Properties

Label 4002.2.a.bd.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.19796.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-1.82082\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.38424 q^{5} +1.00000 q^{6} -3.20506 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.38424 q^{5} +1.00000 q^{6} -3.20506 q^{7} +1.00000 q^{8} +1.00000 q^{9} +1.38424 q^{10} +5.82082 q^{11} +1.00000 q^{12} -0.957038 q^{13} -3.20506 q^{14} +1.38424 q^{15} +1.00000 q^{16} -3.20506 q^{17} +1.00000 q^{18} +3.20506 q^{19} +1.38424 q^{20} -3.20506 q^{21} +5.82082 q^{22} -1.00000 q^{23} +1.00000 q^{24} -3.08388 q^{25} -0.957038 q^{26} +1.00000 q^{27} -3.20506 q^{28} +1.00000 q^{29} +1.38424 q^{30} +5.72552 q^{31} +1.00000 q^{32} +5.82082 q^{33} -3.20506 q^{34} -4.43658 q^{35} +1.00000 q^{36} +5.22009 q^{37} +3.20506 q^{38} -0.957038 q^{39} +1.38424 q^{40} -0.0838762 q^{41} -3.20506 q^{42} +9.91408 q^{43} +5.82082 q^{44} +1.38424 q^{45} -1.00000 q^{46} +8.60433 q^{47} +1.00000 q^{48} +3.27243 q^{49} -3.08388 q^{50} -3.20506 q^{51} -0.957038 q^{52} +12.9814 q^{53} +1.00000 q^{54} +8.05742 q^{55} -3.20506 q^{56} +3.20506 q^{57} +1.00000 q^{58} +1.55777 q^{59} +1.38424 q^{60} -11.1342 q^{61} +5.72552 q^{62} -3.20506 q^{63} +1.00000 q^{64} -1.32477 q^{65} +5.82082 q^{66} +8.39510 q^{67} -3.20506 q^{68} -1.00000 q^{69} -4.43658 q^{70} -11.0947 q^{71} +1.00000 q^{72} +9.74993 q^{73} +5.22009 q^{74} -3.08388 q^{75} +3.20506 q^{76} -18.6561 q^{77} -0.957038 q^{78} -8.33190 q^{79} +1.38424 q^{80} +1.00000 q^{81} -0.0838762 q^{82} -10.5449 q^{83} -3.20506 q^{84} -4.43658 q^{85} +9.91408 q^{86} +1.00000 q^{87} +5.82082 q^{88} -8.98145 q^{89} +1.38424 q^{90} +3.06737 q^{91} -1.00000 q^{92} +5.72552 q^{93} +8.60433 q^{94} +4.43658 q^{95} +1.00000 q^{96} +7.71987 q^{97} +3.27243 q^{98} +5.82082 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - q^{5} + 4 q^{6} + 2 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - q^{5} + 4 q^{6} + 2 q^{7} + 4 q^{8} + 4 q^{9} - q^{10} + 15 q^{11} + 4 q^{12} + 11 q^{13} + 2 q^{14} - q^{15} + 4 q^{16} + 2 q^{17} + 4 q^{18} - 2 q^{19} - q^{20} + 2 q^{21} + 15 q^{22} - 4 q^{23} + 4 q^{24} - q^{25} + 11 q^{26} + 4 q^{27} + 2 q^{28} + 4 q^{29} - q^{30} - 5 q^{31} + 4 q^{32} + 15 q^{33} + 2 q^{34} - 16 q^{35} + 4 q^{36} + 3 q^{37} - 2 q^{38} + 11 q^{39} - q^{40} + 11 q^{41} + 2 q^{42} + 10 q^{43} + 15 q^{44} - q^{45} - 4 q^{46} + 10 q^{47} + 4 q^{48} - q^{50} + 2 q^{51} + 11 q^{52} + 24 q^{53} + 4 q^{54} - 7 q^{55} + 2 q^{56} - 2 q^{57} + 4 q^{58} + q^{59} - q^{60} + 3 q^{61} - 5 q^{62} + 2 q^{63} + 4 q^{64} + 3 q^{65} + 15 q^{66} + 7 q^{67} + 2 q^{68} - 4 q^{69} - 16 q^{70} - 13 q^{71} + 4 q^{72} - 2 q^{73} + 3 q^{74} - q^{75} - 2 q^{76} - 4 q^{77} + 11 q^{78} - 22 q^{79} - q^{80} + 4 q^{81} + 11 q^{82} - 16 q^{83} + 2 q^{84} - 16 q^{85} + 10 q^{86} + 4 q^{87} + 15 q^{88} - 8 q^{89} - q^{90} + 14 q^{91} - 4 q^{92} - 5 q^{93} + 10 q^{94} + 16 q^{95} + 4 q^{96} - 4 q^{97} + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.38424 0.619051 0.309526 0.950891i \(-0.399830\pi\)
0.309526 + 0.950891i \(0.399830\pi\)
\(6\) 1.00000 0.408248
\(7\) −3.20506 −1.21140 −0.605700 0.795693i \(-0.707107\pi\)
−0.605700 + 0.795693i \(0.707107\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 1.38424 0.437736
\(11\) 5.82082 1.75504 0.877522 0.479536i \(-0.159195\pi\)
0.877522 + 0.479536i \(0.159195\pi\)
\(12\) 1.00000 0.288675
\(13\) −0.957038 −0.265435 −0.132717 0.991154i \(-0.542370\pi\)
−0.132717 + 0.991154i \(0.542370\pi\)
\(14\) −3.20506 −0.856589
\(15\) 1.38424 0.357410
\(16\) 1.00000 0.250000
\(17\) −3.20506 −0.777342 −0.388671 0.921377i \(-0.627066\pi\)
−0.388671 + 0.921377i \(0.627066\pi\)
\(18\) 1.00000 0.235702
\(19\) 3.20506 0.735292 0.367646 0.929966i \(-0.380164\pi\)
0.367646 + 0.929966i \(0.380164\pi\)
\(20\) 1.38424 0.309526
\(21\) −3.20506 −0.699402
\(22\) 5.82082 1.24100
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) −3.08388 −0.616775
\(26\) −0.957038 −0.187691
\(27\) 1.00000 0.192450
\(28\) −3.20506 −0.605700
\(29\) 1.00000 0.185695
\(30\) 1.38424 0.252727
\(31\) 5.72552 1.02833 0.514167 0.857690i \(-0.328101\pi\)
0.514167 + 0.857690i \(0.328101\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.82082 1.01328
\(34\) −3.20506 −0.549664
\(35\) −4.43658 −0.749919
\(36\) 1.00000 0.166667
\(37\) 5.22009 0.858178 0.429089 0.903262i \(-0.358835\pi\)
0.429089 + 0.903262i \(0.358835\pi\)
\(38\) 3.20506 0.519930
\(39\) −0.957038 −0.153249
\(40\) 1.38424 0.218868
\(41\) −0.0838762 −0.0130993 −0.00654963 0.999979i \(-0.502085\pi\)
−0.00654963 + 0.999979i \(0.502085\pi\)
\(42\) −3.20506 −0.494552
\(43\) 9.91408 1.51188 0.755941 0.654639i \(-0.227180\pi\)
0.755941 + 0.654639i \(0.227180\pi\)
\(44\) 5.82082 0.877522
\(45\) 1.38424 0.206350
\(46\) −1.00000 −0.147442
\(47\) 8.60433 1.25507 0.627536 0.778588i \(-0.284064\pi\)
0.627536 + 0.778588i \(0.284064\pi\)
\(48\) 1.00000 0.144338
\(49\) 3.27243 0.467490
\(50\) −3.08388 −0.436126
\(51\) −3.20506 −0.448799
\(52\) −0.957038 −0.132717
\(53\) 12.9814 1.78314 0.891569 0.452884i \(-0.149605\pi\)
0.891569 + 0.452884i \(0.149605\pi\)
\(54\) 1.00000 0.136083
\(55\) 8.05742 1.08646
\(56\) −3.20506 −0.428295
\(57\) 3.20506 0.424521
\(58\) 1.00000 0.131306
\(59\) 1.55777 0.202804 0.101402 0.994846i \(-0.467667\pi\)
0.101402 + 0.994846i \(0.467667\pi\)
\(60\) 1.38424 0.178705
\(61\) −11.1342 −1.42558 −0.712792 0.701375i \(-0.752570\pi\)
−0.712792 + 0.701375i \(0.752570\pi\)
\(62\) 5.72552 0.727142
\(63\) −3.20506 −0.403800
\(64\) 1.00000 0.125000
\(65\) −1.32477 −0.164318
\(66\) 5.82082 0.716494
\(67\) 8.39510 1.02562 0.512812 0.858501i \(-0.328604\pi\)
0.512812 + 0.858501i \(0.328604\pi\)
\(68\) −3.20506 −0.388671
\(69\) −1.00000 −0.120386
\(70\) −4.43658 −0.530273
\(71\) −11.0947 −1.31670 −0.658351 0.752711i \(-0.728746\pi\)
−0.658351 + 0.752711i \(0.728746\pi\)
\(72\) 1.00000 0.117851
\(73\) 9.74993 1.14114 0.570571 0.821248i \(-0.306722\pi\)
0.570571 + 0.821248i \(0.306722\pi\)
\(74\) 5.22009 0.606823
\(75\) −3.08388 −0.356095
\(76\) 3.20506 0.367646
\(77\) −18.6561 −2.12606
\(78\) −0.957038 −0.108363
\(79\) −8.33190 −0.937412 −0.468706 0.883354i \(-0.655280\pi\)
−0.468706 + 0.883354i \(0.655280\pi\)
\(80\) 1.38424 0.154763
\(81\) 1.00000 0.111111
\(82\) −0.0838762 −0.00926258
\(83\) −10.5449 −1.15745 −0.578725 0.815523i \(-0.696449\pi\)
−0.578725 + 0.815523i \(0.696449\pi\)
\(84\) −3.20506 −0.349701
\(85\) −4.43658 −0.481215
\(86\) 9.91408 1.06906
\(87\) 1.00000 0.107211
\(88\) 5.82082 0.620502
\(89\) −8.98145 −0.952031 −0.476016 0.879437i \(-0.657919\pi\)
−0.476016 + 0.879437i \(0.657919\pi\)
\(90\) 1.38424 0.145912
\(91\) 3.06737 0.321548
\(92\) −1.00000 −0.104257
\(93\) 5.72552 0.593709
\(94\) 8.60433 0.887469
\(95\) 4.43658 0.455184
\(96\) 1.00000 0.102062
\(97\) 7.71987 0.783834 0.391917 0.920001i \(-0.371812\pi\)
0.391917 + 0.920001i \(0.371812\pi\)
\(98\) 3.27243 0.330566
\(99\) 5.82082 0.585015
\(100\) −3.08388 −0.308388
\(101\) 2.68461 0.267128 0.133564 0.991040i \(-0.457358\pi\)
0.133564 + 0.991040i \(0.457358\pi\)
\(102\) −3.20506 −0.317349
\(103\) −17.6490 −1.73901 −0.869503 0.493928i \(-0.835561\pi\)
−0.869503 + 0.493928i \(0.835561\pi\)
\(104\) −0.957038 −0.0938453
\(105\) −4.43658 −0.432966
\(106\) 12.9814 1.26087
\(107\) 11.9923 1.15934 0.579670 0.814851i \(-0.303182\pi\)
0.579670 + 0.814851i \(0.303182\pi\)
\(108\) 1.00000 0.0962250
\(109\) −1.91408 −0.183335 −0.0916676 0.995790i \(-0.529220\pi\)
−0.0916676 + 0.995790i \(0.529220\pi\)
\(110\) 8.05742 0.768245
\(111\) 5.22009 0.495469
\(112\) −3.20506 −0.302850
\(113\) −9.72347 −0.914707 −0.457354 0.889285i \(-0.651203\pi\)
−0.457354 + 0.889285i \(0.651203\pi\)
\(114\) 3.20506 0.300182
\(115\) −1.38424 −0.129081
\(116\) 1.00000 0.0928477
\(117\) −0.957038 −0.0884782
\(118\) 1.55777 0.143404
\(119\) 10.2724 0.941672
\(120\) 1.38424 0.126363
\(121\) 22.8820 2.08018
\(122\) −11.1342 −1.00804
\(123\) −0.0838762 −0.00756286
\(124\) 5.72552 0.514167
\(125\) −11.1900 −1.00087
\(126\) −3.20506 −0.285530
\(127\) 17.0088 1.50929 0.754644 0.656135i \(-0.227810\pi\)
0.754644 + 0.656135i \(0.227810\pi\)
\(128\) 1.00000 0.0883883
\(129\) 9.91408 0.872886
\(130\) −1.32477 −0.116190
\(131\) −3.17501 −0.277402 −0.138701 0.990334i \(-0.544293\pi\)
−0.138701 + 0.990334i \(0.544293\pi\)
\(132\) 5.82082 0.506638
\(133\) −10.2724 −0.890733
\(134\) 8.39510 0.725226
\(135\) 1.38424 0.119137
\(136\) −3.20506 −0.274832
\(137\) −16.0253 −1.36914 −0.684568 0.728949i \(-0.740009\pi\)
−0.684568 + 0.728949i \(0.740009\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 4.46664 0.378855 0.189428 0.981895i \(-0.439337\pi\)
0.189428 + 0.981895i \(0.439337\pi\)
\(140\) −4.43658 −0.374960
\(141\) 8.60433 0.724616
\(142\) −11.0947 −0.931049
\(143\) −5.57075 −0.465850
\(144\) 1.00000 0.0833333
\(145\) 1.38424 0.114955
\(146\) 9.74993 0.806910
\(147\) 3.27243 0.269906
\(148\) 5.22009 0.429089
\(149\) −1.79076 −0.146705 −0.0733526 0.997306i \(-0.523370\pi\)
−0.0733526 + 0.997306i \(0.523370\pi\)
\(150\) −3.08388 −0.251797
\(151\) 22.5666 1.83644 0.918221 0.396068i \(-0.129626\pi\)
0.918221 + 0.396068i \(0.129626\pi\)
\(152\) 3.20506 0.259965
\(153\) −3.20506 −0.259114
\(154\) −18.6561 −1.50335
\(155\) 7.92550 0.636592
\(156\) −0.957038 −0.0766244
\(157\) 4.46960 0.356713 0.178356 0.983966i \(-0.442922\pi\)
0.178356 + 0.983966i \(0.442922\pi\)
\(158\) −8.33190 −0.662850
\(159\) 12.9814 1.02950
\(160\) 1.38424 0.109434
\(161\) 3.20506 0.252594
\(162\) 1.00000 0.0785674
\(163\) −20.5128 −1.60668 −0.803342 0.595518i \(-0.796947\pi\)
−0.803342 + 0.595518i \(0.796947\pi\)
\(164\) −0.0838762 −0.00654963
\(165\) 8.05742 0.627269
\(166\) −10.5449 −0.818440
\(167\) −7.56137 −0.585117 −0.292558 0.956248i \(-0.594507\pi\)
−0.292558 + 0.956248i \(0.594507\pi\)
\(168\) −3.20506 −0.247276
\(169\) −12.0841 −0.929544
\(170\) −4.43658 −0.340270
\(171\) 3.20506 0.245097
\(172\) 9.91408 0.755941
\(173\) 6.57428 0.499833 0.249916 0.968267i \(-0.419597\pi\)
0.249916 + 0.968267i \(0.419597\pi\)
\(174\) 1.00000 0.0758098
\(175\) 9.88402 0.747162
\(176\) 5.82082 0.438761
\(177\) 1.55777 0.117089
\(178\) −8.98145 −0.673188
\(179\) 1.94413 0.145311 0.0726557 0.997357i \(-0.476853\pi\)
0.0726557 + 0.997357i \(0.476853\pi\)
\(180\) 1.38424 0.103175
\(181\) 15.4323 1.14707 0.573536 0.819180i \(-0.305571\pi\)
0.573536 + 0.819180i \(0.305571\pi\)
\(182\) 3.06737 0.227368
\(183\) −11.1342 −0.823061
\(184\) −1.00000 −0.0737210
\(185\) 7.22587 0.531256
\(186\) 5.72552 0.419816
\(187\) −18.6561 −1.36427
\(188\) 8.60433 0.627536
\(189\) −3.20506 −0.233134
\(190\) 4.43658 0.321863
\(191\) −18.1186 −1.31101 −0.655507 0.755189i \(-0.727545\pi\)
−0.655507 + 0.755189i \(0.727545\pi\)
\(192\) 1.00000 0.0721688
\(193\) 12.8955 0.928240 0.464120 0.885772i \(-0.346371\pi\)
0.464120 + 0.885772i \(0.346371\pi\)
\(194\) 7.71987 0.554254
\(195\) −1.32477 −0.0948689
\(196\) 3.27243 0.233745
\(197\) 1.86231 0.132684 0.0663419 0.997797i \(-0.478867\pi\)
0.0663419 + 0.997797i \(0.478867\pi\)
\(198\) 5.82082 0.413668
\(199\) 1.85088 0.131205 0.0656027 0.997846i \(-0.479103\pi\)
0.0656027 + 0.997846i \(0.479103\pi\)
\(200\) −3.08388 −0.218063
\(201\) 8.39510 0.592145
\(202\) 2.68461 0.188888
\(203\) −3.20506 −0.224951
\(204\) −3.20506 −0.224399
\(205\) −0.116105 −0.00810912
\(206\) −17.6490 −1.22966
\(207\) −1.00000 −0.0695048
\(208\) −0.957038 −0.0663587
\(209\) 18.6561 1.29047
\(210\) −4.43658 −0.306153
\(211\) 2.54987 0.175540 0.0877701 0.996141i \(-0.472026\pi\)
0.0877701 + 0.996141i \(0.472026\pi\)
\(212\) 12.9814 0.891569
\(213\) −11.0947 −0.760199
\(214\) 11.9923 0.819777
\(215\) 13.7235 0.935933
\(216\) 1.00000 0.0680414
\(217\) −18.3507 −1.24572
\(218\) −1.91408 −0.129638
\(219\) 9.74993 0.658839
\(220\) 8.05742 0.543231
\(221\) 3.06737 0.206334
\(222\) 5.22009 0.350350
\(223\) −26.6561 −1.78502 −0.892512 0.451023i \(-0.851059\pi\)
−0.892512 + 0.451023i \(0.851059\pi\)
\(224\) −3.20506 −0.214147
\(225\) −3.08388 −0.205592
\(226\) −9.72347 −0.646796
\(227\) 16.0217 1.06340 0.531699 0.846933i \(-0.321554\pi\)
0.531699 + 0.846933i \(0.321554\pi\)
\(228\) 3.20506 0.212261
\(229\) 0.634515 0.0419299 0.0209650 0.999780i \(-0.493326\pi\)
0.0209650 + 0.999780i \(0.493326\pi\)
\(230\) −1.38424 −0.0912742
\(231\) −18.6561 −1.22748
\(232\) 1.00000 0.0656532
\(233\) 6.49605 0.425570 0.212785 0.977099i \(-0.431747\pi\)
0.212785 + 0.977099i \(0.431747\pi\)
\(234\) −0.957038 −0.0625636
\(235\) 11.9105 0.776954
\(236\) 1.55777 0.101402
\(237\) −8.33190 −0.541215
\(238\) 10.2724 0.665863
\(239\) −16.3328 −1.05648 −0.528241 0.849095i \(-0.677148\pi\)
−0.528241 + 0.849095i \(0.677148\pi\)
\(240\) 1.38424 0.0893524
\(241\) 2.82499 0.181974 0.0909869 0.995852i \(-0.470998\pi\)
0.0909869 + 0.995852i \(0.470998\pi\)
\(242\) 22.8820 1.47091
\(243\) 1.00000 0.0641500
\(244\) −11.1342 −0.712792
\(245\) 4.52984 0.289401
\(246\) −0.0838762 −0.00534775
\(247\) −3.06737 −0.195172
\(248\) 5.72552 0.363571
\(249\) −10.5449 −0.668254
\(250\) −11.1900 −0.707720
\(251\) −10.9212 −0.689340 −0.344670 0.938724i \(-0.612009\pi\)
−0.344670 + 0.938724i \(0.612009\pi\)
\(252\) −3.20506 −0.201900
\(253\) −5.82082 −0.365952
\(254\) 17.0088 1.06723
\(255\) −4.43658 −0.277829
\(256\) 1.00000 0.0625000
\(257\) 8.96565 0.559262 0.279631 0.960108i \(-0.409788\pi\)
0.279631 + 0.960108i \(0.409788\pi\)
\(258\) 9.91408 0.617223
\(259\) −16.7307 −1.03960
\(260\) −1.32477 −0.0821589
\(261\) 1.00000 0.0618984
\(262\) −3.17501 −0.196153
\(263\) 18.9473 1.16834 0.584170 0.811631i \(-0.301420\pi\)
0.584170 + 0.811631i \(0.301420\pi\)
\(264\) 5.82082 0.358247
\(265\) 17.9695 1.10385
\(266\) −10.2724 −0.629843
\(267\) −8.98145 −0.549656
\(268\) 8.39510 0.512812
\(269\) −25.7291 −1.56873 −0.784366 0.620298i \(-0.787012\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(270\) 1.38424 0.0842422
\(271\) −25.6914 −1.56064 −0.780320 0.625381i \(-0.784944\pi\)
−0.780320 + 0.625381i \(0.784944\pi\)
\(272\) −3.20506 −0.194336
\(273\) 3.06737 0.185646
\(274\) −16.0253 −0.968125
\(275\) −17.9507 −1.08247
\(276\) −1.00000 −0.0601929
\(277\) −19.5578 −1.17511 −0.587556 0.809183i \(-0.699910\pi\)
−0.587556 + 0.809183i \(0.699910\pi\)
\(278\) 4.46664 0.267891
\(279\) 5.72552 0.342778
\(280\) −4.43658 −0.265136
\(281\) 31.4246 1.87463 0.937317 0.348478i \(-0.113301\pi\)
0.937317 + 0.348478i \(0.113301\pi\)
\(282\) 8.60433 0.512381
\(283\) 1.78781 0.106274 0.0531370 0.998587i \(-0.483078\pi\)
0.0531370 + 0.998587i \(0.483078\pi\)
\(284\) −11.0947 −0.658351
\(285\) 4.43658 0.262800
\(286\) −5.57075 −0.329405
\(287\) 0.268829 0.0158685
\(288\) 1.00000 0.0589256
\(289\) −6.72757 −0.395739
\(290\) 1.38424 0.0812854
\(291\) 7.71987 0.452547
\(292\) 9.74993 0.570571
\(293\) 32.5966 1.90432 0.952158 0.305607i \(-0.0988592\pi\)
0.952158 + 0.305607i \(0.0988592\pi\)
\(294\) 3.27243 0.190852
\(295\) 2.15633 0.125546
\(296\) 5.22009 0.303412
\(297\) 5.82082 0.337758
\(298\) −1.79076 −0.103736
\(299\) 0.957038 0.0553470
\(300\) −3.08388 −0.178048
\(301\) −31.7752 −1.83149
\(302\) 22.5666 1.29856
\(303\) 2.68461 0.154227
\(304\) 3.20506 0.183823
\(305\) −15.4124 −0.882510
\(306\) −3.20506 −0.183221
\(307\) −27.6095 −1.57576 −0.787880 0.615829i \(-0.788821\pi\)
−0.787880 + 0.615829i \(0.788821\pi\)
\(308\) −18.6561 −1.06303
\(309\) −17.6490 −1.00402
\(310\) 7.92550 0.450138
\(311\) −9.53040 −0.540420 −0.270210 0.962801i \(-0.587093\pi\)
−0.270210 + 0.962801i \(0.587093\pi\)
\(312\) −0.957038 −0.0541816
\(313\) 31.7716 1.79584 0.897920 0.440159i \(-0.145078\pi\)
0.897920 + 0.440159i \(0.145078\pi\)
\(314\) 4.46960 0.252234
\(315\) −4.43658 −0.249973
\(316\) −8.33190 −0.468706
\(317\) 6.76939 0.380207 0.190103 0.981764i \(-0.439118\pi\)
0.190103 + 0.981764i \(0.439118\pi\)
\(318\) 12.9814 0.727963
\(319\) 5.82082 0.325903
\(320\) 1.38424 0.0773814
\(321\) 11.9923 0.669345
\(322\) 3.20506 0.178611
\(323\) −10.2724 −0.571573
\(324\) 1.00000 0.0555556
\(325\) 2.95139 0.163714
\(326\) −20.5128 −1.13610
\(327\) −1.91408 −0.105849
\(328\) −0.0838762 −0.00463129
\(329\) −27.5774 −1.52039
\(330\) 8.05742 0.443546
\(331\) −2.44428 −0.134350 −0.0671749 0.997741i \(-0.521399\pi\)
−0.0671749 + 0.997741i \(0.521399\pi\)
\(332\) −10.5449 −0.578725
\(333\) 5.22009 0.286059
\(334\) −7.56137 −0.413740
\(335\) 11.6208 0.634914
\(336\) −3.20506 −0.174851
\(337\) −5.00057 −0.272398 −0.136199 0.990681i \(-0.543489\pi\)
−0.136199 + 0.990681i \(0.543489\pi\)
\(338\) −12.0841 −0.657287
\(339\) −9.72347 −0.528107
\(340\) −4.43658 −0.240607
\(341\) 33.3272 1.80477
\(342\) 3.20506 0.173310
\(343\) 11.9471 0.645082
\(344\) 9.91408 0.534531
\(345\) −1.38424 −0.0745250
\(346\) 6.57428 0.353435
\(347\) −23.2833 −1.24991 −0.624956 0.780660i \(-0.714883\pi\)
−0.624956 + 0.780660i \(0.714883\pi\)
\(348\) 1.00000 0.0536056
\(349\) −33.1730 −1.77571 −0.887854 0.460125i \(-0.847804\pi\)
−0.887854 + 0.460125i \(0.847804\pi\)
\(350\) 9.88402 0.528323
\(351\) −0.957038 −0.0510829
\(352\) 5.82082 0.310251
\(353\) 4.70901 0.250635 0.125318 0.992117i \(-0.460005\pi\)
0.125318 + 0.992117i \(0.460005\pi\)
\(354\) 1.55777 0.0827945
\(355\) −15.3578 −0.815107
\(356\) −8.98145 −0.476016
\(357\) 10.2724 0.543675
\(358\) 1.94413 0.102751
\(359\) −30.5401 −1.61185 −0.805923 0.592020i \(-0.798331\pi\)
−0.805923 + 0.592020i \(0.798331\pi\)
\(360\) 1.38424 0.0729559
\(361\) −8.72757 −0.459346
\(362\) 15.4323 0.811103
\(363\) 22.8820 1.20099
\(364\) 3.06737 0.160774
\(365\) 13.4963 0.706426
\(366\) −11.1342 −0.581992
\(367\) −5.61159 −0.292922 −0.146461 0.989216i \(-0.546788\pi\)
−0.146461 + 0.989216i \(0.546788\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −0.0838762 −0.00436642
\(370\) 7.22587 0.375655
\(371\) −41.6064 −2.16009
\(372\) 5.72552 0.296854
\(373\) −6.43954 −0.333427 −0.166713 0.986005i \(-0.553315\pi\)
−0.166713 + 0.986005i \(0.553315\pi\)
\(374\) −18.6561 −0.964684
\(375\) −11.1900 −0.577851
\(376\) 8.60433 0.443735
\(377\) −0.957038 −0.0492900
\(378\) −3.20506 −0.164851
\(379\) 7.91047 0.406334 0.203167 0.979144i \(-0.434877\pi\)
0.203167 + 0.979144i \(0.434877\pi\)
\(380\) 4.43658 0.227592
\(381\) 17.0088 0.871388
\(382\) −18.1186 −0.927027
\(383\) 22.1901 1.13386 0.566931 0.823765i \(-0.308131\pi\)
0.566931 + 0.823765i \(0.308131\pi\)
\(384\) 1.00000 0.0510310
\(385\) −25.8245 −1.31614
\(386\) 12.8955 0.656365
\(387\) 9.91408 0.503961
\(388\) 7.71987 0.391917
\(389\) −27.4734 −1.39296 −0.696478 0.717578i \(-0.745251\pi\)
−0.696478 + 0.717578i \(0.745251\pi\)
\(390\) −1.32477 −0.0670824
\(391\) 3.20506 0.162087
\(392\) 3.27243 0.165283
\(393\) −3.17501 −0.160158
\(394\) 1.86231 0.0938216
\(395\) −11.5334 −0.580306
\(396\) 5.82082 0.292507
\(397\) −24.8173 −1.24554 −0.622772 0.782403i \(-0.713994\pi\)
−0.622772 + 0.782403i \(0.713994\pi\)
\(398\) 1.85088 0.0927762
\(399\) −10.2724 −0.514265
\(400\) −3.08388 −0.154194
\(401\) 14.7270 0.735431 0.367716 0.929938i \(-0.380140\pi\)
0.367716 + 0.929938i \(0.380140\pi\)
\(402\) 8.39510 0.418709
\(403\) −5.47954 −0.272955
\(404\) 2.68461 0.133564
\(405\) 1.38424 0.0687835
\(406\) −3.20506 −0.159065
\(407\) 30.3852 1.50614
\(408\) −3.20506 −0.158674
\(409\) −33.6328 −1.66304 −0.831518 0.555498i \(-0.812528\pi\)
−0.831518 + 0.555498i \(0.812528\pi\)
\(410\) −0.116105 −0.00573401
\(411\) −16.0253 −0.790471
\(412\) −17.6490 −0.869503
\(413\) −4.99275 −0.245677
\(414\) −1.00000 −0.0491473
\(415\) −14.5966 −0.716521
\(416\) −0.957038 −0.0469227
\(417\) 4.46664 0.218732
\(418\) 18.6561 0.912500
\(419\) −21.7493 −1.06252 −0.531261 0.847208i \(-0.678282\pi\)
−0.531261 + 0.847208i \(0.678282\pi\)
\(420\) −4.43658 −0.216483
\(421\) −28.0969 −1.36936 −0.684679 0.728845i \(-0.740057\pi\)
−0.684679 + 0.728845i \(0.740057\pi\)
\(422\) 2.54987 0.124126
\(423\) 8.60433 0.418357
\(424\) 12.9814 0.630435
\(425\) 9.88402 0.479445
\(426\) −11.0947 −0.537542
\(427\) 35.6857 1.72695
\(428\) 11.9923 0.579670
\(429\) −5.57075 −0.268958
\(430\) 13.7235 0.661805
\(431\) 40.4872 1.95020 0.975100 0.221764i \(-0.0711816\pi\)
0.975100 + 0.221764i \(0.0711816\pi\)
\(432\) 1.00000 0.0481125
\(433\) 16.3495 0.785708 0.392854 0.919601i \(-0.371488\pi\)
0.392854 + 0.919601i \(0.371488\pi\)
\(434\) −18.3507 −0.880860
\(435\) 1.38424 0.0663693
\(436\) −1.91408 −0.0916676
\(437\) −3.20506 −0.153319
\(438\) 9.74993 0.465870
\(439\) −31.0038 −1.47973 −0.739865 0.672755i \(-0.765111\pi\)
−0.739865 + 0.672755i \(0.765111\pi\)
\(440\) 8.05742 0.384123
\(441\) 3.27243 0.155830
\(442\) 3.06737 0.145900
\(443\) −21.7904 −1.03529 −0.517647 0.855595i \(-0.673192\pi\)
−0.517647 + 0.855595i \(0.673192\pi\)
\(444\) 5.22009 0.247735
\(445\) −12.4325 −0.589356
\(446\) −26.6561 −1.26220
\(447\) −1.79076 −0.0847003
\(448\) −3.20506 −0.151425
\(449\) 37.3848 1.76430 0.882149 0.470971i \(-0.156096\pi\)
0.882149 + 0.470971i \(0.156096\pi\)
\(450\) −3.08388 −0.145375
\(451\) −0.488229 −0.0229898
\(452\) −9.72347 −0.457354
\(453\) 22.5666 1.06027
\(454\) 16.0217 0.751936
\(455\) 4.24598 0.199055
\(456\) 3.20506 0.150091
\(457\) 14.1490 0.661862 0.330931 0.943655i \(-0.392637\pi\)
0.330931 + 0.943655i \(0.392637\pi\)
\(458\) 0.634515 0.0296489
\(459\) −3.20506 −0.149600
\(460\) −1.38424 −0.0645406
\(461\) 29.4784 1.37295 0.686473 0.727155i \(-0.259158\pi\)
0.686473 + 0.727155i \(0.259158\pi\)
\(462\) −18.6561 −0.867961
\(463\) −29.7300 −1.38167 −0.690836 0.723012i \(-0.742757\pi\)
−0.690836 + 0.723012i \(0.742757\pi\)
\(464\) 1.00000 0.0464238
\(465\) 7.92550 0.367536
\(466\) 6.49605 0.300924
\(467\) 2.86583 0.132615 0.0663074 0.997799i \(-0.478878\pi\)
0.0663074 + 0.997799i \(0.478878\pi\)
\(468\) −0.957038 −0.0442391
\(469\) −26.9068 −1.24244
\(470\) 11.9105 0.549389
\(471\) 4.46960 0.205948
\(472\) 1.55777 0.0717021
\(473\) 57.7081 2.65342
\(474\) −8.33190 −0.382697
\(475\) −9.88402 −0.453510
\(476\) 10.2724 0.470836
\(477\) 12.9814 0.594380
\(478\) −16.3328 −0.747045
\(479\) −25.1500 −1.14913 −0.574566 0.818458i \(-0.694829\pi\)
−0.574566 + 0.818458i \(0.694829\pi\)
\(480\) 1.38424 0.0631817
\(481\) −4.99583 −0.227790
\(482\) 2.82499 0.128675
\(483\) 3.20506 0.145835
\(484\) 22.8820 1.04009
\(485\) 10.6862 0.485234
\(486\) 1.00000 0.0453609
\(487\) −35.2798 −1.59868 −0.799341 0.600878i \(-0.794818\pi\)
−0.799341 + 0.600878i \(0.794818\pi\)
\(488\) −11.1342 −0.504020
\(489\) −20.5128 −0.927619
\(490\) 4.52984 0.204637
\(491\) 20.1630 0.909944 0.454972 0.890506i \(-0.349649\pi\)
0.454972 + 0.890506i \(0.349649\pi\)
\(492\) −0.0838762 −0.00378143
\(493\) −3.20506 −0.144349
\(494\) −3.06737 −0.138007
\(495\) 8.05742 0.362154
\(496\) 5.72552 0.257083
\(497\) 35.5593 1.59505
\(498\) −10.5449 −0.472527
\(499\) −38.7343 −1.73399 −0.866993 0.498320i \(-0.833951\pi\)
−0.866993 + 0.498320i \(0.833951\pi\)
\(500\) −11.1900 −0.500434
\(501\) −7.56137 −0.337817
\(502\) −10.9212 −0.487437
\(503\) −22.2460 −0.991899 −0.495950 0.868351i \(-0.665180\pi\)
−0.495950 + 0.868351i \(0.665180\pi\)
\(504\) −3.20506 −0.142765
\(505\) 3.71614 0.165366
\(506\) −5.82082 −0.258767
\(507\) −12.0841 −0.536673
\(508\) 17.0088 0.754644
\(509\) 20.4583 0.906798 0.453399 0.891308i \(-0.350211\pi\)
0.453399 + 0.891308i \(0.350211\pi\)
\(510\) −4.43658 −0.196455
\(511\) −31.2491 −1.38238
\(512\) 1.00000 0.0441942
\(513\) 3.20506 0.141507
\(514\) 8.96565 0.395458
\(515\) −24.4304 −1.07653
\(516\) 9.91408 0.436443
\(517\) 50.0843 2.20270
\(518\) −16.7307 −0.735106
\(519\) 6.57428 0.288579
\(520\) −1.32477 −0.0580951
\(521\) −22.4325 −0.982785 −0.491393 0.870938i \(-0.663512\pi\)
−0.491393 + 0.870938i \(0.663512\pi\)
\(522\) 1.00000 0.0437688
\(523\) 35.3761 1.54689 0.773443 0.633865i \(-0.218533\pi\)
0.773443 + 0.633865i \(0.218533\pi\)
\(524\) −3.17501 −0.138701
\(525\) 9.88402 0.431374
\(526\) 18.9473 0.826141
\(527\) −18.3507 −0.799367
\(528\) 5.82082 0.253319
\(529\) 1.00000 0.0434783
\(530\) 17.9695 0.780543
\(531\) 1.55777 0.0676014
\(532\) −10.2724 −0.445366
\(533\) 0.0802728 0.00347700
\(534\) −8.98145 −0.388665
\(535\) 16.6002 0.717691
\(536\) 8.39510 0.362613
\(537\) 1.94413 0.0838956
\(538\) −25.7291 −1.10926
\(539\) 19.0482 0.820466
\(540\) 1.38424 0.0595683
\(541\) −14.9579 −0.643092 −0.321546 0.946894i \(-0.604203\pi\)
−0.321546 + 0.946894i \(0.604203\pi\)
\(542\) −25.6914 −1.10354
\(543\) 15.4323 0.662263
\(544\) −3.20506 −0.137416
\(545\) −2.64954 −0.113494
\(546\) 3.06737 0.131271
\(547\) 25.7309 1.10018 0.550088 0.835107i \(-0.314594\pi\)
0.550088 + 0.835107i \(0.314594\pi\)
\(548\) −16.0253 −0.684568
\(549\) −11.1342 −0.475195
\(550\) −17.9507 −0.765420
\(551\) 3.20506 0.136540
\(552\) −1.00000 −0.0425628
\(553\) 26.7043 1.13558
\(554\) −19.5578 −0.830930
\(555\) 7.22587 0.306721
\(556\) 4.46664 0.189428
\(557\) 29.8461 1.26462 0.632311 0.774715i \(-0.282107\pi\)
0.632311 + 0.774715i \(0.282107\pi\)
\(558\) 5.72552 0.242381
\(559\) −9.48815 −0.401306
\(560\) −4.43658 −0.187480
\(561\) −18.6561 −0.787661
\(562\) 31.4246 1.32557
\(563\) −28.2563 −1.19086 −0.595430 0.803407i \(-0.703018\pi\)
−0.595430 + 0.803407i \(0.703018\pi\)
\(564\) 8.60433 0.362308
\(565\) −13.4596 −0.566251
\(566\) 1.78781 0.0751471
\(567\) −3.20506 −0.134600
\(568\) −11.0947 −0.465525
\(569\) 26.4354 1.10823 0.554116 0.832440i \(-0.313056\pi\)
0.554116 + 0.832440i \(0.313056\pi\)
\(570\) 4.43658 0.185828
\(571\) 11.5895 0.485006 0.242503 0.970151i \(-0.422032\pi\)
0.242503 + 0.970151i \(0.422032\pi\)
\(572\) −5.57075 −0.232925
\(573\) −18.1186 −0.756914
\(574\) 0.268829 0.0112207
\(575\) 3.08388 0.128607
\(576\) 1.00000 0.0416667
\(577\) −3.63059 −0.151143 −0.0755716 0.997140i \(-0.524078\pi\)
−0.0755716 + 0.997140i \(0.524078\pi\)
\(578\) −6.72757 −0.279830
\(579\) 12.8955 0.535920
\(580\) 1.38424 0.0574775
\(581\) 33.7970 1.40213
\(582\) 7.71987 0.319999
\(583\) 75.5627 3.12949
\(584\) 9.74993 0.403455
\(585\) −1.32477 −0.0547726
\(586\) 32.5966 1.34655
\(587\) −17.8653 −0.737378 −0.368689 0.929553i \(-0.620193\pi\)
−0.368689 + 0.929553i \(0.620193\pi\)
\(588\) 3.27243 0.134953
\(589\) 18.3507 0.756126
\(590\) 2.15633 0.0887746
\(591\) 1.86231 0.0766050
\(592\) 5.22009 0.214544
\(593\) −23.5858 −0.968552 −0.484276 0.874915i \(-0.660917\pi\)
−0.484276 + 0.874915i \(0.660917\pi\)
\(594\) 5.82082 0.238831
\(595\) 14.2195 0.582944
\(596\) −1.79076 −0.0733526
\(597\) 1.85088 0.0757515
\(598\) 0.957038 0.0391362
\(599\) −14.8467 −0.606620 −0.303310 0.952892i \(-0.598092\pi\)
−0.303310 + 0.952892i \(0.598092\pi\)
\(600\) −3.08388 −0.125899
\(601\) −25.2726 −1.03089 −0.515446 0.856922i \(-0.672374\pi\)
−0.515446 + 0.856922i \(0.672374\pi\)
\(602\) −31.7752 −1.29506
\(603\) 8.39510 0.341875
\(604\) 22.5666 0.918221
\(605\) 31.6742 1.28774
\(606\) 2.68461 0.109055
\(607\) 35.3152 1.43340 0.716699 0.697382i \(-0.245652\pi\)
0.716699 + 0.697382i \(0.245652\pi\)
\(608\) 3.20506 0.129982
\(609\) −3.20506 −0.129876
\(610\) −15.4124 −0.624029
\(611\) −8.23468 −0.333139
\(612\) −3.20506 −0.129557
\(613\) 19.0626 0.769932 0.384966 0.922931i \(-0.374213\pi\)
0.384966 + 0.922931i \(0.374213\pi\)
\(614\) −27.6095 −1.11423
\(615\) −0.116105 −0.00468180
\(616\) −18.6561 −0.751676
\(617\) 18.2496 0.734700 0.367350 0.930083i \(-0.380265\pi\)
0.367350 + 0.930083i \(0.380265\pi\)
\(618\) −17.6490 −0.709946
\(619\) 30.5184 1.22664 0.613319 0.789835i \(-0.289834\pi\)
0.613319 + 0.789835i \(0.289834\pi\)
\(620\) 7.92550 0.318296
\(621\) −1.00000 −0.0401286
\(622\) −9.53040 −0.382134
\(623\) 28.7861 1.15329
\(624\) −0.957038 −0.0383122
\(625\) −0.0703264 −0.00281305
\(626\) 31.7716 1.26985
\(627\) 18.6561 0.745053
\(628\) 4.46960 0.178356
\(629\) −16.7307 −0.667098
\(630\) −4.43658 −0.176758
\(631\) −5.79733 −0.230788 −0.115394 0.993320i \(-0.536813\pi\)
−0.115394 + 0.993320i \(0.536813\pi\)
\(632\) −8.33190 −0.331425
\(633\) 2.54987 0.101348
\(634\) 6.76939 0.268847
\(635\) 23.5443 0.934327
\(636\) 12.9814 0.514748
\(637\) −3.13184 −0.124088
\(638\) 5.82082 0.230449
\(639\) −11.0947 −0.438901
\(640\) 1.38424 0.0547169
\(641\) 32.5261 1.28470 0.642352 0.766410i \(-0.277959\pi\)
0.642352 + 0.766410i \(0.277959\pi\)
\(642\) 11.9923 0.473298
\(643\) −38.1342 −1.50387 −0.751934 0.659238i \(-0.770879\pi\)
−0.751934 + 0.659238i \(0.770879\pi\)
\(644\) 3.20506 0.126297
\(645\) 13.7235 0.540361
\(646\) −10.2724 −0.404163
\(647\) −17.9355 −0.705118 −0.352559 0.935790i \(-0.614688\pi\)
−0.352559 + 0.935790i \(0.614688\pi\)
\(648\) 1.00000 0.0392837
\(649\) 9.06749 0.355930
\(650\) 2.95139 0.115763
\(651\) −18.3507 −0.719219
\(652\) −20.5128 −0.803342
\(653\) −35.8356 −1.40236 −0.701178 0.712986i \(-0.747342\pi\)
−0.701178 + 0.712986i \(0.747342\pi\)
\(654\) −1.91408 −0.0748463
\(655\) −4.39497 −0.171726
\(656\) −0.0838762 −0.00327482
\(657\) 9.74993 0.380381
\(658\) −27.5774 −1.07508
\(659\) −8.00065 −0.311661 −0.155830 0.987784i \(-0.549805\pi\)
−0.155830 + 0.987784i \(0.549805\pi\)
\(660\) 8.05742 0.313635
\(661\) −11.3681 −0.442167 −0.221083 0.975255i \(-0.570959\pi\)
−0.221083 + 0.975255i \(0.570959\pi\)
\(662\) −2.44428 −0.0949996
\(663\) 3.06737 0.119127
\(664\) −10.5449 −0.409220
\(665\) −14.2195 −0.551409
\(666\) 5.22009 0.202274
\(667\) −1.00000 −0.0387202
\(668\) −7.56137 −0.292558
\(669\) −26.6561 −1.03058
\(670\) 11.6208 0.448952
\(671\) −64.8100 −2.50196
\(672\) −3.20506 −0.123638
\(673\) 22.7673 0.877617 0.438808 0.898581i \(-0.355401\pi\)
0.438808 + 0.898581i \(0.355401\pi\)
\(674\) −5.00057 −0.192615
\(675\) −3.08388 −0.118698
\(676\) −12.0841 −0.464772
\(677\) −14.8090 −0.569154 −0.284577 0.958653i \(-0.591853\pi\)
−0.284577 + 0.958653i \(0.591853\pi\)
\(678\) −9.72347 −0.373428
\(679\) −24.7427 −0.949537
\(680\) −4.43658 −0.170135
\(681\) 16.0217 0.613953
\(682\) 33.3272 1.27617
\(683\) 20.9600 0.802012 0.401006 0.916075i \(-0.368661\pi\)
0.401006 + 0.916075i \(0.368661\pi\)
\(684\) 3.20506 0.122549
\(685\) −22.1829 −0.847565
\(686\) 11.9471 0.456142
\(687\) 0.634515 0.0242083
\(688\) 9.91408 0.377971
\(689\) −12.4237 −0.473307
\(690\) −1.38424 −0.0526972
\(691\) −5.01495 −0.190778 −0.0953889 0.995440i \(-0.530409\pi\)
−0.0953889 + 0.995440i \(0.530409\pi\)
\(692\) 6.57428 0.249916
\(693\) −18.6561 −0.708687
\(694\) −23.2833 −0.883822
\(695\) 6.18291 0.234531
\(696\) 1.00000 0.0379049
\(697\) 0.268829 0.0101826
\(698\) −33.1730 −1.25562
\(699\) 6.49605 0.245703
\(700\) 9.88402 0.373581
\(701\) −3.76905 −0.142355 −0.0711775 0.997464i \(-0.522676\pi\)
−0.0711775 + 0.997464i \(0.522676\pi\)
\(702\) −0.957038 −0.0361211
\(703\) 16.7307 0.631011
\(704\) 5.82082 0.219380
\(705\) 11.9105 0.448574
\(706\) 4.70901 0.177226
\(707\) −8.60433 −0.323599
\(708\) 1.55777 0.0585445
\(709\) −38.5544 −1.44794 −0.723970 0.689831i \(-0.757685\pi\)
−0.723970 + 0.689831i \(0.757685\pi\)
\(710\) −15.3578 −0.576367
\(711\) −8.33190 −0.312471
\(712\) −8.98145 −0.336594
\(713\) −5.72552 −0.214422
\(714\) 10.2724 0.384436
\(715\) −7.71126 −0.288385
\(716\) 1.94413 0.0726557
\(717\) −16.3328 −0.609960
\(718\) −30.5401 −1.13975
\(719\) 47.2959 1.76384 0.881920 0.471399i \(-0.156251\pi\)
0.881920 + 0.471399i \(0.156251\pi\)
\(720\) 1.38424 0.0515876
\(721\) 56.5661 2.10663
\(722\) −8.72757 −0.324806
\(723\) 2.82499 0.105063
\(724\) 15.4323 0.573536
\(725\) −3.08388 −0.114532
\(726\) 22.8820 0.849230
\(727\) 1.65295 0.0613044 0.0306522 0.999530i \(-0.490242\pi\)
0.0306522 + 0.999530i \(0.490242\pi\)
\(728\) 3.06737 0.113684
\(729\) 1.00000 0.0370370
\(730\) 13.4963 0.499519
\(731\) −31.7752 −1.17525
\(732\) −11.1342 −0.411531
\(733\) 4.22735 0.156141 0.0780703 0.996948i \(-0.475124\pi\)
0.0780703 + 0.996948i \(0.475124\pi\)
\(734\) −5.61159 −0.207127
\(735\) 4.52984 0.167085
\(736\) −1.00000 −0.0368605
\(737\) 48.8664 1.80002
\(738\) −0.0838762 −0.00308753
\(739\) 20.1550 0.741415 0.370708 0.928750i \(-0.379115\pi\)
0.370708 + 0.928750i \(0.379115\pi\)
\(740\) 7.22587 0.265628
\(741\) −3.06737 −0.112683
\(742\) −41.6064 −1.52742
\(743\) −20.0969 −0.737282 −0.368641 0.929572i \(-0.620177\pi\)
−0.368641 + 0.929572i \(0.620177\pi\)
\(744\) 5.72552 0.209908
\(745\) −2.47885 −0.0908181
\(746\) −6.43954 −0.235768
\(747\) −10.5449 −0.385816
\(748\) −18.6561 −0.682135
\(749\) −38.4361 −1.40442
\(750\) −11.1900 −0.408602
\(751\) −22.8625 −0.834265 −0.417132 0.908846i \(-0.636965\pi\)
−0.417132 + 0.908846i \(0.636965\pi\)
\(752\) 8.60433 0.313768
\(753\) −10.9212 −0.397991
\(754\) −0.957038 −0.0348533
\(755\) 31.2376 1.13685
\(756\) −3.20506 −0.116567
\(757\) −29.6291 −1.07689 −0.538444 0.842662i \(-0.680988\pi\)
−0.538444 + 0.842662i \(0.680988\pi\)
\(758\) 7.91047 0.287321
\(759\) −5.82082 −0.211282
\(760\) 4.43658 0.160932
\(761\) −43.2120 −1.56643 −0.783217 0.621748i \(-0.786423\pi\)
−0.783217 + 0.621748i \(0.786423\pi\)
\(762\) 17.0088 0.616164
\(763\) 6.13474 0.222092
\(764\) −18.1186 −0.655507
\(765\) −4.43658 −0.160405
\(766\) 22.1901 0.801761
\(767\) −1.49084 −0.0538313
\(768\) 1.00000 0.0360844
\(769\) −6.09686 −0.219858 −0.109929 0.993939i \(-0.535062\pi\)
−0.109929 + 0.993939i \(0.535062\pi\)
\(770\) −25.8245 −0.930652
\(771\) 8.96565 0.322890
\(772\) 12.8955 0.464120
\(773\) −54.0206 −1.94299 −0.971493 0.237070i \(-0.923813\pi\)
−0.971493 + 0.237070i \(0.923813\pi\)
\(774\) 9.91408 0.356354
\(775\) −17.6568 −0.634251
\(776\) 7.71987 0.277127
\(777\) −16.7307 −0.600211
\(778\) −27.4734 −0.984969
\(779\) −0.268829 −0.00963178
\(780\) −1.32477 −0.0474344
\(781\) −64.5805 −2.31087
\(782\) 3.20506 0.114613
\(783\) 1.00000 0.0357371
\(784\) 3.27243 0.116873
\(785\) 6.18700 0.220823
\(786\) −3.17501 −0.113249
\(787\) −28.3080 −1.00907 −0.504536 0.863390i \(-0.668337\pi\)
−0.504536 + 0.863390i \(0.668337\pi\)
\(788\) 1.86231 0.0663419
\(789\) 18.9473 0.674542
\(790\) −11.5334 −0.410339
\(791\) 31.1644 1.10808
\(792\) 5.82082 0.206834
\(793\) 10.6558 0.378399
\(794\) −24.8173 −0.880733
\(795\) 17.9695 0.637311
\(796\) 1.85088 0.0656027
\(797\) −17.2711 −0.611774 −0.305887 0.952068i \(-0.598953\pi\)
−0.305887 + 0.952068i \(0.598953\pi\)
\(798\) −10.2724 −0.363640
\(799\) −27.5774 −0.975620
\(800\) −3.08388 −0.109031
\(801\) −8.98145 −0.317344
\(802\) 14.7270 0.520028
\(803\) 56.7526 2.00276
\(804\) 8.39510 0.296072
\(805\) 4.43658 0.156369
\(806\) −5.47954 −0.193009
\(807\) −25.7291 −0.905708
\(808\) 2.68461 0.0944441
\(809\) 34.0834 1.19831 0.599154 0.800634i \(-0.295504\pi\)
0.599154 + 0.800634i \(0.295504\pi\)
\(810\) 1.38424 0.0486373
\(811\) 17.5510 0.616298 0.308149 0.951338i \(-0.400290\pi\)
0.308149 + 0.951338i \(0.400290\pi\)
\(812\) −3.20506 −0.112476
\(813\) −25.6914 −0.901036
\(814\) 30.3852 1.06500
\(815\) −28.3946 −0.994620
\(816\) −3.20506 −0.112200
\(817\) 31.7752 1.11168
\(818\) −33.6328 −1.17594
\(819\) 3.06737 0.107183
\(820\) −0.116105 −0.00405456
\(821\) −44.2294 −1.54362 −0.771809 0.635854i \(-0.780648\pi\)
−0.771809 + 0.635854i \(0.780648\pi\)
\(822\) −16.0253 −0.558947
\(823\) −20.2326 −0.705265 −0.352633 0.935762i \(-0.614713\pi\)
−0.352633 + 0.935762i \(0.614713\pi\)
\(824\) −17.6490 −0.614831
\(825\) −17.9507 −0.624963
\(826\) −4.99275 −0.173720
\(827\) 9.67247 0.336345 0.168172 0.985758i \(-0.446213\pi\)
0.168172 + 0.985758i \(0.446213\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −45.1555 −1.56832 −0.784158 0.620561i \(-0.786905\pi\)
−0.784158 + 0.620561i \(0.786905\pi\)
\(830\) −14.5966 −0.506657
\(831\) −19.5578 −0.678451
\(832\) −0.957038 −0.0331793
\(833\) −10.4884 −0.363400
\(834\) 4.46664 0.154667
\(835\) −10.4668 −0.362217
\(836\) 18.6561 0.645235
\(837\) 5.72552 0.197903
\(838\) −21.7493 −0.751316
\(839\) −11.1148 −0.383724 −0.191862 0.981422i \(-0.561453\pi\)
−0.191862 + 0.981422i \(0.561453\pi\)
\(840\) −4.43658 −0.153077
\(841\) 1.00000 0.0344828
\(842\) −28.0969 −0.968282
\(843\) 31.4246 1.08232
\(844\) 2.54987 0.0877701
\(845\) −16.7273 −0.575436
\(846\) 8.60433 0.295823
\(847\) −73.3382 −2.51993
\(848\) 12.9814 0.445785
\(849\) 1.78781 0.0613574
\(850\) 9.88402 0.339019
\(851\) −5.22009 −0.178942
\(852\) −11.0947 −0.380099
\(853\) 35.4809 1.21484 0.607421 0.794380i \(-0.292204\pi\)
0.607421 + 0.794380i \(0.292204\pi\)
\(854\) 35.6857 1.22114
\(855\) 4.43658 0.151728
\(856\) 11.9923 0.409888
\(857\) 15.4368 0.527310 0.263655 0.964617i \(-0.415072\pi\)
0.263655 + 0.964617i \(0.415072\pi\)
\(858\) −5.57075 −0.190182
\(859\) −40.5107 −1.38221 −0.691104 0.722755i \(-0.742875\pi\)
−0.691104 + 0.722755i \(0.742875\pi\)
\(860\) 13.7235 0.467967
\(861\) 0.268829 0.00916165
\(862\) 40.4872 1.37900
\(863\) −31.4531 −1.07068 −0.535338 0.844638i \(-0.679816\pi\)
−0.535338 + 0.844638i \(0.679816\pi\)
\(864\) 1.00000 0.0340207
\(865\) 9.10038 0.309422
\(866\) 16.3495 0.555579
\(867\) −6.72757 −0.228480
\(868\) −18.3507 −0.622862
\(869\) −48.4985 −1.64520
\(870\) 1.38424 0.0469302
\(871\) −8.03443 −0.272236
\(872\) −1.91408 −0.0648188
\(873\) 7.71987 0.261278
\(874\) −3.20506 −0.108413
\(875\) 35.8648 1.21245
\(876\) 9.74993 0.329420
\(877\) 14.9179 0.503741 0.251871 0.967761i \(-0.418954\pi\)
0.251871 + 0.967761i \(0.418954\pi\)
\(878\) −31.0038 −1.04633
\(879\) 32.5966 1.09946
\(880\) 8.05742 0.271616
\(881\) 52.4024 1.76548 0.882741 0.469859i \(-0.155695\pi\)
0.882741 + 0.469859i \(0.155695\pi\)
\(882\) 3.27243 0.110189
\(883\) −30.6749 −1.03229 −0.516146 0.856501i \(-0.672634\pi\)
−0.516146 + 0.856501i \(0.672634\pi\)
\(884\) 3.06737 0.103167
\(885\) 2.15633 0.0724841
\(886\) −21.7904 −0.732063
\(887\) −9.82520 −0.329898 −0.164949 0.986302i \(-0.552746\pi\)
−0.164949 + 0.986302i \(0.552746\pi\)
\(888\) 5.22009 0.175175
\(889\) −54.5143 −1.82835
\(890\) −12.4325 −0.416738
\(891\) 5.82082 0.195005
\(892\) −26.6561 −0.892512
\(893\) 27.5774 0.922844
\(894\) −1.79076 −0.0598921
\(895\) 2.69115 0.0899552
\(896\) −3.20506 −0.107074
\(897\) 0.957038 0.0319546
\(898\) 37.3848 1.24755
\(899\) 5.72552 0.190957
\(900\) −3.08388 −0.102796
\(901\) −41.6064 −1.38611
\(902\) −0.488229 −0.0162562
\(903\) −31.7752 −1.05741
\(904\) −9.72347 −0.323398
\(905\) 21.3620 0.710097
\(906\) 22.5666 0.749724
\(907\) 14.7685 0.490379 0.245190 0.969475i \(-0.421150\pi\)
0.245190 + 0.969475i \(0.421150\pi\)
\(908\) 16.0217 0.531699
\(909\) 2.68461 0.0890428
\(910\) 4.24598 0.140753
\(911\) −26.5780 −0.880569 −0.440284 0.897858i \(-0.645122\pi\)
−0.440284 + 0.897858i \(0.645122\pi\)
\(912\) 3.20506 0.106130
\(913\) −61.3798 −2.03137
\(914\) 14.1490 0.468007
\(915\) −15.4124 −0.509517
\(916\) 0.634515 0.0209650
\(917\) 10.1761 0.336044
\(918\) −3.20506 −0.105783
\(919\) 3.16808 0.104505 0.0522526 0.998634i \(-0.483360\pi\)
0.0522526 + 0.998634i \(0.483360\pi\)
\(920\) −1.38424 −0.0456371
\(921\) −27.6095 −0.909765
\(922\) 29.4784 0.970820
\(923\) 10.6181 0.349499
\(924\) −18.6561 −0.613741
\(925\) −16.0981 −0.529303
\(926\) −29.7300 −0.976990
\(927\) −17.6490 −0.579668
\(928\) 1.00000 0.0328266
\(929\) −0.630142 −0.0206743 −0.0103371 0.999947i \(-0.503290\pi\)
−0.0103371 + 0.999947i \(0.503290\pi\)
\(930\) 7.92550 0.259887
\(931\) 10.4884 0.343742
\(932\) 6.49605 0.212785
\(933\) −9.53040 −0.312011
\(934\) 2.86583 0.0937729
\(935\) −25.8245 −0.844553
\(936\) −0.957038 −0.0312818
\(937\) 49.0404 1.60208 0.801040 0.598610i \(-0.204280\pi\)
0.801040 + 0.598610i \(0.204280\pi\)
\(938\) −26.9068 −0.878539
\(939\) 31.7716 1.03683
\(940\) 11.9105 0.388477
\(941\) 12.4109 0.404584 0.202292 0.979325i \(-0.435161\pi\)
0.202292 + 0.979325i \(0.435161\pi\)
\(942\) 4.46960 0.145627
\(943\) 0.0838762 0.00273139
\(944\) 1.55777 0.0507010
\(945\) −4.43658 −0.144322
\(946\) 57.7081 1.87625
\(947\) 11.5822 0.376370 0.188185 0.982134i \(-0.439740\pi\)
0.188185 + 0.982134i \(0.439740\pi\)
\(948\) −8.33190 −0.270608
\(949\) −9.33105 −0.302899
\(950\) −9.88402 −0.320680
\(951\) 6.76939 0.219513
\(952\) 10.2724 0.332931
\(953\) 21.4088 0.693499 0.346749 0.937958i \(-0.387285\pi\)
0.346749 + 0.937958i \(0.387285\pi\)
\(954\) 12.9814 0.420290
\(955\) −25.0805 −0.811585
\(956\) −16.3328 −0.528241
\(957\) 5.82082 0.188160
\(958\) −25.1500 −0.812559
\(959\) 51.3622 1.65857
\(960\) 1.38424 0.0446762
\(961\) 1.78159 0.0574706
\(962\) −4.99583 −0.161072
\(963\) 11.9923 0.386447
\(964\) 2.82499 0.0909869
\(965\) 17.8505 0.574628
\(966\) 3.20506 0.103121
\(967\) 29.4440 0.946855 0.473427 0.880833i \(-0.343017\pi\)
0.473427 + 0.880833i \(0.343017\pi\)
\(968\) 22.8820 0.735454
\(969\) −10.2724 −0.329998
\(970\) 10.6862 0.343112
\(971\) −14.4098 −0.462431 −0.231216 0.972903i \(-0.574270\pi\)
−0.231216 + 0.972903i \(0.574270\pi\)
\(972\) 1.00000 0.0320750
\(973\) −14.3159 −0.458945
\(974\) −35.2798 −1.13044
\(975\) 2.95139 0.0945201
\(976\) −11.1342 −0.356396
\(977\) 26.6734 0.853359 0.426680 0.904403i \(-0.359683\pi\)
0.426680 + 0.904403i \(0.359683\pi\)
\(978\) −20.5128 −0.655926
\(979\) −52.2794 −1.67086
\(980\) 4.52984 0.144700
\(981\) −1.91408 −0.0611118
\(982\) 20.1630 0.643428
\(983\) 21.8545 0.697050 0.348525 0.937300i \(-0.386683\pi\)
0.348525 + 0.937300i \(0.386683\pi\)
\(984\) −0.0838762 −0.00267388
\(985\) 2.57788 0.0821381
\(986\) −3.20506 −0.102070
\(987\) −27.5774 −0.877799
\(988\) −3.06737 −0.0975860
\(989\) −9.91408 −0.315249
\(990\) 8.05742 0.256082
\(991\) 61.6004 1.95680 0.978401 0.206715i \(-0.0662772\pi\)
0.978401 + 0.206715i \(0.0662772\pi\)
\(992\) 5.72552 0.181785
\(993\) −2.44428 −0.0775668
\(994\) 35.5593 1.12787
\(995\) 2.56206 0.0812229
\(996\) −10.5449 −0.334127
\(997\) −5.21636 −0.165204 −0.0826020 0.996583i \(-0.526323\pi\)
−0.0826020 + 0.996583i \(0.526323\pi\)
\(998\) −38.7343 −1.22611
\(999\) 5.22009 0.165156
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bd.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bd.1.3 4 1.1 even 1 trivial