −0.204926
\(313\) 1.15591 0.0653357 0.0326679 0.999466i \(-0.489600\pi\)
0.0326679 + 0.999466i \(0.489600\pi\)
\(314\) −10.1044 −0.570224
\(315\) 10.7310 0.604625
\(316\) −4.99623 −0.281060
\(317\) −10.5653 −0.593404 −0.296702 0.954970i \(-0.595887\pi\)
−0.296702 + 0.954970i \(0.595887\pi\)
\(318\) 2.70574 0.151730
\(319\) −5.50753 −0.308363
\(320\) −2.88781 −0.161434
\(321\) 1.51548 0.0845857
\(322\) −3.71597 −0.207083
\(323\) −24.5561 −1.36634
\(324\) 1.00000 0.0555556
\(325\) −12.0879 −0.670516
\(326\) 9.94758 0.550945
\(327\) 8.99827 0.497606
\(328\) 1.77939 0.0982506
\(329\) −50.8498 −2.80344
\(330\) −15.9047 −0.875526
\(331\) −0.110346 −0.00606515 −0.00303257 0.999995i \(-0.500965\pi\)
−0.00303257 + 0.999995i \(0.500965\pi\)
\(332\) 9.98492 0.547994
\(333\) −1.34786 −0.0738620
\(334\) −6.12496 −0.335143
\(335\) −27.9358 −1.52629
\(336\) 3.71597 0.202723
\(337\) −24.8678 −1.35463 −0.677317 0.735692i \(-0.736857\pi\)
−0.677317 + 0.735692i \(0.736857\pi\)
\(338\) −0.102360 −0.00556765
\(339\) 9.12954 0.495848
\(340\) 14.3103 0.776085
\(341\) 33.2053 1.79817
\(342\) −4.95541 −0.267958
\(343\) 0.711757 0.0384313
\(344\) 7.39911 0.398933
\(345\) −2.88781 −0.155475
\(346\) 5.20110 0.279613
\(347\) −0.159676 −0.00857183 −0.00428592 0.999991i \(-0.501364\pi\)
−0.00428592 + 0.999991i \(0.501364\pi\)
\(348\) 1.00000 0.0536056
\(349\) 21.5953 1.15597 0.577985 0.816048i \(-0.303839\pi\)
0.577985 + 0.816048i \(0.303839\pi\)
\(350\) 12.4093 0.663308
\(351\) 3.61972 0.193206
\(352\) −5.50753 −0.293552
\(353\) −3.90456 −0.207819 −0.103909 0.994587i \(-0.533135\pi\)
−0.103909 + 0.994587i \(0.533135\pi\)
\(354\) 8.87565 0.471735
\(355\) −9.80511 −0.520401
\(356\) 11.1394 0.590388
\(357\) −18.4142 −0.974581
\(358\) −24.5654 −1.29832
\(359\) 25.0273 1.32089 0.660446 0.750874i \(-0.270367\pi\)
0.660446 + 0.750874i \(0.270367\pi\)
\(360\) 2.88781 0.152201
\(361\) 5.55609 0.292426
\(362\) 18.2013 0.956640
\(363\) −19.3329 −1.01471
\(364\) 13.4508 0.705012
\(365\) −40.1790 −2.10307
\(366\) −5.99054 −0.313130
\(367\) −31.8680 −1.66350 −0.831748 0.555153i \(-0.812660\pi\)
−0.831748 + 0.555153i \(0.812660\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −1.77939 −0.0926315
\(370\) −3.89235 −0.202354
\(371\) −10.0544 −0.522001
\(372\) −6.02907 −0.312593
\(373\) 0.0879069 0.00455165 0.00227582 0.999997i \(-0.499276\pi\)
0.00227582 + 0.999997i \(0.499276\pi\)
\(374\) 27.2921 1.41124
\(375\) −4.79533 −0.247630
\(376\) −13.6841 −0.705704
\(377\) 3.61972 0.186425
\(378\) −3.71597 −0.191129
\(379\) 20.7932 1.06807 0.534037 0.845461i \(-0.320674\pi\)
0.534037 + 0.845461i \(0.320674\pi\)
\(380\) −14.3103 −0.734103
\(381\) 5.91021 0.302789
\(382\) 8.01593 0.410131
\(383\) 1.33991 0.0684661 0.0342331 0.999414i \(-0.489101\pi\)
0.0342331 + 0.999414i \(0.489101\pi\)
\(384\) 1.00000 0.0510310
\(385\) 59.1015 3.01209
\(386\) 20.6982 1.05351
\(387\) −7.39911 −0.376118
\(388\) −6.70574 −0.340432
\(389\) 33.9141 1.71951 0.859757 0.510703i \(-0.170615\pi\)
0.859757 + 0.510703i \(0.170615\pi\)
\(390\) 10.4531 0.529312
\(391\) 4.95541 0.250606
\(392\) −6.80846 −0.343879
\(393\) −1.97363 −0.0995566
\(394\) 8.35559 0.420949
\(395\) 14.4282 0.725960
\(396\) 5.50753 0.276764
\(397\) 12.8962 0.647242 0.323621 0.946187i \(-0.395100\pi\)
0.323621 + 0.946187i \(0.395100\pi\)
\(398\) −1.72850 −0.0866419
\(399\) 18.4142 0.921862
\(400\) 3.33946 0.166973
\(401\) 33.8000 1.68789 0.843945 0.536430i \(-0.180227\pi\)
0.843945 + 0.536430i \(0.180227\pi\)
\(402\) 9.67367 0.482479
\(403\) −21.8235 −1.08711
\(404\) −1.76290 −0.0877075
\(405\) −2.88781 −0.143497
\(406\) −3.71597 −0.184421
\(407\) −7.42335 −0.367962
\(408\) −4.95541 −0.245329
\(409\) −21.4792 −1.06208 −0.531039 0.847348i \(-0.678198\pi\)
−0.531039 + 0.847348i \(0.678198\pi\)
\(410\) −5.13856 −0.253775
\(411\) 2.63621 0.130035
\(412\) −7.96524 −0.392419
\(413\) −32.9817 −1.62292
\(414\) 1.00000 0.0491473
\(415\) −28.8346 −1.41543
\(416\) 3.61972 0.177471
\(417\) 13.5488 0.663486
\(418\) −27.2921 −1.33490
\(419\) −13.3422 −0.651811 −0.325906 0.945402i \(-0.605669\pi\)
−0.325906 + 0.945402i \(0.605669\pi\)
\(420\) −10.7310 −0.523621
\(421\) −2.78087 −0.135531 −0.0677657 0.997701i \(-0.521587\pi\)
−0.0677657 + 0.997701i \(0.521587\pi\)
\(422\) 27.0978 1.31910
\(423\) 13.6841 0.665344
\(424\) −2.70574 −0.131402
\(425\) −16.5484 −0.802715
\(426\) 3.39534 0.164505
\(427\) 22.2607 1.07727
\(428\) −1.51548 −0.0732533
\(429\) 19.9357 0.962505
\(430\) −21.3672 −1.03042
\(431\) 7.88445 0.379781 0.189890 0.981805i \(-0.439187\pi\)
0.189890 + 0.981805i \(0.439187\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 0.0431567 0.00207398 0.00103699 0.999999i \(-0.499670\pi\)
0.00103699 + 0.999999i \(0.499670\pi\)
\(434\) 22.4039 1.07542
\(435\) −2.88781 −0.138460
\(436\) −8.99827 −0.430939
\(437\) −4.95541 −0.237049
\(438\) 13.9133 0.664804
\(439\) 24.8532 1.18618 0.593089 0.805137i \(-0.297908\pi\)
0.593089 + 0.805137i \(0.297908\pi\)
\(440\) 15.9047 0.758228
\(441\) 6.80846 0.324212
\(442\) −17.9372 −0.853185
\(443\) −21.9452 −1.04265 −0.521323 0.853359i \(-0.674561\pi\)
−0.521323 + 0.853359i \(0.674561\pi\)
\(444\) 1.34786 0.0639664
\(445\) −32.1685 −1.52493
\(446\) −13.7789 −0.652451
\(447\) 21.2105 1.00322
\(448\) −3.71597 −0.175563
\(449\) −10.9510 −0.516811 −0.258405 0.966037i \(-0.583197\pi\)
−0.258405 + 0.966037i \(0.583197\pi\)
\(450\) −3.33946 −0.157424
\(451\) −9.80007 −0.461467
\(452\) −9.12954 −0.429417
\(453\) 9.47277 0.445069
\(454\) 5.34593 0.250897
\(455\) −38.8433 −1.82100
\(456\) 4.95541 0.232058
\(457\) −22.7893 −1.06604 −0.533018 0.846104i \(-0.678942\pi\)
−0.533018 + 0.846104i \(0.678942\pi\)
\(458\) 13.1419 0.614079
\(459\) 4.95541 0.231299
\(460\) 2.88781 0.134645
\(461\) −36.2538 −1.68851 −0.844254 0.535944i \(-0.819956\pi\)
−0.844254 + 0.535944i \(0.819956\pi\)
\(462\) −20.4658 −0.952157
\(463\) 6.98071 0.324421 0.162210 0.986756i \(-0.448138\pi\)
0.162210 + 0.986756i \(0.448138\pi\)
\(464\) −1.00000 −0.0464238
\(465\) 17.4108 0.807407
\(466\) −17.0564 −0.790123
\(467\) −30.8335 −1.42680 −0.713402 0.700755i \(-0.752847\pi\)
−0.713402 + 0.700755i \(0.752847\pi\)
\(468\) −3.61972 −0.167322
\(469\) −35.9471 −1.65988
\(470\) 39.5171 1.82279
\(471\) −10.1044 −0.465586
\(472\) −8.87565 −0.408535
\(473\) −40.7508 −1.87373
\(474\) −4.99623 −0.229484
\(475\) 16.5484 0.759293
\(476\) 18.4142 0.844012
\(477\) 2.70574 0.123887
\(478\) 20.9889 0.960008
\(479\) −37.8452 −1.72919 −0.864595 0.502470i \(-0.832425\pi\)
−0.864595 + 0.502470i \(0.832425\pi\)
\(480\) −2.88781 −0.131810
\(481\) 4.87886 0.222457
\(482\) −8.17097 −0.372177
\(483\) −3.71597 −0.169083
\(484\) 19.3329 0.878768
\(485\) 19.3649 0.879315
\(486\) 1.00000 0.0453609
\(487\) 0.692927 0.0313995 0.0156998 0.999877i \(-0.495002\pi\)
0.0156998 + 0.999877i \(0.495002\pi\)
\(488\) 5.99054 0.271179
\(489\) 9.94758 0.449845
\(490\) 19.6616 0.888219
\(491\) 8.52194 0.384590 0.192295 0.981337i \(-0.438407\pi\)
0.192295 + 0.981337i \(0.438407\pi\)
\(492\) 1.77939 0.0802213
\(493\) 4.95541 0.223180
\(494\) 17.9372 0.807032
\(495\) −15.9047 −0.714864
\(496\) 6.02907 0.270713
\(497\) −12.6170 −0.565950
\(498\) 9.98492 0.447435
\(499\) 7.23643 0.323947 0.161974 0.986795i \(-0.448214\pi\)
0.161974 + 0.986795i \(0.448214\pi\)
\(500\) 4.79533 0.214453
\(501\) −6.12496 −0.273643
\(502\) 6.36103 0.283907
\(503\) 0.408278 0.0182042 0.00910210 0.999959i \(-0.497103\pi\)
0.00910210 + 0.999959i \(0.497103\pi\)
\(504\) 3.71597 0.165523
\(505\) 5.09092 0.226543
\(506\) 5.50753 0.244840
\(507\) −0.102360 −0.00454597
\(508\) −5.91021 −0.262223
\(509\) −33.3664 −1.47894 −0.739470 0.673189i \(-0.764924\pi\)
−0.739470 + 0.673189i \(0.764924\pi\)
\(510\) 14.3103 0.633671
\(511\) −51.7015 −2.28714
\(512\) −1.00000 −0.0441942
\(513\) −4.95541 −0.218787
\(514\) −27.2143 −1.20037
\(515\) 23.0021 1.01359
\(516\) 7.39911 0.325728
\(517\) 75.3657 3.31458
\(518\) −5.00859 −0.220065
\(519\) 5.20110 0.228303
\(520\) −10.4531 −0.458397
\(521\) −10.1756 −0.445802 −0.222901 0.974841i \(-0.571553\pi\)
−0.222901 + 0.974841i \(0.571553\pi\)
\(522\) 1.00000 0.0437688
\(523\) 9.53775 0.417057 0.208528 0.978016i \(-0.433133\pi\)
0.208528 + 0.978016i \(0.433133\pi\)
\(524\) 1.97363 0.0862185
\(525\) 12.4093 0.541588
\(526\) −4.94742 −0.215718
\(527\) −29.8765 −1.30144
\(528\) −5.50753 −0.239685
\(529\) 1.00000 0.0434783
\(530\) 7.81366 0.339404
\(531\) 8.87565 0.385170
\(532\) −18.4142 −0.798356
\(533\) 6.44090 0.278987
\(534\) 11.1394 0.482050
\(535\) 4.37641 0.189209
\(536\) −9.67367 −0.417839
\(537\) −24.5654 −1.06008
\(538\) −13.7863 −0.594370
\(539\) 37.4978 1.61514
\(540\) 2.88781 0.124272
\(541\) −19.3459 −0.831744 −0.415872 0.909423i \(-0.636524\pi\)
−0.415872 + 0.909423i \(0.636524\pi\)
\(542\) 15.9722 0.686065
\(543\) 18.2013 0.781093
\(544\) 4.95541 0.212461
\(545\) 25.9853 1.11309
\(546\) 13.4508 0.575640
\(547\) −15.4328 −0.659861 −0.329930 0.944005i \(-0.607025\pi\)
−0.329930 + 0.944005i \(0.607025\pi\)
\(548\) −2.63621 −0.112613
\(549\) −5.99054 −0.255670
\(550\) −18.3922 −0.784245
\(551\) −4.95541 −0.211108
\(552\) −1.00000 −0.0425628
\(553\) 18.5659 0.789501
\(554\) −0.259238 −0.0110140
\(555\) −3.89235 −0.165221
\(556\) −13.5488 −0.574595
\(557\) −39.6466 −1.67988 −0.839941 0.542678i \(-0.817410\pi\)
−0.839941 + 0.542678i \(0.817410\pi\)
\(558\) −6.02907 −0.255231
\(559\) 26.7827 1.13279
\(560\) 10.7310 0.453469
\(561\) 27.2921 1.15227
\(562\) 26.4700 1.11657
\(563\) −4.87087 −0.205283 −0.102641 0.994718i \(-0.532729\pi\)
−0.102641 + 0.994718i \(0.532729\pi\)
\(564\) −13.6841 −0.576205
\(565\) 26.3644 1.10916
\(566\) −13.5133 −0.568007
\(567\) −3.71597 −0.156056
\(568\) −3.39534 −0.142465
\(569\) 12.6800 0.531575 0.265787 0.964032i \(-0.414368\pi\)
0.265787 + 0.964032i \(0.414368\pi\)
\(570\) −14.3103 −0.599392
\(571\) −39.1654 −1.63902 −0.819511 0.573064i \(-0.805755\pi\)
−0.819511 + 0.573064i \(0.805755\pi\)
\(572\) −19.9357 −0.833554
\(573\) 8.01593 0.334870
\(574\) −6.61218 −0.275987
\(575\) −3.33946 −0.139265
\(576\) 1.00000 0.0416667
\(577\) 3.95774 0.164763 0.0823814 0.996601i \(-0.473747\pi\)
0.0823814 + 0.996601i \(0.473747\pi\)
\(578\) −7.55609 −0.314292
\(579\) 20.6982 0.860188
\(580\) 2.88781 0.119910
\(581\) −37.1037 −1.53932
\(582\) −6.70574 −0.277962
\(583\) 14.9019 0.617175
\(584\) −13.9133 −0.575737
\(585\) 10.4531 0.432181
\(586\) −19.4076 −0.801721
\(587\) 19.7477 0.815074 0.407537 0.913189i \(-0.366388\pi\)
0.407537 + 0.913189i \(0.366388\pi\)
\(588\) −6.80846 −0.280776
\(589\) 29.8765 1.23104
\(590\) 25.6312 1.05522
\(591\) 8.35559 0.343703
\(592\) −1.34786 −0.0553965
\(593\) 39.9052 1.63871 0.819356 0.573286i \(-0.194331\pi\)
0.819356 + 0.573286i \(0.194331\pi\)
\(594\) 5.50753 0.225977
\(595\) −53.1767 −2.18003
\(596\) −21.2105 −0.868815
\(597\) −1.72850 −0.0707428
\(598\) −3.61972 −0.148021
\(599\) −34.3227 −1.40239 −0.701193 0.712972i \(-0.747349\pi\)
−0.701193 + 0.712972i \(0.747349\pi\)
\(600\) 3.33946 0.136333
\(601\) −22.5528 −0.919949 −0.459975 0.887932i \(-0.652141\pi\)
−0.459975 + 0.887932i \(0.652141\pi\)
\(602\) −27.4949 −1.12061
\(603\) 9.67367 0.393942
\(604\) −9.47277 −0.385441
\(605\) −55.8298 −2.26980
\(606\) −1.76290 −0.0716129
\(607\) −17.9582 −0.728901 −0.364451 0.931223i \(-0.618743\pi\)
−0.364451 + 0.931223i \(0.618743\pi\)
\(608\) −4.95541 −0.200968
\(609\) −3.71597 −0.150579
\(610\) −17.2995 −0.700438
\(611\) −49.5326 −2.00388
\(612\) −4.95541 −0.200311
\(613\) 40.6855 1.64327 0.821637 0.570012i \(-0.193061\pi\)
0.821637 + 0.570012i \(0.193061\pi\)
\(614\) 3.55360 0.143412
\(615\) −5.13856 −0.207207
\(616\) 20.4658 0.824592
\(617\) 23.4744 0.945045 0.472523 0.881319i \(-0.343344\pi\)
0.472523 + 0.881319i \(0.343344\pi\)
\(618\) −7.96524 −0.320409
\(619\) 28.8906 1.16121 0.580605 0.814186i \(-0.302816\pi\)
0.580605 + 0.814186i \(0.302816\pi\)
\(620\) −17.4108 −0.699235
\(621\) 1.00000 0.0401286
\(622\) 20.1790 0.809102
\(623\) −41.3938 −1.65841
\(624\) 3.61972 0.144905
\(625\) −30.5453 −1.22181
\(626\) −1.15591 −0.0461993
\(627\) −27.2921 −1.08994
\(628\) 10.1044 0.403210
\(629\) 6.67917 0.266316
\(630\) −10.7310 −0.427535
\(631\) −40.4437 −1.61004 −0.805020 0.593248i \(-0.797845\pi\)
−0.805020 + 0.593248i \(0.797845\pi\)
\(632\) 4.99623 0.198739
\(633\) 27.0978 1.07704
\(634\) 10.5653 0.419600
\(635\) 17.0676 0.677306
\(636\) −2.70574 −0.107289
\(637\) −24.6447 −0.976459
\(638\) 5.50753 0.218045
\(639\) 3.39534 0.134318
\(640\) 2.88781 0.114151
\(641\) 39.5362 1.56159 0.780794 0.624789i \(-0.214815\pi\)
0.780794 + 0.624789i \(0.214815\pi\)
\(642\) −1.51548 −0.0598111
\(643\) 22.3465 0.881261 0.440631 0.897688i \(-0.354755\pi\)
0.440631 + 0.897688i \(0.354755\pi\)
\(644\) 3.71597 0.146430
\(645\) −21.3672 −0.841335
\(646\) 24.5561 0.966146
\(647\) −8.23332 −0.323685 −0.161843 0.986817i \(-0.551744\pi\)
−0.161843 + 0.986817i \(0.551744\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 48.8829 1.91882
\(650\) 12.0879 0.474127
\(651\) 22.4039 0.878076
\(652\) −9.94758 −0.389577
\(653\) −13.0292 −0.509870 −0.254935 0.966958i \(-0.582054\pi\)
−0.254935 + 0.966958i \(0.582054\pi\)
\(654\) −8.99827 −0.351860
\(655\) −5.69948 −0.222697
\(656\) −1.77939 −0.0694737
\(657\) 13.9133 0.542810
\(658\) 50.8498 1.98233
\(659\) −0.234991 −0.00915393 −0.00457697 0.999990i \(-0.501457\pi\)
−0.00457697 + 0.999990i \(0.501457\pi\)
\(660\) 15.9047 0.619090
\(661\) 6.53996 0.254375 0.127188 0.991879i \(-0.459405\pi\)
0.127188 + 0.991879i \(0.459405\pi\)
\(662\) 0.110346 0.00428871
\(663\) −17.9372 −0.696623
\(664\) −9.98492 −0.387490
\(665\) 53.1767 2.06210
\(666\) 1.34786 0.0522283
\(667\) 1.00000 0.0387202
\(668\) 6.12496 0.236982
\(669\) −13.7789 −0.532724
\(670\) 27.9358 1.07925
\(671\) −32.9931 −1.27368
\(672\) −3.71597 −0.143347
\(673\) 2.67081 0.102952 0.0514761 0.998674i \(-0.483607\pi\)
0.0514761 + 0.998674i \(0.483607\pi\)
\(674\) 24.8678 0.957870
\(675\) −3.33946 −0.128536
\(676\) 0.102360 0.00393692
\(677\) −24.0923 −0.925944 −0.462972 0.886373i \(-0.653217\pi\)
−0.462972 + 0.886373i \(0.653217\pi\)
\(678\) −9.12954 −0.350618
\(679\) 24.9183 0.956278
\(680\) −14.3103 −0.548775
\(681\) 5.34593 0.204856
\(682\) −33.2053 −1.27150
\(683\) −49.1611 −1.88110 −0.940548 0.339660i \(-0.889688\pi\)
−0.940548 + 0.339660i \(0.889688\pi\)
\(684\) 4.95541 0.189475
\(685\) 7.61289 0.290874
\(686\) −0.711757 −0.0271750
\(687\) 13.1419 0.501393
\(688\) −7.39911 −0.282089
\(689\) −9.79401 −0.373122
\(690\) 2.88781 0.109937
\(691\) −15.8128 −0.601549 −0.300774 0.953695i \(-0.597245\pi\)
−0.300774 + 0.953695i \(0.597245\pi\)
\(692\) −5.20110 −0.197716
\(693\) −20.4658 −0.777433
\(694\) 0.159676 0.00606120
\(695\) 39.1263 1.48414
\(696\) −1.00000 −0.0379049
\(697\) 8.81763 0.333991
\(698\) −21.5953 −0.817394
\(699\) −17.0564 −0.645133
\(700\) −12.4093 −0.469029
\(701\) 19.0238 0.718517 0.359259 0.933238i \(-0.383030\pi\)
0.359259 + 0.933238i \(0.383030\pi\)
\(702\) −3.61972 −0.136617
\(703\) −6.67917 −0.251910
\(704\) 5.50753 0.207573
\(705\) 39.5171 1.48830
\(706\) 3.90456 0.146950
\(707\) 6.55089 0.246371
\(708\) −8.87565 −0.333567
\(709\) −27.0229 −1.01487 −0.507433 0.861691i \(-0.669406\pi\)
−0.507433 + 0.861691i \(0.669406\pi\)
\(710\) 9.80511 0.367979
\(711\) −4.99623 −0.187373
\(712\) −11.1394 −0.417467
\(713\) −6.02907 −0.225790
\(714\) 18.4142 0.689133
\(715\) 57.5706 2.15302
\(716\) 24.5654 0.918053
\(717\) 20.9889 0.783843
\(718\) −25.0273 −0.934011
\(719\) 16.5250 0.616277 0.308138 0.951342i \(-0.400294\pi\)
0.308138 + 0.951342i \(0.400294\pi\)
\(720\) −2.88781 −0.107622
\(721\) 29.5986 1.10231
\(722\) −5.55609 −0.206776
\(723\) −8.17097 −0.303882
\(724\) −18.2013 −0.676447
\(725\) −3.33946 −0.124024
\(726\) 19.3329 0.717511
\(727\) 35.7940 1.32752 0.663762 0.747944i \(-0.268959\pi\)
0.663762 + 0.747944i \(0.268959\pi\)
\(728\) −13.4508 −0.498519
\(729\) 1.00000 0.0370370
\(730\) 40.1790 1.48709
\(731\) 36.6656 1.35613
\(732\) 5.99054 0.221417
\(733\) 30.3125 1.11962 0.559808 0.828622i \(-0.310875\pi\)
0.559808 + 0.828622i \(0.310875\pi\)
\(734\) 31.8680 1.17627
\(735\) 19.6616 0.725227
\(736\) 1.00000 0.0368605
\(737\) 53.2781 1.96252
\(738\) 1.77939 0.0655004
\(739\) 17.6301 0.648534 0.324267 0.945966i \(-0.394882\pi\)
0.324267 + 0.945966i \(0.394882\pi\)
\(740\) 3.89235 0.143086
\(741\) 17.9372 0.658939
\(742\) 10.0544 0.369110
\(743\) 25.1878 0.924050 0.462025 0.886867i \(-0.347123\pi\)
0.462025 + 0.886867i \(0.347123\pi\)
\(744\) 6.02907 0.221036
\(745\) 61.2519 2.24409
\(746\) −0.0879069 −0.00321850
\(747\) 9.98492 0.365329
\(748\) −27.2921 −0.997897
\(749\) 5.63147 0.205770
\(750\) 4.79533 0.175101
\(751\) −10.4646 −0.381858 −0.190929 0.981604i \(-0.561150\pi\)
−0.190929 + 0.981604i \(0.561150\pi\)
\(752\) 13.6841 0.499008
\(753\) 6.36103 0.231809
\(754\) −3.61972 −0.131822
\(755\) 27.3556 0.995571
\(756\) 3.71597 0.135149
\(757\) 22.8522 0.830577 0.415289 0.909690i \(-0.363681\pi\)
0.415289 + 0.909690i \(0.363681\pi\)
\(758\) −20.7932 −0.755242
\(759\) 5.50753 0.199911
\(760\) 14.3103 0.519089
\(761\) −43.1330 −1.56357 −0.781785 0.623548i \(-0.785690\pi\)
−0.781785 + 0.623548i \(0.785690\pi\)
\(762\) −5.91021 −0.214104
\(763\) 33.4373 1.21051
\(764\) −8.01593 −0.290006
\(765\) 14.3103 0.517390
\(766\) −1.33991 −0.0484129
\(767\) −32.1273 −1.16005
\(768\) −1.00000 −0.0360844
\(769\) 42.7582 1.54190 0.770950 0.636895i \(-0.219782\pi\)
0.770950 + 0.636895i \(0.219782\pi\)
\(770\) −59.1015 −2.12987
\(771\) −27.2143 −0.980099
\(772\) −20.6982 −0.744945
\(773\) 23.9548 0.861593 0.430796 0.902449i \(-0.358233\pi\)
0.430796 + 0.902449i \(0.358233\pi\)
\(774\) 7.39911 0.265956
\(775\) 20.1338 0.723229
\(776\) 6.70574 0.240722
\(777\) −5.00859 −0.179682
\(778\) −33.9141 −1.21588
\(779\) −8.81763 −0.315924
\(780\) −10.4531 −0.374280
\(781\) 18.7000 0.669137
\(782\) −4.95541 −0.177205
\(783\) 1.00000 0.0357371
\(784\) 6.80846 0.243159
\(785\) −29.1796 −1.04147
\(786\) 1.97363 0.0703971
\(787\) −46.7137 −1.66516 −0.832582 0.553901i \(-0.813139\pi\)
−0.832582 + 0.553901i \(0.813139\pi\)
\(788\) −8.35559 −0.297656
\(789\) −4.94742 −0.176133
\(790\) −14.4282 −0.513332
\(791\) 33.9251 1.20624
\(792\) −5.50753 −0.195702
\(793\) 21.6840 0.770023
\(794\) −12.8962 −0.457669
\(795\) 7.81366 0.277122
\(796\) 1.72850 0.0612650
\(797\) −45.2735 −1.60367 −0.801836 0.597545i \(-0.796143\pi\)
−0.801836 + 0.597545i \(0.796143\pi\)
\(798\) −18.4142 −0.651855
\(799\) −67.8104 −2.39896
\(800\) −3.33946 −0.118068
\(801\) 11.1394 0.393592
\(802\) −33.8000 −1.19352
\(803\) 76.6280 2.70414
\(804\) −9.67367 −0.341164
\(805\) −10.7310 −0.378219
\(806\) 21.8235 0.768701
\(807\) −13.7863 −0.485301
\(808\) 1.76290 0.0620186
\(809\) 20.9077 0.735076 0.367538 0.930009i \(-0.380201\pi\)
0.367538 + 0.930009i \(0.380201\pi\)
\(810\) 2.88781 0.101467
\(811\) −15.5488 −0.545991 −0.272995 0.962015i \(-0.588014\pi\)
−0.272995 + 0.962015i \(0.588014\pi\)
\(812\) 3.71597 0.130405
\(813\) 15.9722 0.560169
\(814\) 7.42335 0.260188
\(815\) 28.7267 1.00625
\(816\) 4.95541 0.173474
\(817\) −36.6656 −1.28277
\(818\) 21.4792 0.751002
\(819\) 13.4508 0.470008
\(820\) 5.13856 0.179446
\(821\) 29.8698 1.04246 0.521232 0.853415i \(-0.325473\pi\)
0.521232 + 0.853415i \(0.325473\pi\)
\(822\) −2.63621 −0.0919485
\(823\) 8.60869 0.300080 0.150040 0.988680i \(-0.452060\pi\)
0.150040 + 0.988680i \(0.452060\pi\)
\(824\) 7.96524 0.277482
\(825\) −18.3922 −0.640334
\(826\) 32.9817 1.14758
\(827\) 35.8295 1.24591 0.622957 0.782256i \(-0.285931\pi\)
0.622957 + 0.782256i \(0.285931\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −43.0591 −1.49551 −0.747753 0.663977i \(-0.768867\pi\)
−0.747753 + 0.663977i \(0.768867\pi\)
\(830\) 28.8346 1.00086
\(831\) −0.259238 −0.00899286
\(832\) −3.61972 −0.125491
\(833\) −33.7387 −1.16898
\(834\) −13.5488 −0.469155
\(835\) −17.6877 −0.612109
\(836\) 27.2921 0.943916
\(837\) −6.02907 −0.208395
\(838\) 13.3422 0.460900
\(839\) 23.0922 0.797230 0.398615 0.917118i \(-0.369491\pi\)
0.398615 + 0.917118i \(0.369491\pi\)
\(840\) 10.7310 0.370256
\(841\) 1.00000 0.0344828
\(842\) 2.78087 0.0958352
\(843\) 26.4700 0.911674
\(844\) −27.0978 −0.932746
\(845\) −0.295596 −0.0101688
\(846\) −13.6841 −0.470469
\(847\) −71.8405 −2.46847
\(848\) 2.70574 0.0929154
\(849\) −13.5133 −0.463776
\(850\) 16.5484 0.567605
\(851\) 1.34786 0.0462039
\(852\) −3.39534 −0.116323
\(853\) 48.6314 1.66511 0.832553 0.553945i \(-0.186878\pi\)
0.832553 + 0.553945i \(0.186878\pi\)
\(854\) −22.2607 −0.761744
\(855\) −14.3103 −0.489402
\(856\) 1.51548 0.0517979
\(857\) 7.79582 0.266300 0.133150 0.991096i \(-0.457491\pi\)
0.133150 + 0.991096i \(0.457491\pi\)
\(858\) −19.9357 −0.680594
\(859\) 14.8402 0.506340 0.253170 0.967422i \(-0.418527\pi\)
0.253170 + 0.967422i \(0.418527\pi\)
\(860\) 21.3672 0.728617
\(861\) −6.61218 −0.225343
\(862\) −7.88445 −0.268546
\(863\) 12.5125 0.425931 0.212966 0.977060i \(-0.431688\pi\)
0.212966 + 0.977060i \(0.431688\pi\)
\(864\) 1.00000 0.0340207
\(865\) 15.0198 0.510689
\(866\) −0.0431567 −0.00146652
\(867\) −7.55609 −0.256618
\(868\) −22.4039 −0.760436
\(869\) −27.5169 −0.933447
\(870\) 2.88781 0.0979060
\(871\) −35.0160 −1.18647
\(872\) 8.99827 0.304720
\(873\) −6.70574 −0.226955
\(874\) 4.95541 0.167619
\(875\) −17.8193 −0.602402
\(876\) −13.9133 −0.470087
\(877\) 16.0092 0.540592 0.270296 0.962777i \(-0.412878\pi\)
0.270296 + 0.962777i \(0.412878\pi\)
\(878\) −24.8532 −0.838755
\(879\) −19.4076 −0.654603
\(880\) −15.9047 −0.536148
\(881\) −56.3782 −1.89943 −0.949714 0.313118i \(-0.898626\pi\)
−0.949714 + 0.313118i \(0.898626\pi\)
\(882\) −6.80846 −0.229253
\(883\) 37.3553 1.25711 0.628553 0.777767i \(-0.283648\pi\)
0.628553 + 0.777767i \(0.283648\pi\)
\(884\) 17.9372 0.603293
\(885\) 25.6312 0.861584
\(886\) 21.9452 0.737263
\(887\) 36.3244 1.21965 0.609827 0.792534i \(-0.291239\pi\)
0.609827 + 0.792534i \(0.291239\pi\)
\(888\) −1.34786 −0.0452311
\(889\) 21.9622 0.736588
\(890\) 32.1685 1.07829
\(891\) 5.50753 0.184509
\(892\) 13.7789 0.461353
\(893\) 67.8104 2.26919
\(894\) −21.2105 −0.709384
\(895\) −70.9403 −2.37127
\(896\) 3.71597 0.124142
\(897\) −3.61972 −0.120859
\(898\) 10.9510 0.365440
\(899\) −6.02907 −0.201081
\(900\) 3.33946 0.111315
\(901\) −13.4080 −0.446687
\(902\) 9.80007 0.326307
\(903\) −27.4949 −0.914973
\(904\) 9.12954 0.303644
\(905\) 52.5620 1.74722
\(906\) −9.47277 −0.314712
\(907\) 56.5181 1.87665 0.938326 0.345752i \(-0.112376\pi\)
0.938326 + 0.345752i \(0.112376\pi\)
\(908\) −5.34593 −0.177411
\(909\) −1.76290 −0.0584717
\(910\) 38.8433 1.28764
\(911\) 38.5719 1.27794 0.638972 0.769230i \(-0.279360\pi\)
0.638972 + 0.769230i \(0.279360\pi\)
\(912\) −4.95541 −0.164090
\(913\) 54.9923 1.81998
\(914\) 22.7893 0.753802
\(915\) −17.2995 −0.571905
\(916\) −13.1419 −0.434219
\(917\) −7.33396 −0.242189
\(918\) −4.95541 −0.163553
\(919\) −29.4673 −0.972036 −0.486018 0.873949i \(-0.661551\pi\)
−0.486018 + 0.873949i \(0.661551\pi\)
\(920\) −2.88781 −0.0952084
\(921\) 3.55360 0.117095
\(922\) 36.2538 1.19395
\(923\) −12.2902 −0.404536
\(924\) 20.4658 0.673277
\(925\) −4.50111 −0.147996
\(926\) −6.98071 −0.229400
\(927\) −7.96524 −0.261613
\(928\) 1.00000 0.0328266
\(929\) 12.9544 0.425021 0.212511 0.977159i \(-0.431836\pi\)
0.212511 + 0.977159i \(0.431836\pi\)
\(930\) −17.4108 −0.570923
\(931\) 33.7387 1.10574
\(932\) 17.0564 0.558701
\(933\) 20.1790 0.660629
\(934\) 30.8335 1.00890
\(935\) 78.8144 2.57751
\(936\) 3.61972 0.118314
\(937\) 23.5246 0.768516 0.384258 0.923226i \(-0.374457\pi\)
0.384258 + 0.923226i \(0.374457\pi\)
\(938\) 35.9471 1.17371
\(939\) −1.15591 −0.0377216
\(940\) −39.5171 −1.28891
\(941\) −39.5272 −1.28855 −0.644275 0.764794i \(-0.722841\pi\)
−0.644275 + 0.764794i \(0.722841\pi\)
\(942\) 10.1044 0.329219
\(943\) 1.77939 0.0579450
\(944\) 8.87565 0.288878
\(945\) −10.7310 −0.349081
\(946\) 40.7508 1.32492
\(947\) 42.4800 1.38041 0.690207 0.723612i \(-0.257519\pi\)
0.690207 + 0.723612i \(0.257519\pi\)
\(948\) 4.99623 0.162270
\(949\) −50.3623 −1.63483
\(950\) −16.5484 −0.536901
\(951\) 10.5653 0.342602
\(952\) −18.4142 −0.596807
\(953\) −47.5687 −1.54090 −0.770451 0.637499i \(-0.779969\pi\)
−0.770451 + 0.637499i \(0.779969\pi\)
\(954\) −2.70574 −0.0876015
\(955\) 23.1485 0.749068
\(956\) −20.9889 −0.678828
\(957\) 5.50753 0.178033
\(958\) 37.8452 1.22272
\(959\) 9.79610 0.316332
\(960\) 2.88781 0.0932037
\(961\) 5.34964 0.172569
\(962\) −4.87886 −0.157301
\(963\) −1.51548 −0.0488356
\(964\) 8.17097 0.263169
\(965\) 59.7725 1.92415
\(966\) 3.71597 0.119559
\(967\) 14.6186 0.470102 0.235051 0.971983i \(-0.424474\pi\)
0.235051 + 0.971983i \(0.424474\pi\)
\(968\) −19.3329 −0.621383
\(969\) 24.5561 0.788855
\(970\) −19.3649 −0.621770
\(971\) 1.48997 0.0478153 0.0239076 0.999714i \(-0.492389\pi\)
0.0239076 + 0.999714i \(0.492389\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 50.3468 1.61405
\(974\) −0.692927 −0.0222028
\(975\) 12.0879 0.387123
\(976\) −5.99054 −0.191752
\(977\) −37.4869 −1.19931 −0.599656 0.800258i \(-0.704696\pi\)
−0.599656 + 0.800258i \(0.704696\pi\)
\(978\) −9.94758 −0.318088
\(979\) 61.3507 1.96078
\(980\) −19.6616 −0.628065
\(981\) −8.99827 −0.287293
\(982\) −8.52194 −0.271946
\(983\) −59.5677 −1.89991 −0.949957 0.312381i \(-0.898873\pi\)
−0.949957 + 0.312381i \(0.898873\pi\)
\(984\) −1.77939 −0.0567250
\(985\) 24.1294 0.768826
\(986\) −4.95541 −0.157812
\(987\) 50.8498 1.61857
\(988\) −17.9372 −0.570658
\(989\) 7.39911 0.235278
\(990\) 15.9047 0.505485
\(991\) −31.9628 −1.01533 −0.507666 0.861554i \(-0.669492\pi\)
−0.507666 + 0.861554i \(0.669492\pi\)
\(992\) −6.02907 −0.191423
\(993\) 0.110346 0.00350171
\(994\) 12.6170 0.400187
\(995\) −4.99158 −0.158244
\(996\) −9.98492 −0.316384
\(997\) 32.0290 1.01437 0.507184 0.861838i \(-0.330686\pi\)
0.507184 + 0.861838i \(0.330686\pi\)
\(998\) −7.23643 −0.229065
\(999\) 1.34786 0.0426442
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.be.1.1 5
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.be.1.1 5 1.1 even 1 trivial