Properties

Label 4002.2.a.bd.1.1
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.19796.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 7x^{2} + x + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.28586\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.71045 q^{5} +1.00000 q^{6} +2.42459 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.71045 q^{5} +1.00000 q^{6} +2.42459 q^{7} +1.00000 q^{8} +1.00000 q^{9} -3.71045 q^{10} +5.28586 q^{11} +1.00000 q^{12} +1.77482 q^{13} +2.42459 q^{14} -3.71045 q^{15} +1.00000 q^{16} +2.42459 q^{17} +1.00000 q^{18} -2.42459 q^{19} -3.71045 q^{20} +2.42459 q^{21} +5.28586 q^{22} -1.00000 q^{23} +1.00000 q^{24} +8.76746 q^{25} +1.77482 q^{26} +1.00000 q^{27} +2.42459 q^{28} +1.00000 q^{29} -3.71045 q^{30} -7.19573 q^{31} +1.00000 q^{32} +5.28586 q^{33} +2.42459 q^{34} -8.99632 q^{35} +1.00000 q^{36} -8.82814 q^{37} -2.42459 q^{38} +1.77482 q^{39} -3.71045 q^{40} +11.7675 q^{41} +2.42459 q^{42} +4.45035 q^{43} +5.28586 q^{44} -3.71045 q^{45} -1.00000 q^{46} -10.5386 q^{47} +1.00000 q^{48} -1.12137 q^{49} +8.76746 q^{50} +2.42459 q^{51} +1.77482 q^{52} +8.75357 q^{53} +1.00000 q^{54} -19.6129 q^{55} +2.42459 q^{56} -2.42459 q^{57} +1.00000 q^{58} +12.3392 q^{59} -3.71045 q^{60} +8.37779 q^{61} -7.19573 q^{62} +2.42459 q^{63} +1.00000 q^{64} -6.58539 q^{65} +5.28586 q^{66} +5.55438 q^{67} +2.42459 q^{68} -1.00000 q^{69} -8.99632 q^{70} -1.49738 q^{71} +1.00000 q^{72} -4.66734 q^{73} -8.82814 q^{74} +8.76746 q^{75} -2.42459 q^{76} +12.8160 q^{77} +1.77482 q^{78} +6.41722 q^{79} -3.71045 q^{80} +1.00000 q^{81} +11.7675 q^{82} -1.75725 q^{83} +2.42459 q^{84} -8.99632 q^{85} +4.45035 q^{86} +1.00000 q^{87} +5.28586 q^{88} -4.75357 q^{89} -3.71045 q^{90} +4.30321 q^{91} -1.00000 q^{92} -7.19573 q^{93} -10.5386 q^{94} +8.99632 q^{95} +1.00000 q^{96} +10.1398 q^{97} -1.12137 q^{98} +5.28586 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - q^{5} + 4 q^{6} + 2 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - q^{5} + 4 q^{6} + 2 q^{7} + 4 q^{8} + 4 q^{9} - q^{10} + 15 q^{11} + 4 q^{12} + 11 q^{13} + 2 q^{14} - q^{15} + 4 q^{16} + 2 q^{17} + 4 q^{18} - 2 q^{19} - q^{20} + 2 q^{21} + 15 q^{22} - 4 q^{23} + 4 q^{24} - q^{25} + 11 q^{26} + 4 q^{27} + 2 q^{28} + 4 q^{29} - q^{30} - 5 q^{31} + 4 q^{32} + 15 q^{33} + 2 q^{34} - 16 q^{35} + 4 q^{36} + 3 q^{37} - 2 q^{38} + 11 q^{39} - q^{40} + 11 q^{41} + 2 q^{42} + 10 q^{43} + 15 q^{44} - q^{45} - 4 q^{46} + 10 q^{47} + 4 q^{48} - q^{50} + 2 q^{51} + 11 q^{52} + 24 q^{53} + 4 q^{54} - 7 q^{55} + 2 q^{56} - 2 q^{57} + 4 q^{58} + q^{59} - q^{60} + 3 q^{61} - 5 q^{62} + 2 q^{63} + 4 q^{64} + 3 q^{65} + 15 q^{66} + 7 q^{67} + 2 q^{68} - 4 q^{69} - 16 q^{70} - 13 q^{71} + 4 q^{72} - 2 q^{73} + 3 q^{74} - q^{75} - 2 q^{76} - 4 q^{77} + 11 q^{78} - 22 q^{79} - q^{80} + 4 q^{81} + 11 q^{82} - 16 q^{83} + 2 q^{84} - 16 q^{85} + 10 q^{86} + 4 q^{87} + 15 q^{88} - 8 q^{89} - q^{90} + 14 q^{91} - 4 q^{92} - 5 q^{93} + 10 q^{94} + 16 q^{95} + 4 q^{96} - 4 q^{97} + 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −3.71045 −1.65936 −0.829682 0.558236i \(-0.811478\pi\)
−0.829682 + 0.558236i \(0.811478\pi\)
\(6\) 1.00000 0.408248
\(7\) 2.42459 0.916408 0.458204 0.888847i \(-0.348493\pi\)
0.458204 + 0.888847i \(0.348493\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −3.71045 −1.17335
\(11\) 5.28586 1.59375 0.796874 0.604145i \(-0.206485\pi\)
0.796874 + 0.604145i \(0.206485\pi\)
\(12\) 1.00000 0.288675
\(13\) 1.77482 0.492247 0.246124 0.969238i \(-0.420843\pi\)
0.246124 + 0.969238i \(0.420843\pi\)
\(14\) 2.42459 0.647998
\(15\) −3.71045 −0.958035
\(16\) 1.00000 0.250000
\(17\) 2.42459 0.588049 0.294024 0.955798i \(-0.405005\pi\)
0.294024 + 0.955798i \(0.405005\pi\)
\(18\) 1.00000 0.235702
\(19\) −2.42459 −0.556239 −0.278119 0.960547i \(-0.589711\pi\)
−0.278119 + 0.960547i \(0.589711\pi\)
\(20\) −3.71045 −0.829682
\(21\) 2.42459 0.529088
\(22\) 5.28586 1.12695
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) 8.76746 1.75349
\(26\) 1.77482 0.348071
\(27\) 1.00000 0.192450
\(28\) 2.42459 0.458204
\(29\) 1.00000 0.185695
\(30\) −3.71045 −0.677433
\(31\) −7.19573 −1.29239 −0.646195 0.763172i \(-0.723641\pi\)
−0.646195 + 0.763172i \(0.723641\pi\)
\(32\) 1.00000 0.176777
\(33\) 5.28586 0.920151
\(34\) 2.42459 0.415813
\(35\) −8.99632 −1.52066
\(36\) 1.00000 0.166667
\(37\) −8.82814 −1.45134 −0.725669 0.688044i \(-0.758470\pi\)
−0.725669 + 0.688044i \(0.758470\pi\)
\(38\) −2.42459 −0.393320
\(39\) 1.77482 0.284199
\(40\) −3.71045 −0.586674
\(41\) 11.7675 1.83777 0.918884 0.394528i \(-0.129092\pi\)
0.918884 + 0.394528i \(0.129092\pi\)
\(42\) 2.42459 0.374122
\(43\) 4.45035 0.678673 0.339336 0.940665i \(-0.389798\pi\)
0.339336 + 0.940665i \(0.389798\pi\)
\(44\) 5.28586 0.796874
\(45\) −3.71045 −0.553122
\(46\) −1.00000 −0.147442
\(47\) −10.5386 −1.53721 −0.768606 0.639722i \(-0.779049\pi\)
−0.768606 + 0.639722i \(0.779049\pi\)
\(48\) 1.00000 0.144338
\(49\) −1.12137 −0.160196
\(50\) 8.76746 1.23991
\(51\) 2.42459 0.339510
\(52\) 1.77482 0.246124
\(53\) 8.75357 1.20240 0.601198 0.799100i \(-0.294690\pi\)
0.601198 + 0.799100i \(0.294690\pi\)
\(54\) 1.00000 0.136083
\(55\) −19.6129 −2.64461
\(56\) 2.42459 0.323999
\(57\) −2.42459 −0.321144
\(58\) 1.00000 0.131306
\(59\) 12.3392 1.60643 0.803213 0.595692i \(-0.203122\pi\)
0.803213 + 0.595692i \(0.203122\pi\)
\(60\) −3.71045 −0.479017
\(61\) 8.37779 1.07267 0.536333 0.844006i \(-0.319809\pi\)
0.536333 + 0.844006i \(0.319809\pi\)
\(62\) −7.19573 −0.913858
\(63\) 2.42459 0.305469
\(64\) 1.00000 0.125000
\(65\) −6.58539 −0.816818
\(66\) 5.28586 0.650645
\(67\) 5.55438 0.678576 0.339288 0.940683i \(-0.389814\pi\)
0.339288 + 0.940683i \(0.389814\pi\)
\(68\) 2.42459 0.294024
\(69\) −1.00000 −0.120386
\(70\) −8.99632 −1.07527
\(71\) −1.49738 −0.177706 −0.0888530 0.996045i \(-0.528320\pi\)
−0.0888530 + 0.996045i \(0.528320\pi\)
\(72\) 1.00000 0.117851
\(73\) −4.66734 −0.546270 −0.273135 0.961976i \(-0.588061\pi\)
−0.273135 + 0.961976i \(0.588061\pi\)
\(74\) −8.82814 −1.02625
\(75\) 8.76746 1.01238
\(76\) −2.42459 −0.278119
\(77\) 12.8160 1.46052
\(78\) 1.77482 0.200959
\(79\) 6.41722 0.721994 0.360997 0.932567i \(-0.382436\pi\)
0.360997 + 0.932567i \(0.382436\pi\)
\(80\) −3.71045 −0.414841
\(81\) 1.00000 0.111111
\(82\) 11.7675 1.29950
\(83\) −1.75725 −0.192883 −0.0964417 0.995339i \(-0.530746\pi\)
−0.0964417 + 0.995339i \(0.530746\pi\)
\(84\) 2.42459 0.264544
\(85\) −8.99632 −0.975788
\(86\) 4.45035 0.479894
\(87\) 1.00000 0.107211
\(88\) 5.28586 0.563475
\(89\) −4.75357 −0.503877 −0.251939 0.967743i \(-0.581068\pi\)
−0.251939 + 0.967743i \(0.581068\pi\)
\(90\) −3.71045 −0.391116
\(91\) 4.30321 0.451099
\(92\) −1.00000 −0.104257
\(93\) −7.19573 −0.746162
\(94\) −10.5386 −1.08697
\(95\) 8.99632 0.923003
\(96\) 1.00000 0.102062
\(97\) 10.1398 1.02954 0.514769 0.857329i \(-0.327878\pi\)
0.514769 + 0.857329i \(0.327878\pi\)
\(98\) −1.12137 −0.113276
\(99\) 5.28586 0.531249
\(100\) 8.76746 0.876746
\(101\) 4.34655 0.432498 0.216249 0.976338i \(-0.430618\pi\)
0.216249 + 0.976338i \(0.430618\pi\)
\(102\) 2.42459 0.240070
\(103\) −6.18657 −0.609581 −0.304791 0.952419i \(-0.598586\pi\)
−0.304791 + 0.952419i \(0.598586\pi\)
\(104\) 1.77482 0.174036
\(105\) −8.99632 −0.877951
\(106\) 8.75357 0.850222
\(107\) 10.0184 0.968515 0.484258 0.874925i \(-0.339090\pi\)
0.484258 + 0.874925i \(0.339090\pi\)
\(108\) 1.00000 0.0962250
\(109\) 3.54965 0.339994 0.169997 0.985445i \(-0.445624\pi\)
0.169997 + 0.985445i \(0.445624\pi\)
\(110\) −19.6129 −1.87002
\(111\) −8.82814 −0.837930
\(112\) 2.42459 0.229102
\(113\) 20.5128 1.92968 0.964842 0.262829i \(-0.0846556\pi\)
0.964842 + 0.262829i \(0.0846556\pi\)
\(114\) −2.42459 −0.227083
\(115\) 3.71045 0.346001
\(116\) 1.00000 0.0928477
\(117\) 1.77482 0.164082
\(118\) 12.3392 1.13591
\(119\) 5.87863 0.538893
\(120\) −3.71045 −0.338716
\(121\) 16.9404 1.54003
\(122\) 8.37779 0.758489
\(123\) 11.7675 1.06104
\(124\) −7.19573 −0.646195
\(125\) −13.9790 −1.25032
\(126\) 2.42459 0.215999
\(127\) 1.94773 0.172833 0.0864166 0.996259i \(-0.472458\pi\)
0.0864166 + 0.996259i \(0.472458\pi\)
\(128\) 1.00000 0.0883883
\(129\) 4.45035 0.391832
\(130\) −6.58539 −0.577577
\(131\) −14.3825 −1.25661 −0.628304 0.777968i \(-0.716250\pi\)
−0.628304 + 0.777968i \(0.716250\pi\)
\(132\) 5.28586 0.460075
\(133\) −5.87863 −0.509741
\(134\) 5.55438 0.479825
\(135\) −3.71045 −0.319345
\(136\) 2.42459 0.207907
\(137\) 12.1229 1.03573 0.517866 0.855462i \(-0.326726\pi\)
0.517866 + 0.855462i \(0.326726\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −7.81080 −0.662503 −0.331252 0.943542i \(-0.607471\pi\)
−0.331252 + 0.943542i \(0.607471\pi\)
\(140\) −8.99632 −0.760328
\(141\) −10.5386 −0.887510
\(142\) −1.49738 −0.125657
\(143\) 9.38147 0.784518
\(144\) 1.00000 0.0833333
\(145\) −3.71045 −0.308136
\(146\) −4.66734 −0.386272
\(147\) −1.12137 −0.0924894
\(148\) −8.82814 −0.725669
\(149\) −18.0930 −1.48223 −0.741117 0.671376i \(-0.765704\pi\)
−0.741117 + 0.671376i \(0.765704\pi\)
\(150\) 8.76746 0.715860
\(151\) 18.2869 1.48817 0.744084 0.668086i \(-0.232886\pi\)
0.744084 + 0.668086i \(0.232886\pi\)
\(152\) −2.42459 −0.196660
\(153\) 2.42459 0.196016
\(154\) 12.8160 1.03275
\(155\) 26.6994 2.14455
\(156\) 1.77482 0.142100
\(157\) −17.1450 −1.36832 −0.684161 0.729331i \(-0.739831\pi\)
−0.684161 + 0.729331i \(0.739831\pi\)
\(158\) 6.41722 0.510527
\(159\) 8.75357 0.694203
\(160\) −3.71045 −0.293337
\(161\) −2.42459 −0.191084
\(162\) 1.00000 0.0785674
\(163\) −11.2473 −0.880954 −0.440477 0.897764i \(-0.645191\pi\)
−0.440477 + 0.897764i \(0.645191\pi\)
\(164\) 11.7675 0.918884
\(165\) −19.6129 −1.52687
\(166\) −1.75725 −0.136389
\(167\) 14.3134 1.10761 0.553803 0.832648i \(-0.313176\pi\)
0.553803 + 0.832648i \(0.313176\pi\)
\(168\) 2.42459 0.187061
\(169\) −9.85000 −0.757693
\(170\) −8.99632 −0.689986
\(171\) −2.42459 −0.185413
\(172\) 4.45035 0.339336
\(173\) 4.26852 0.324529 0.162265 0.986747i \(-0.448120\pi\)
0.162265 + 0.986747i \(0.448120\pi\)
\(174\) 1.00000 0.0758098
\(175\) 21.2575 1.60691
\(176\) 5.28586 0.398437
\(177\) 12.3392 0.927470
\(178\) −4.75357 −0.356295
\(179\) −20.3568 −1.52154 −0.760768 0.649024i \(-0.775177\pi\)
−0.760768 + 0.649024i \(0.775177\pi\)
\(180\) −3.71045 −0.276561
\(181\) −24.2553 −1.80289 −0.901443 0.432898i \(-0.857491\pi\)
−0.901443 + 0.432898i \(0.857491\pi\)
\(182\) 4.30321 0.318975
\(183\) 8.37779 0.619304
\(184\) −1.00000 −0.0737210
\(185\) 32.7564 2.40830
\(186\) −7.19573 −0.527616
\(187\) 12.8160 0.937202
\(188\) −10.5386 −0.768606
\(189\) 2.42459 0.176363
\(190\) 8.99632 0.652661
\(191\) 14.9584 1.08236 0.541178 0.840908i \(-0.317979\pi\)
0.541178 + 0.840908i \(0.317979\pi\)
\(192\) 1.00000 0.0721688
\(193\) 3.20392 0.230623 0.115312 0.993329i \(-0.463213\pi\)
0.115312 + 0.993329i \(0.463213\pi\)
\(194\) 10.1398 0.727993
\(195\) −6.58539 −0.471590
\(196\) −1.12137 −0.0800982
\(197\) 8.72780 0.621830 0.310915 0.950438i \(-0.399365\pi\)
0.310915 + 0.950438i \(0.399365\pi\)
\(198\) 5.28586 0.375650
\(199\) −15.5212 −1.10027 −0.550136 0.835075i \(-0.685424\pi\)
−0.550136 + 0.835075i \(0.685424\pi\)
\(200\) 8.76746 0.619953
\(201\) 5.55438 0.391776
\(202\) 4.34655 0.305822
\(203\) 2.42459 0.170173
\(204\) 2.42459 0.169755
\(205\) −43.6626 −3.04953
\(206\) −6.18657 −0.431039
\(207\) −1.00000 −0.0695048
\(208\) 1.77482 0.123062
\(209\) −12.8160 −0.886504
\(210\) −8.99632 −0.620805
\(211\) 1.74013 0.119795 0.0598976 0.998205i \(-0.480923\pi\)
0.0598976 + 0.998205i \(0.480923\pi\)
\(212\) 8.75357 0.601198
\(213\) −1.49738 −0.102599
\(214\) 10.0184 0.684844
\(215\) −16.5128 −1.12617
\(216\) 1.00000 0.0680414
\(217\) −17.4467 −1.18436
\(218\) 3.54965 0.240412
\(219\) −4.66734 −0.315389
\(220\) −19.6129 −1.32230
\(221\) 4.30321 0.289465
\(222\) −8.82814 −0.592506
\(223\) 4.81604 0.322506 0.161253 0.986913i \(-0.448446\pi\)
0.161253 + 0.986913i \(0.448446\pi\)
\(224\) 2.42459 0.162000
\(225\) 8.76746 0.584497
\(226\) 20.5128 1.36449
\(227\) 20.5297 1.36260 0.681301 0.732003i \(-0.261415\pi\)
0.681301 + 0.732003i \(0.261415\pi\)
\(228\) −2.42459 −0.160572
\(229\) 19.5743 1.29351 0.646755 0.762698i \(-0.276126\pi\)
0.646755 + 0.762698i \(0.276126\pi\)
\(230\) 3.71045 0.244660
\(231\) 12.8160 0.843234
\(232\) 1.00000 0.0656532
\(233\) 0.700470 0.0458893 0.0229447 0.999737i \(-0.492696\pi\)
0.0229447 + 0.999737i \(0.492696\pi\)
\(234\) 1.77482 0.116024
\(235\) 39.1030 2.55080
\(236\) 12.3392 0.803213
\(237\) 6.41722 0.416843
\(238\) 5.87863 0.381055
\(239\) 25.0686 1.62155 0.810775 0.585358i \(-0.199046\pi\)
0.810775 + 0.585358i \(0.199046\pi\)
\(240\) −3.71045 −0.239509
\(241\) −8.38253 −0.539966 −0.269983 0.962865i \(-0.587018\pi\)
−0.269983 + 0.962865i \(0.587018\pi\)
\(242\) 16.9404 1.08897
\(243\) 1.00000 0.0641500
\(244\) 8.37779 0.536333
\(245\) 4.16081 0.265824
\(246\) 11.7675 0.750266
\(247\) −4.30321 −0.273807
\(248\) −7.19573 −0.456929
\(249\) −1.75725 −0.111361
\(250\) −13.9790 −0.884108
\(251\) 14.5523 0.918531 0.459265 0.888299i \(-0.348113\pi\)
0.459265 + 0.888299i \(0.348113\pi\)
\(252\) 2.42459 0.152735
\(253\) −5.28586 −0.332319
\(254\) 1.94773 0.122212
\(255\) −8.99632 −0.563371
\(256\) 1.00000 0.0625000
\(257\) −18.4446 −1.15054 −0.575270 0.817964i \(-0.695103\pi\)
−0.575270 + 0.817964i \(0.695103\pi\)
\(258\) 4.45035 0.277067
\(259\) −21.4046 −1.33002
\(260\) −6.58539 −0.408409
\(261\) 1.00000 0.0618984
\(262\) −14.3825 −0.888555
\(263\) −3.07352 −0.189522 −0.0947608 0.995500i \(-0.530209\pi\)
−0.0947608 + 0.995500i \(0.530209\pi\)
\(264\) 5.28586 0.325322
\(265\) −32.4797 −1.99521
\(266\) −5.87863 −0.360442
\(267\) −4.75357 −0.290914
\(268\) 5.55438 0.339288
\(269\) 19.8483 1.21017 0.605087 0.796159i \(-0.293138\pi\)
0.605087 + 0.796159i \(0.293138\pi\)
\(270\) −3.71045 −0.225811
\(271\) 5.02282 0.305114 0.152557 0.988295i \(-0.451249\pi\)
0.152557 + 0.988295i \(0.451249\pi\)
\(272\) 2.42459 0.147012
\(273\) 4.30321 0.260442
\(274\) 12.1229 0.732373
\(275\) 46.3436 2.79462
\(276\) −1.00000 −0.0601929
\(277\) −30.3392 −1.82291 −0.911453 0.411405i \(-0.865038\pi\)
−0.911453 + 0.411405i \(0.865038\pi\)
\(278\) −7.81080 −0.468460
\(279\) −7.19573 −0.430797
\(280\) −8.99632 −0.537633
\(281\) −10.2369 −0.610685 −0.305343 0.952243i \(-0.598771\pi\)
−0.305343 + 0.952243i \(0.598771\pi\)
\(282\) −10.5386 −0.627564
\(283\) 27.4272 1.63038 0.815189 0.579195i \(-0.196633\pi\)
0.815189 + 0.579195i \(0.196633\pi\)
\(284\) −1.49738 −0.0888530
\(285\) 8.99632 0.532896
\(286\) 9.38147 0.554738
\(287\) 28.5312 1.68415
\(288\) 1.00000 0.0589256
\(289\) −11.1214 −0.654199
\(290\) −3.71045 −0.217885
\(291\) 10.1398 0.594404
\(292\) −4.66734 −0.273135
\(293\) 11.4798 0.670657 0.335329 0.942101i \(-0.391153\pi\)
0.335329 + 0.942101i \(0.391153\pi\)
\(294\) −1.12137 −0.0653999
\(295\) −45.7840 −2.66565
\(296\) −8.82814 −0.513125
\(297\) 5.28586 0.306717
\(298\) −18.0930 −1.04810
\(299\) −1.77482 −0.102641
\(300\) 8.76746 0.506189
\(301\) 10.7903 0.621941
\(302\) 18.2869 1.05229
\(303\) 4.34655 0.249703
\(304\) −2.42459 −0.139060
\(305\) −31.0854 −1.77994
\(306\) 2.42459 0.138604
\(307\) −26.0617 −1.48742 −0.743711 0.668501i \(-0.766936\pi\)
−0.743711 + 0.668501i \(0.766936\pi\)
\(308\) 12.8160 0.730262
\(309\) −6.18657 −0.351942
\(310\) 26.6994 1.51642
\(311\) −31.1450 −1.76607 −0.883036 0.469305i \(-0.844504\pi\)
−0.883036 + 0.469305i \(0.844504\pi\)
\(312\) 1.77482 0.100480
\(313\) 21.8623 1.23573 0.617866 0.786283i \(-0.287997\pi\)
0.617866 + 0.786283i \(0.287997\pi\)
\(314\) −17.1450 −0.967550
\(315\) −8.99632 −0.506885
\(316\) 6.41722 0.360997
\(317\) −30.0722 −1.68902 −0.844512 0.535536i \(-0.820110\pi\)
−0.844512 + 0.535536i \(0.820110\pi\)
\(318\) 8.75357 0.490876
\(319\) 5.28586 0.295952
\(320\) −3.71045 −0.207421
\(321\) 10.0184 0.559173
\(322\) −2.42459 −0.135117
\(323\) −5.87863 −0.327095
\(324\) 1.00000 0.0555556
\(325\) 15.5607 0.863151
\(326\) −11.2473 −0.622928
\(327\) 3.54965 0.196296
\(328\) 11.7675 0.649749
\(329\) −25.5518 −1.40871
\(330\) −19.6129 −1.07966
\(331\) −8.97792 −0.493471 −0.246735 0.969083i \(-0.579358\pi\)
−0.246735 + 0.969083i \(0.579358\pi\)
\(332\) −1.75725 −0.0964417
\(333\) −8.82814 −0.483779
\(334\) 14.3134 0.783195
\(335\) −20.6093 −1.12600
\(336\) 2.42459 0.132272
\(337\) −26.9842 −1.46992 −0.734962 0.678108i \(-0.762800\pi\)
−0.734962 + 0.678108i \(0.762800\pi\)
\(338\) −9.85000 −0.535770
\(339\) 20.5128 1.11410
\(340\) −8.99632 −0.487894
\(341\) −38.0356 −2.05975
\(342\) −2.42459 −0.131107
\(343\) −19.6910 −1.06321
\(344\) 4.45035 0.239947
\(345\) 3.71045 0.199764
\(346\) 4.26852 0.229477
\(347\) −21.1435 −1.13504 −0.567520 0.823359i \(-0.692097\pi\)
−0.567520 + 0.823359i \(0.692097\pi\)
\(348\) 1.00000 0.0536056
\(349\) −27.0654 −1.44878 −0.724389 0.689391i \(-0.757878\pi\)
−0.724389 + 0.689391i \(0.757878\pi\)
\(350\) 21.2575 1.13626
\(351\) 1.77482 0.0947330
\(352\) 5.28586 0.281738
\(353\) 4.87494 0.259467 0.129734 0.991549i \(-0.458588\pi\)
0.129734 + 0.991549i \(0.458588\pi\)
\(354\) 12.3392 0.655820
\(355\) 5.55594 0.294879
\(356\) −4.75357 −0.251939
\(357\) 5.87863 0.311130
\(358\) −20.3568 −1.07589
\(359\) −10.4414 −0.551077 −0.275539 0.961290i \(-0.588856\pi\)
−0.275539 + 0.961290i \(0.588856\pi\)
\(360\) −3.71045 −0.195558
\(361\) −13.1214 −0.690599
\(362\) −24.2553 −1.27483
\(363\) 16.9404 0.889139
\(364\) 4.30321 0.225550
\(365\) 17.3179 0.906462
\(366\) 8.37779 0.437914
\(367\) −21.3788 −1.11597 −0.557983 0.829852i \(-0.688425\pi\)
−0.557983 + 0.829852i \(0.688425\pi\)
\(368\) −1.00000 −0.0521286
\(369\) 11.7675 0.612589
\(370\) 32.7564 1.70292
\(371\) 21.2238 1.10188
\(372\) −7.19573 −0.373081
\(373\) −1.66209 −0.0860598 −0.0430299 0.999074i \(-0.513701\pi\)
−0.0430299 + 0.999074i \(0.513701\pi\)
\(374\) 12.8160 0.662702
\(375\) −13.9790 −0.721871
\(376\) −10.5386 −0.543487
\(377\) 1.77482 0.0914080
\(378\) 2.42459 0.124707
\(379\) 35.1030 1.80312 0.901559 0.432656i \(-0.142424\pi\)
0.901559 + 0.432656i \(0.142424\pi\)
\(380\) 8.99632 0.461501
\(381\) 1.94773 0.0997853
\(382\) 14.9584 0.765341
\(383\) −20.3236 −1.03849 −0.519244 0.854626i \(-0.673787\pi\)
−0.519244 + 0.854626i \(0.673787\pi\)
\(384\) 1.00000 0.0510310
\(385\) −47.5533 −2.42354
\(386\) 3.20392 0.163075
\(387\) 4.45035 0.226224
\(388\) 10.1398 0.514769
\(389\) 17.1802 0.871069 0.435535 0.900172i \(-0.356559\pi\)
0.435535 + 0.900172i \(0.356559\pi\)
\(390\) −6.58539 −0.333464
\(391\) −2.42459 −0.122617
\(392\) −1.12137 −0.0566380
\(393\) −14.3825 −0.725502
\(394\) 8.72780 0.439700
\(395\) −23.8108 −1.19805
\(396\) 5.28586 0.265625
\(397\) −11.6359 −0.583988 −0.291994 0.956420i \(-0.594319\pi\)
−0.291994 + 0.956420i \(0.594319\pi\)
\(398\) −15.5212 −0.778010
\(399\) −5.87863 −0.294299
\(400\) 8.76746 0.438373
\(401\) −2.86284 −0.142963 −0.0714817 0.997442i \(-0.522773\pi\)
−0.0714817 + 0.997442i \(0.522773\pi\)
\(402\) 5.55438 0.277027
\(403\) −12.7711 −0.636176
\(404\) 4.34655 0.216249
\(405\) −3.71045 −0.184374
\(406\) 2.42459 0.120330
\(407\) −46.6644 −2.31307
\(408\) 2.42459 0.120035
\(409\) 13.3783 0.661514 0.330757 0.943716i \(-0.392696\pi\)
0.330757 + 0.943716i \(0.392696\pi\)
\(410\) −43.6626 −2.15634
\(411\) 12.1229 0.597980
\(412\) −6.18657 −0.304791
\(413\) 29.9174 1.47214
\(414\) −1.00000 −0.0491473
\(415\) 6.52020 0.320064
\(416\) 1.77482 0.0870178
\(417\) −7.81080 −0.382496
\(418\) −12.8160 −0.626853
\(419\) −30.6510 −1.49740 −0.748701 0.662908i \(-0.769322\pi\)
−0.748701 + 0.662908i \(0.769322\pi\)
\(420\) −8.99632 −0.438975
\(421\) 9.48812 0.462422 0.231211 0.972904i \(-0.425731\pi\)
0.231211 + 0.972904i \(0.425731\pi\)
\(422\) 1.74013 0.0847080
\(423\) −10.5386 −0.512404
\(424\) 8.75357 0.425111
\(425\) 21.2575 1.03114
\(426\) −1.49738 −0.0725481
\(427\) 20.3127 0.983000
\(428\) 10.0184 0.484258
\(429\) 9.38147 0.452942
\(430\) −16.5128 −0.796319
\(431\) −11.2496 −0.541872 −0.270936 0.962597i \(-0.587333\pi\)
−0.270936 + 0.962597i \(0.587333\pi\)
\(432\) 1.00000 0.0481125
\(433\) −28.5218 −1.37067 −0.685334 0.728229i \(-0.740344\pi\)
−0.685334 + 0.728229i \(0.740344\pi\)
\(434\) −17.4467 −0.837467
\(435\) −3.71045 −0.177903
\(436\) 3.54965 0.169997
\(437\) 2.42459 0.115984
\(438\) −4.66734 −0.223014
\(439\) −7.96486 −0.380142 −0.190071 0.981770i \(-0.560872\pi\)
−0.190071 + 0.981770i \(0.560872\pi\)
\(440\) −19.6129 −0.935011
\(441\) −1.12137 −0.0533988
\(442\) 4.30321 0.204683
\(443\) −25.7262 −1.22229 −0.611145 0.791519i \(-0.709291\pi\)
−0.611145 + 0.791519i \(0.709291\pi\)
\(444\) −8.82814 −0.418965
\(445\) 17.6379 0.836116
\(446\) 4.81604 0.228046
\(447\) −18.0930 −0.855768
\(448\) 2.42459 0.114551
\(449\) −6.72854 −0.317539 −0.158770 0.987316i \(-0.550753\pi\)
−0.158770 + 0.987316i \(0.550753\pi\)
\(450\) 8.76746 0.413302
\(451\) 62.2012 2.92894
\(452\) 20.5128 0.964842
\(453\) 18.2869 0.859194
\(454\) 20.5297 0.963505
\(455\) −15.9669 −0.748538
\(456\) −2.42459 −0.113542
\(457\) −23.3988 −1.09455 −0.547275 0.836953i \(-0.684335\pi\)
−0.547275 + 0.836953i \(0.684335\pi\)
\(458\) 19.5743 0.914649
\(459\) 2.42459 0.113170
\(460\) 3.71045 0.173001
\(461\) −7.19729 −0.335211 −0.167606 0.985854i \(-0.553604\pi\)
−0.167606 + 0.985854i \(0.553604\pi\)
\(462\) 12.8160 0.596256
\(463\) 42.4997 1.97513 0.987563 0.157221i \(-0.0502536\pi\)
0.987563 + 0.157221i \(0.0502536\pi\)
\(464\) 1.00000 0.0464238
\(465\) 26.6994 1.23816
\(466\) 0.700470 0.0324486
\(467\) 22.3778 1.03552 0.517760 0.855526i \(-0.326766\pi\)
0.517760 + 0.855526i \(0.326766\pi\)
\(468\) 1.77482 0.0820412
\(469\) 13.4671 0.621852
\(470\) 39.1030 1.80369
\(471\) −17.1450 −0.790001
\(472\) 12.3392 0.567957
\(473\) 23.5240 1.08163
\(474\) 6.41722 0.294753
\(475\) −21.2575 −0.975360
\(476\) 5.87863 0.269446
\(477\) 8.75357 0.400798
\(478\) 25.0686 1.14661
\(479\) −28.8203 −1.31683 −0.658417 0.752653i \(-0.728774\pi\)
−0.658417 + 0.752653i \(0.728774\pi\)
\(480\) −3.71045 −0.169358
\(481\) −15.6684 −0.714417
\(482\) −8.38253 −0.381814
\(483\) −2.42459 −0.110323
\(484\) 16.9404 0.770017
\(485\) −37.6232 −1.70838
\(486\) 1.00000 0.0453609
\(487\) 24.8091 1.12421 0.562104 0.827066i \(-0.309992\pi\)
0.562104 + 0.827066i \(0.309992\pi\)
\(488\) 8.37779 0.379245
\(489\) −11.2473 −0.508619
\(490\) 4.16081 0.187966
\(491\) −14.8507 −0.670204 −0.335102 0.942182i \(-0.608771\pi\)
−0.335102 + 0.942182i \(0.608771\pi\)
\(492\) 11.7675 0.530518
\(493\) 2.42459 0.109198
\(494\) −4.30321 −0.193611
\(495\) −19.6129 −0.881537
\(496\) −7.19573 −0.323098
\(497\) −3.63052 −0.162851
\(498\) −1.75725 −0.0787443
\(499\) −10.7520 −0.481326 −0.240663 0.970609i \(-0.577365\pi\)
−0.240663 + 0.970609i \(0.577365\pi\)
\(500\) −13.9790 −0.625158
\(501\) 14.3134 0.639476
\(502\) 14.5523 0.649499
\(503\) −2.03313 −0.0906529 −0.0453265 0.998972i \(-0.514433\pi\)
−0.0453265 + 0.998972i \(0.514433\pi\)
\(504\) 2.42459 0.108000
\(505\) −16.1277 −0.717672
\(506\) −5.28586 −0.234985
\(507\) −9.85000 −0.437454
\(508\) 1.94773 0.0864166
\(509\) 29.5260 1.30872 0.654358 0.756185i \(-0.272939\pi\)
0.654358 + 0.756185i \(0.272939\pi\)
\(510\) −8.99632 −0.398364
\(511\) −11.3164 −0.500607
\(512\) 1.00000 0.0441942
\(513\) −2.42459 −0.107048
\(514\) −18.4446 −0.813554
\(515\) 22.9550 1.01152
\(516\) 4.45035 0.195916
\(517\) −55.7056 −2.44993
\(518\) −21.4046 −0.940465
\(519\) 4.26852 0.187367
\(520\) −6.58539 −0.288789
\(521\) 7.63789 0.334622 0.167311 0.985904i \(-0.446492\pi\)
0.167311 + 0.985904i \(0.446492\pi\)
\(522\) 1.00000 0.0437688
\(523\) −38.9789 −1.70443 −0.852213 0.523195i \(-0.824740\pi\)
−0.852213 + 0.523195i \(0.824740\pi\)
\(524\) −14.3825 −0.628304
\(525\) 21.2575 0.927752
\(526\) −3.07352 −0.134012
\(527\) −17.4467 −0.759989
\(528\) 5.28586 0.230038
\(529\) 1.00000 0.0434783
\(530\) −32.4797 −1.41083
\(531\) 12.3392 0.535475
\(532\) −5.87863 −0.254871
\(533\) 20.8851 0.904636
\(534\) −4.75357 −0.205707
\(535\) −37.1728 −1.60712
\(536\) 5.55438 0.239913
\(537\) −20.3568 −0.878459
\(538\) 19.8483 0.855722
\(539\) −5.92743 −0.255313
\(540\) −3.71045 −0.159672
\(541\) 14.4262 0.620229 0.310114 0.950699i \(-0.399633\pi\)
0.310114 + 0.950699i \(0.399633\pi\)
\(542\) 5.02282 0.215749
\(543\) −24.2553 −1.04090
\(544\) 2.42459 0.103953
\(545\) −13.1708 −0.564175
\(546\) 4.30321 0.184161
\(547\) 40.0221 1.71122 0.855610 0.517621i \(-0.173182\pi\)
0.855610 + 0.517621i \(0.173182\pi\)
\(548\) 12.1229 0.517866
\(549\) 8.37779 0.357555
\(550\) 46.3436 1.97610
\(551\) −2.42459 −0.103291
\(552\) −1.00000 −0.0425628
\(553\) 15.5591 0.661641
\(554\) −30.3392 −1.28899
\(555\) 32.7564 1.39043
\(556\) −7.81080 −0.331252
\(557\) 1.16293 0.0492748 0.0246374 0.999696i \(-0.492157\pi\)
0.0246374 + 0.999696i \(0.492157\pi\)
\(558\) −7.19573 −0.304619
\(559\) 7.89859 0.334075
\(560\) −8.99632 −0.380164
\(561\) 12.8160 0.541094
\(562\) −10.2369 −0.431820
\(563\) 11.6862 0.492517 0.246258 0.969204i \(-0.420799\pi\)
0.246258 + 0.969204i \(0.420799\pi\)
\(564\) −10.5386 −0.443755
\(565\) −76.1119 −3.20205
\(566\) 27.4272 1.15285
\(567\) 2.42459 0.101823
\(568\) −1.49738 −0.0628285
\(569\) −12.9721 −0.543819 −0.271910 0.962323i \(-0.587655\pi\)
−0.271910 + 0.962323i \(0.587655\pi\)
\(570\) 8.99632 0.376814
\(571\) 10.4824 0.438676 0.219338 0.975649i \(-0.429610\pi\)
0.219338 + 0.975649i \(0.429610\pi\)
\(572\) 9.38147 0.392259
\(573\) 14.9584 0.624898
\(574\) 28.5312 1.19087
\(575\) −8.76746 −0.365628
\(576\) 1.00000 0.0416667
\(577\) 9.31057 0.387604 0.193802 0.981041i \(-0.437918\pi\)
0.193802 + 0.981041i \(0.437918\pi\)
\(578\) −11.1214 −0.462588
\(579\) 3.20392 0.133150
\(580\) −3.71045 −0.154068
\(581\) −4.26061 −0.176760
\(582\) 10.1398 0.420307
\(583\) 46.2702 1.91631
\(584\) −4.66734 −0.193136
\(585\) −6.58539 −0.272273
\(586\) 11.4798 0.474226
\(587\) −15.3936 −0.635361 −0.317680 0.948198i \(-0.602904\pi\)
−0.317680 + 0.948198i \(0.602904\pi\)
\(588\) −1.12137 −0.0462447
\(589\) 17.4467 0.718878
\(590\) −45.7840 −1.88490
\(591\) 8.72780 0.359014
\(592\) −8.82814 −0.362834
\(593\) −0.214971 −0.00882782 −0.00441391 0.999990i \(-0.501405\pi\)
−0.00441391 + 0.999990i \(0.501405\pi\)
\(594\) 5.28586 0.216882
\(595\) −21.8124 −0.894220
\(596\) −18.0930 −0.741117
\(597\) −15.5212 −0.635242
\(598\) −1.77482 −0.0725779
\(599\) −8.14714 −0.332883 −0.166442 0.986051i \(-0.553228\pi\)
−0.166442 + 0.986051i \(0.553228\pi\)
\(600\) 8.76746 0.357930
\(601\) −30.4961 −1.24396 −0.621981 0.783033i \(-0.713672\pi\)
−0.621981 + 0.783033i \(0.713672\pi\)
\(602\) 10.7903 0.439779
\(603\) 5.55438 0.226192
\(604\) 18.2869 0.744084
\(605\) −62.8564 −2.55548
\(606\) 4.34655 0.176567
\(607\) −36.9663 −1.50042 −0.750208 0.661202i \(-0.770047\pi\)
−0.750208 + 0.661202i \(0.770047\pi\)
\(608\) −2.42459 −0.0983300
\(609\) 2.42459 0.0982493
\(610\) −31.0854 −1.25861
\(611\) −18.7041 −0.756688
\(612\) 2.42459 0.0980081
\(613\) 8.98739 0.362997 0.181499 0.983391i \(-0.441905\pi\)
0.181499 + 0.983391i \(0.441905\pi\)
\(614\) −26.0617 −1.05177
\(615\) −43.6626 −1.76065
\(616\) 12.8160 0.516373
\(617\) −34.6195 −1.39373 −0.696864 0.717204i \(-0.745422\pi\)
−0.696864 + 0.717204i \(0.745422\pi\)
\(618\) −6.18657 −0.248861
\(619\) 5.91176 0.237614 0.118807 0.992917i \(-0.462093\pi\)
0.118807 + 0.992917i \(0.462093\pi\)
\(620\) 26.6994 1.07227
\(621\) −1.00000 −0.0401286
\(622\) −31.1450 −1.24880
\(623\) −11.5254 −0.461757
\(624\) 1.77482 0.0710498
\(625\) 8.03101 0.321241
\(626\) 21.8623 0.873794
\(627\) −12.8160 −0.511823
\(628\) −17.1450 −0.684161
\(629\) −21.4046 −0.853458
\(630\) −8.99632 −0.358422
\(631\) 19.8939 0.791962 0.395981 0.918259i \(-0.370405\pi\)
0.395981 + 0.918259i \(0.370405\pi\)
\(632\) 6.41722 0.255263
\(633\) 1.74013 0.0691638
\(634\) −30.0722 −1.19432
\(635\) −7.22696 −0.286793
\(636\) 8.75357 0.347102
\(637\) −1.99024 −0.0788562
\(638\) 5.28586 0.209269
\(639\) −1.49738 −0.0592353
\(640\) −3.71045 −0.146669
\(641\) 9.89336 0.390764 0.195382 0.980727i \(-0.437405\pi\)
0.195382 + 0.980727i \(0.437405\pi\)
\(642\) 10.0184 0.395395
\(643\) 26.6804 1.05217 0.526086 0.850431i \(-0.323659\pi\)
0.526086 + 0.850431i \(0.323659\pi\)
\(644\) −2.42459 −0.0955421
\(645\) −16.5128 −0.650192
\(646\) −5.87863 −0.231291
\(647\) −20.3130 −0.798585 −0.399293 0.916824i \(-0.630744\pi\)
−0.399293 + 0.916824i \(0.630744\pi\)
\(648\) 1.00000 0.0392837
\(649\) 65.2233 2.56024
\(650\) 15.5607 0.610340
\(651\) −17.4467 −0.683789
\(652\) −11.2473 −0.440477
\(653\) 43.7375 1.71158 0.855789 0.517324i \(-0.173072\pi\)
0.855789 + 0.517324i \(0.173072\pi\)
\(654\) 3.54965 0.138802
\(655\) 53.3657 2.08517
\(656\) 11.7675 0.459442
\(657\) −4.66734 −0.182090
\(658\) −25.5518 −0.996111
\(659\) 15.3184 0.596719 0.298360 0.954454i \(-0.403561\pi\)
0.298360 + 0.954454i \(0.403561\pi\)
\(660\) −19.6129 −0.763433
\(661\) 29.2753 1.13868 0.569339 0.822103i \(-0.307199\pi\)
0.569339 + 0.822103i \(0.307199\pi\)
\(662\) −8.97792 −0.348937
\(663\) 4.30321 0.167123
\(664\) −1.75725 −0.0681946
\(665\) 21.8124 0.845847
\(666\) −8.82814 −0.342084
\(667\) −1.00000 −0.0387202
\(668\) 14.3134 0.553803
\(669\) 4.81604 0.186199
\(670\) −20.6093 −0.796205
\(671\) 44.2839 1.70956
\(672\) 2.42459 0.0935305
\(673\) −31.3893 −1.20997 −0.604985 0.796237i \(-0.706821\pi\)
−0.604985 + 0.796237i \(0.706821\pi\)
\(674\) −26.9842 −1.03939
\(675\) 8.76746 0.337460
\(676\) −9.85000 −0.378846
\(677\) −22.9727 −0.882911 −0.441455 0.897283i \(-0.645538\pi\)
−0.441455 + 0.897283i \(0.645538\pi\)
\(678\) 20.5128 0.787790
\(679\) 24.5848 0.943477
\(680\) −8.99632 −0.344993
\(681\) 20.5297 0.786699
\(682\) −38.0356 −1.45646
\(683\) 8.89095 0.340203 0.170101 0.985427i \(-0.445590\pi\)
0.170101 + 0.985427i \(0.445590\pi\)
\(684\) −2.42459 −0.0927064
\(685\) −44.9816 −1.71866
\(686\) −19.6910 −0.751805
\(687\) 19.5743 0.746808
\(688\) 4.45035 0.169668
\(689\) 15.5360 0.591876
\(690\) 3.71045 0.141255
\(691\) −41.8990 −1.59391 −0.796957 0.604036i \(-0.793558\pi\)
−0.796957 + 0.604036i \(0.793558\pi\)
\(692\) 4.26852 0.162265
\(693\) 12.8160 0.486841
\(694\) −21.1435 −0.802595
\(695\) 28.9816 1.09933
\(696\) 1.00000 0.0379049
\(697\) 28.5312 1.08070
\(698\) −27.0654 −1.02444
\(699\) 0.700470 0.0264942
\(700\) 21.2575 0.803457
\(701\) −15.5633 −0.587818 −0.293909 0.955833i \(-0.594956\pi\)
−0.293909 + 0.955833i \(0.594956\pi\)
\(702\) 1.77482 0.0669864
\(703\) 21.4046 0.807290
\(704\) 5.28586 0.199219
\(705\) 39.1030 1.47270
\(706\) 4.87494 0.183471
\(707\) 10.5386 0.396345
\(708\) 12.3392 0.463735
\(709\) 21.5638 0.809846 0.404923 0.914351i \(-0.367298\pi\)
0.404923 + 0.914351i \(0.367298\pi\)
\(710\) 5.55594 0.208511
\(711\) 6.41722 0.240665
\(712\) −4.75357 −0.178147
\(713\) 7.19573 0.269482
\(714\) 5.87863 0.220002
\(715\) −34.8095 −1.30180
\(716\) −20.3568 −0.760768
\(717\) 25.0686 0.936202
\(718\) −10.4414 −0.389671
\(719\) 7.05605 0.263146 0.131573 0.991306i \(-0.457997\pi\)
0.131573 + 0.991306i \(0.457997\pi\)
\(720\) −3.71045 −0.138280
\(721\) −14.9999 −0.558625
\(722\) −13.1214 −0.488327
\(723\) −8.38253 −0.311749
\(724\) −24.2553 −0.901443
\(725\) 8.76746 0.325615
\(726\) 16.9404 0.628716
\(727\) −30.0993 −1.11632 −0.558160 0.829733i \(-0.688493\pi\)
−0.558160 + 0.829733i \(0.688493\pi\)
\(728\) 4.30321 0.159488
\(729\) 1.00000 0.0370370
\(730\) 17.3179 0.640965
\(731\) 10.7903 0.399093
\(732\) 8.37779 0.309652
\(733\) 25.0893 0.926694 0.463347 0.886177i \(-0.346648\pi\)
0.463347 + 0.886177i \(0.346648\pi\)
\(734\) −21.3788 −0.789107
\(735\) 4.16081 0.153474
\(736\) −1.00000 −0.0368605
\(737\) 29.3597 1.08148
\(738\) 11.7675 0.433166
\(739\) −13.4994 −0.496583 −0.248291 0.968685i \(-0.579869\pi\)
−0.248291 + 0.968685i \(0.579869\pi\)
\(740\) 32.7564 1.20415
\(741\) −4.30321 −0.158082
\(742\) 21.2238 0.779150
\(743\) 17.4881 0.641577 0.320788 0.947151i \(-0.396052\pi\)
0.320788 + 0.947151i \(0.396052\pi\)
\(744\) −7.19573 −0.263808
\(745\) 67.1331 2.45957
\(746\) −1.66209 −0.0608534
\(747\) −1.75725 −0.0642944
\(748\) 12.8160 0.468601
\(749\) 24.2905 0.887555
\(750\) −13.9790 −0.510440
\(751\) −39.3453 −1.43573 −0.717865 0.696183i \(-0.754880\pi\)
−0.717865 + 0.696183i \(0.754880\pi\)
\(752\) −10.5386 −0.384303
\(753\) 14.5523 0.530314
\(754\) 1.77482 0.0646352
\(755\) −67.8527 −2.46941
\(756\) 2.42459 0.0881814
\(757\) 39.6458 1.44095 0.720475 0.693481i \(-0.243924\pi\)
0.720475 + 0.693481i \(0.243924\pi\)
\(758\) 35.1030 1.27500
\(759\) −5.28586 −0.191865
\(760\) 8.99632 0.326331
\(761\) −14.8235 −0.537352 −0.268676 0.963231i \(-0.586586\pi\)
−0.268676 + 0.963231i \(0.586586\pi\)
\(762\) 1.94773 0.0705589
\(763\) 8.60643 0.311574
\(764\) 14.9584 0.541178
\(765\) −8.99632 −0.325263
\(766\) −20.3236 −0.734322
\(767\) 21.8999 0.790758
\(768\) 1.00000 0.0360844
\(769\) 31.4881 1.13549 0.567745 0.823204i \(-0.307816\pi\)
0.567745 + 0.823204i \(0.307816\pi\)
\(770\) −47.5533 −1.71370
\(771\) −18.4446 −0.664264
\(772\) 3.20392 0.115312
\(773\) −14.5612 −0.523731 −0.261866 0.965104i \(-0.584338\pi\)
−0.261866 + 0.965104i \(0.584338\pi\)
\(774\) 4.45035 0.159965
\(775\) −63.0882 −2.26620
\(776\) 10.1398 0.363997
\(777\) −21.4046 −0.767886
\(778\) 17.1802 0.615939
\(779\) −28.5312 −1.02224
\(780\) −6.58539 −0.235795
\(781\) −7.91493 −0.283218
\(782\) −2.42459 −0.0867031
\(783\) 1.00000 0.0357371
\(784\) −1.12137 −0.0400491
\(785\) 63.6158 2.27054
\(786\) −14.3825 −0.513008
\(787\) 23.9637 0.854213 0.427107 0.904201i \(-0.359533\pi\)
0.427107 + 0.904201i \(0.359533\pi\)
\(788\) 8.72780 0.310915
\(789\) −3.07352 −0.109420
\(790\) −23.8108 −0.847150
\(791\) 49.7352 1.76838
\(792\) 5.28586 0.187825
\(793\) 14.8691 0.528017
\(794\) −11.6359 −0.412942
\(795\) −32.4797 −1.15194
\(796\) −15.5212 −0.550136
\(797\) 40.7073 1.44193 0.720963 0.692974i \(-0.243700\pi\)
0.720963 + 0.692974i \(0.243700\pi\)
\(798\) −5.87863 −0.208101
\(799\) −25.5518 −0.903956
\(800\) 8.76746 0.309976
\(801\) −4.75357 −0.167959
\(802\) −2.86284 −0.101090
\(803\) −24.6709 −0.870618
\(804\) 5.55438 0.195888
\(805\) 8.99632 0.317079
\(806\) −12.7711 −0.449844
\(807\) 19.8483 0.698694
\(808\) 4.34655 0.152911
\(809\) −45.0543 −1.58402 −0.792012 0.610506i \(-0.790966\pi\)
−0.792012 + 0.610506i \(0.790966\pi\)
\(810\) −3.71045 −0.130372
\(811\) −0.293741 −0.0103147 −0.00515733 0.999987i \(-0.501642\pi\)
−0.00515733 + 0.999987i \(0.501642\pi\)
\(812\) 2.42459 0.0850863
\(813\) 5.02282 0.176158
\(814\) −46.6644 −1.63559
\(815\) 41.7324 1.46182
\(816\) 2.42459 0.0848775
\(817\) −10.7903 −0.377504
\(818\) 13.3783 0.467761
\(819\) 4.30321 0.150366
\(820\) −43.6626 −1.52476
\(821\) 23.8985 0.834063 0.417032 0.908892i \(-0.363070\pi\)
0.417032 + 0.908892i \(0.363070\pi\)
\(822\) 12.1229 0.422836
\(823\) −13.3870 −0.466643 −0.233321 0.972400i \(-0.574959\pi\)
−0.233321 + 0.972400i \(0.574959\pi\)
\(824\) −6.18657 −0.215520
\(825\) 46.3436 1.61348
\(826\) 29.9174 1.04096
\(827\) 23.3663 0.812526 0.406263 0.913756i \(-0.366832\pi\)
0.406263 + 0.913756i \(0.366832\pi\)
\(828\) −1.00000 −0.0347524
\(829\) −17.7851 −0.617703 −0.308851 0.951110i \(-0.599945\pi\)
−0.308851 + 0.951110i \(0.599945\pi\)
\(830\) 6.52020 0.226319
\(831\) −30.3392 −1.05245
\(832\) 1.77482 0.0615309
\(833\) −2.71887 −0.0942033
\(834\) −7.81080 −0.270466
\(835\) −53.1093 −1.83792
\(836\) −12.8160 −0.443252
\(837\) −7.19573 −0.248721
\(838\) −30.6510 −1.05882
\(839\) −1.07670 −0.0371717 −0.0185858 0.999827i \(-0.505916\pi\)
−0.0185858 + 0.999827i \(0.505916\pi\)
\(840\) −8.99632 −0.310402
\(841\) 1.00000 0.0344828
\(842\) 9.48812 0.326982
\(843\) −10.2369 −0.352579
\(844\) 1.74013 0.0598976
\(845\) 36.5480 1.25729
\(846\) −10.5386 −0.362324
\(847\) 41.0734 1.41130
\(848\) 8.75357 0.300599
\(849\) 27.4272 0.941299
\(850\) 21.2575 0.729125
\(851\) 8.82814 0.302625
\(852\) −1.49738 −0.0512993
\(853\) 35.3547 1.21052 0.605262 0.796027i \(-0.293069\pi\)
0.605262 + 0.796027i \(0.293069\pi\)
\(854\) 20.3127 0.695086
\(855\) 8.99632 0.307668
\(856\) 10.0184 0.342422
\(857\) 29.6138 1.01159 0.505794 0.862654i \(-0.331200\pi\)
0.505794 + 0.862654i \(0.331200\pi\)
\(858\) 9.38147 0.320278
\(859\) −13.9302 −0.475291 −0.237645 0.971352i \(-0.576376\pi\)
−0.237645 + 0.971352i \(0.576376\pi\)
\(860\) −16.5128 −0.563083
\(861\) 28.5312 0.972342
\(862\) −11.2496 −0.383162
\(863\) −22.9256 −0.780398 −0.390199 0.920731i \(-0.627594\pi\)
−0.390199 + 0.920731i \(0.627594\pi\)
\(864\) 1.00000 0.0340207
\(865\) −15.8381 −0.538512
\(866\) −28.5218 −0.969209
\(867\) −11.1214 −0.377702
\(868\) −17.4467 −0.592179
\(869\) 33.9206 1.15068
\(870\) −3.71045 −0.125796
\(871\) 9.85804 0.334027
\(872\) 3.54965 0.120206
\(873\) 10.1398 0.343179
\(874\) 2.42459 0.0820129
\(875\) −33.8932 −1.14580
\(876\) −4.66734 −0.157695
\(877\) −13.5848 −0.458726 −0.229363 0.973341i \(-0.573664\pi\)
−0.229363 + 0.973341i \(0.573664\pi\)
\(878\) −7.96486 −0.268801
\(879\) 11.4798 0.387204
\(880\) −19.6129 −0.661152
\(881\) 39.1692 1.31964 0.659822 0.751422i \(-0.270632\pi\)
0.659822 + 0.751422i \(0.270632\pi\)
\(882\) −1.12137 −0.0377586
\(883\) −13.0479 −0.439095 −0.219548 0.975602i \(-0.570458\pi\)
−0.219548 + 0.975602i \(0.570458\pi\)
\(884\) 4.30321 0.144733
\(885\) −45.7840 −1.53901
\(886\) −25.7262 −0.864289
\(887\) −8.23494 −0.276502 −0.138251 0.990397i \(-0.544148\pi\)
−0.138251 + 0.990397i \(0.544148\pi\)
\(888\) −8.82814 −0.296253
\(889\) 4.72245 0.158386
\(890\) 17.6379 0.591223
\(891\) 5.28586 0.177083
\(892\) 4.81604 0.161253
\(893\) 25.5518 0.855057
\(894\) −18.0930 −0.605120
\(895\) 75.5328 2.52478
\(896\) 2.42459 0.0809998
\(897\) −1.77482 −0.0592596
\(898\) −6.72854 −0.224534
\(899\) −7.19573 −0.239991
\(900\) 8.76746 0.292249
\(901\) 21.2238 0.707067
\(902\) 62.2012 2.07107
\(903\) 10.7903 0.359078
\(904\) 20.5128 0.682247
\(905\) 89.9983 2.99165
\(906\) 18.2869 0.607542
\(907\) 4.57910 0.152046 0.0760232 0.997106i \(-0.475778\pi\)
0.0760232 + 0.997106i \(0.475778\pi\)
\(908\) 20.5297 0.681301
\(909\) 4.34655 0.144166
\(910\) −15.9669 −0.529296
\(911\) −46.5360 −1.54181 −0.770903 0.636953i \(-0.780195\pi\)
−0.770903 + 0.636953i \(0.780195\pi\)
\(912\) −2.42459 −0.0802861
\(913\) −9.28859 −0.307407
\(914\) −23.3988 −0.773964
\(915\) −31.0854 −1.02765
\(916\) 19.5743 0.646755
\(917\) −34.8717 −1.15156
\(918\) 2.42459 0.0800233
\(919\) 44.0026 1.45151 0.725756 0.687952i \(-0.241490\pi\)
0.725756 + 0.687952i \(0.241490\pi\)
\(920\) 3.71045 0.122330
\(921\) −26.0617 −0.858764
\(922\) −7.19729 −0.237030
\(923\) −2.65758 −0.0874752
\(924\) 12.8160 0.421617
\(925\) −77.4004 −2.54491
\(926\) 42.4997 1.39663
\(927\) −6.18657 −0.203194
\(928\) 1.00000 0.0328266
\(929\) −20.6253 −0.676693 −0.338347 0.941022i \(-0.609868\pi\)
−0.338347 + 0.941022i \(0.609868\pi\)
\(930\) 26.6994 0.875508
\(931\) 2.71887 0.0891074
\(932\) 0.700470 0.0229447
\(933\) −31.1450 −1.01964
\(934\) 22.3778 0.732224
\(935\) −47.5533 −1.55516
\(936\) 1.77482 0.0580119
\(937\) −32.8291 −1.07248 −0.536240 0.844066i \(-0.680156\pi\)
−0.536240 + 0.844066i \(0.680156\pi\)
\(938\) 13.4671 0.439716
\(939\) 21.8623 0.713450
\(940\) 39.1030 1.27540
\(941\) 32.7525 1.06770 0.533851 0.845579i \(-0.320745\pi\)
0.533851 + 0.845579i \(0.320745\pi\)
\(942\) −17.1450 −0.558615
\(943\) −11.7675 −0.383201
\(944\) 12.3392 0.401606
\(945\) −8.99632 −0.292650
\(946\) 23.5240 0.764830
\(947\) 20.8676 0.678105 0.339053 0.940767i \(-0.389894\pi\)
0.339053 + 0.940767i \(0.389894\pi\)
\(948\) 6.41722 0.208422
\(949\) −8.28370 −0.268900
\(950\) −21.2575 −0.689683
\(951\) −30.0722 −0.975159
\(952\) 5.87863 0.190527
\(953\) −43.4351 −1.40700 −0.703500 0.710695i \(-0.748380\pi\)
−0.703500 + 0.710695i \(0.748380\pi\)
\(954\) 8.75357 0.283407
\(955\) −55.5026 −1.79602
\(956\) 25.0686 0.810775
\(957\) 5.28586 0.170868
\(958\) −28.8203 −0.931143
\(959\) 29.3931 0.949154
\(960\) −3.71045 −0.119754
\(961\) 20.7785 0.670274
\(962\) −15.6684 −0.505169
\(963\) 10.0184 0.322838
\(964\) −8.38253 −0.269983
\(965\) −11.8880 −0.382688
\(966\) −2.42459 −0.0780098
\(967\) −21.6914 −0.697549 −0.348775 0.937207i \(-0.613402\pi\)
−0.348775 + 0.937207i \(0.613402\pi\)
\(968\) 16.9404 0.544484
\(969\) −5.87863 −0.188849
\(970\) −37.6232 −1.20801
\(971\) 9.21593 0.295753 0.147877 0.989006i \(-0.452756\pi\)
0.147877 + 0.989006i \(0.452756\pi\)
\(972\) 1.00000 0.0320750
\(973\) −18.9380 −0.607123
\(974\) 24.8091 0.794936
\(975\) 15.5607 0.498341
\(976\) 8.37779 0.268166
\(977\) 0.764553 0.0244602 0.0122301 0.999925i \(-0.496107\pi\)
0.0122301 + 0.999925i \(0.496107\pi\)
\(978\) −11.2473 −0.359648
\(979\) −25.1267 −0.803053
\(980\) 4.16081 0.132912
\(981\) 3.54965 0.113331
\(982\) −14.8507 −0.473906
\(983\) −28.1739 −0.898606 −0.449303 0.893379i \(-0.648328\pi\)
−0.449303 + 0.893379i \(0.648328\pi\)
\(984\) 11.7675 0.375133
\(985\) −32.3841 −1.03184
\(986\) 2.42459 0.0772146
\(987\) −25.5518 −0.813321
\(988\) −4.30321 −0.136903
\(989\) −4.45035 −0.141513
\(990\) −19.6129 −0.623340
\(991\) 17.4447 0.554148 0.277074 0.960849i \(-0.410635\pi\)
0.277074 + 0.960849i \(0.410635\pi\)
\(992\) −7.19573 −0.228465
\(993\) −8.97792 −0.284906
\(994\) −3.63052 −0.115153
\(995\) 57.5909 1.82575
\(996\) −1.75725 −0.0556806
\(997\) 31.0956 0.984807 0.492404 0.870367i \(-0.336118\pi\)
0.492404 + 0.870367i \(0.336118\pi\)
\(998\) −10.7520 −0.340349
\(999\) −8.82814 −0.279310
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bd.1.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bd.1.1 4 1.1 even 1 trivial