Properties

Label 4002.2.a.bc.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.11324.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 5x^{2} + 4x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(-0.356500\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +0.380691 q^{5} +1.00000 q^{6} -2.38069 q^{7} +1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +0.380691 q^{5} +1.00000 q^{6} -2.38069 q^{7} +1.00000 q^{8} +1.00000 q^{9} +0.380691 q^{10} +1.61010 q^{11} +1.00000 q^{12} -4.89710 q^{13} -2.38069 q^{14} +0.380691 q^{15} +1.00000 q^{16} -3.09369 q^{17} +1.00000 q^{18} -5.09369 q^{19} +0.380691 q^{20} -2.38069 q^{21} +1.61010 q^{22} -1.00000 q^{23} +1.00000 q^{24} -4.85507 q^{25} -4.89710 q^{26} +1.00000 q^{27} -2.38069 q^{28} -1.00000 q^{29} +0.380691 q^{30} -8.59453 q^{31} +1.00000 q^{32} +1.61010 q^{33} -3.09369 q^{34} -0.906309 q^{35} +1.00000 q^{36} +1.94241 q^{37} -5.09369 q^{38} -4.89710 q^{39} +0.380691 q^{40} -1.80341 q^{41} -2.38069 q^{42} -10.1265 q^{43} +1.61010 q^{44} +0.380691 q^{45} -1.00000 q^{46} +8.12651 q^{47} +1.00000 q^{48} -1.33231 q^{49} -4.85507 q^{50} -3.09369 q^{51} -4.89710 q^{52} -5.95162 q^{53} +1.00000 q^{54} +0.612951 q^{55} -2.38069 q^{56} -5.09369 q^{57} -1.00000 q^{58} +8.88789 q^{59} +0.380691 q^{60} +11.5400 q^{61} -8.59453 q^{62} -2.38069 q^{63} +1.00000 q^{64} -1.86428 q^{65} +1.61010 q^{66} +0.713000 q^{67} -3.09369 q^{68} -1.00000 q^{69} -0.906309 q^{70} +13.6273 q^{71} +1.00000 q^{72} -0.574000 q^{73} +1.94241 q^{74} -4.85507 q^{75} -5.09369 q^{76} -3.83315 q^{77} -4.89710 q^{78} -3.86428 q^{79} +0.380691 q^{80} +1.00000 q^{81} -1.80341 q^{82} -9.03282 q^{83} -2.38069 q^{84} -1.17774 q^{85} -10.1265 q^{86} -1.00000 q^{87} +1.61010 q^{88} -5.69743 q^{89} +0.380691 q^{90} +11.6585 q^{91} -1.00000 q^{92} -8.59453 q^{93} +8.12651 q^{94} -1.93912 q^{95} +1.00000 q^{96} +13.3592 q^{97} -1.33231 q^{98} +1.61010 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{7} + 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{2} + 4 q^{3} + 4 q^{4} - 4 q^{5} + 4 q^{6} - 4 q^{7} + 4 q^{8} + 4 q^{9} - 4 q^{10} - 12 q^{11} + 4 q^{12} - 6 q^{13} - 4 q^{14} - 4 q^{15} + 4 q^{16} - 2 q^{17} + 4 q^{18} - 10 q^{19} - 4 q^{20} - 4 q^{21} - 12 q^{22} - 4 q^{23} + 4 q^{24} + 2 q^{25} - 6 q^{26} + 4 q^{27} - 4 q^{28} - 4 q^{29} - 4 q^{30} - 6 q^{31} + 4 q^{32} - 12 q^{33} - 2 q^{34} - 14 q^{35} + 4 q^{36} - 10 q^{37} - 10 q^{38} - 6 q^{39} - 4 q^{40} - 4 q^{41} - 4 q^{42} - 14 q^{43} - 12 q^{44} - 4 q^{45} - 4 q^{46} + 6 q^{47} + 4 q^{48} - 6 q^{49} + 2 q^{50} - 2 q^{51} - 6 q^{52} - 30 q^{53} + 4 q^{54} + 22 q^{55} - 4 q^{56} - 10 q^{57} - 4 q^{58} - 2 q^{59} - 4 q^{60} - 2 q^{61} - 6 q^{62} - 4 q^{63} + 4 q^{64} - 10 q^{65} - 12 q^{66} - 2 q^{67} - 2 q^{68} - 4 q^{69} - 14 q^{70} + 10 q^{71} + 4 q^{72} - 12 q^{73} - 10 q^{74} + 2 q^{75} - 10 q^{76} + 2 q^{77} - 6 q^{78} - 18 q^{79} - 4 q^{80} + 4 q^{81} - 4 q^{82} - 20 q^{83} - 4 q^{84} - 10 q^{85} - 14 q^{86} - 4 q^{87} - 12 q^{88} - 8 q^{89} - 4 q^{90} + 22 q^{91} - 4 q^{92} - 6 q^{93} + 6 q^{94} - 2 q^{95} + 4 q^{96} + 2 q^{97} - 6 q^{98} - 12 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 0.380691 0.170250 0.0851252 0.996370i \(-0.472871\pi\)
0.0851252 + 0.996370i \(0.472871\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.38069 −0.899817 −0.449908 0.893075i \(-0.648543\pi\)
−0.449908 + 0.893075i \(0.648543\pi\)
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) 0.380691 0.120385
\(11\) 1.61010 0.485463 0.242732 0.970093i \(-0.421957\pi\)
0.242732 + 0.970093i \(0.421957\pi\)
\(12\) 1.00000 0.288675
\(13\) −4.89710 −1.35821 −0.679105 0.734041i \(-0.737632\pi\)
−0.679105 + 0.734041i \(0.737632\pi\)
\(14\) −2.38069 −0.636267
\(15\) 0.380691 0.0982941
\(16\) 1.00000 0.250000
\(17\) −3.09369 −0.750330 −0.375165 0.926958i \(-0.622414\pi\)
−0.375165 + 0.926958i \(0.622414\pi\)
\(18\) 1.00000 0.235702
\(19\) −5.09369 −1.16857 −0.584286 0.811547i \(-0.698626\pi\)
−0.584286 + 0.811547i \(0.698626\pi\)
\(20\) 0.380691 0.0851252
\(21\) −2.38069 −0.519509
\(22\) 1.61010 0.343274
\(23\) −1.00000 −0.208514
\(24\) 1.00000 0.204124
\(25\) −4.85507 −0.971015
\(26\) −4.89710 −0.960400
\(27\) 1.00000 0.192450
\(28\) −2.38069 −0.449908
\(29\) −1.00000 −0.185695
\(30\) 0.380691 0.0695044
\(31\) −8.59453 −1.54362 −0.771812 0.635851i \(-0.780649\pi\)
−0.771812 + 0.635851i \(0.780649\pi\)
\(32\) 1.00000 0.176777
\(33\) 1.61010 0.280282
\(34\) −3.09369 −0.530564
\(35\) −0.906309 −0.153194
\(36\) 1.00000 0.166667
\(37\) 1.94241 0.319330 0.159665 0.987171i \(-0.448959\pi\)
0.159665 + 0.987171i \(0.448959\pi\)
\(38\) −5.09369 −0.826306
\(39\) −4.89710 −0.784163
\(40\) 0.380691 0.0601926
\(41\) −1.80341 −0.281645 −0.140823 0.990035i \(-0.544975\pi\)
−0.140823 + 0.990035i \(0.544975\pi\)
\(42\) −2.38069 −0.367349
\(43\) −10.1265 −1.54428 −0.772139 0.635454i \(-0.780813\pi\)
−0.772139 + 0.635454i \(0.780813\pi\)
\(44\) 1.61010 0.242732
\(45\) 0.380691 0.0567501
\(46\) −1.00000 −0.147442
\(47\) 8.12651 1.18537 0.592686 0.805433i \(-0.298067\pi\)
0.592686 + 0.805433i \(0.298067\pi\)
\(48\) 1.00000 0.144338
\(49\) −1.33231 −0.190330
\(50\) −4.85507 −0.686611
\(51\) −3.09369 −0.433203
\(52\) −4.89710 −0.679105
\(53\) −5.95162 −0.817517 −0.408759 0.912642i \(-0.634038\pi\)
−0.408759 + 0.912642i \(0.634038\pi\)
\(54\) 1.00000 0.136083
\(55\) 0.612951 0.0826503
\(56\) −2.38069 −0.318133
\(57\) −5.09369 −0.674676
\(58\) −1.00000 −0.131306
\(59\) 8.88789 1.15710 0.578552 0.815645i \(-0.303618\pi\)
0.578552 + 0.815645i \(0.303618\pi\)
\(60\) 0.380691 0.0491470
\(61\) 11.5400 1.47755 0.738774 0.673954i \(-0.235405\pi\)
0.738774 + 0.673954i \(0.235405\pi\)
\(62\) −8.59453 −1.09151
\(63\) −2.38069 −0.299939
\(64\) 1.00000 0.125000
\(65\) −1.86428 −0.231236
\(66\) 1.61010 0.198190
\(67\) 0.713000 0.0871068 0.0435534 0.999051i \(-0.486132\pi\)
0.0435534 + 0.999051i \(0.486132\pi\)
\(68\) −3.09369 −0.375165
\(69\) −1.00000 −0.120386
\(70\) −0.906309 −0.108325
\(71\) 13.6273 1.61727 0.808634 0.588312i \(-0.200207\pi\)
0.808634 + 0.588312i \(0.200207\pi\)
\(72\) 1.00000 0.117851
\(73\) −0.574000 −0.0671816 −0.0335908 0.999436i \(-0.510694\pi\)
−0.0335908 + 0.999436i \(0.510694\pi\)
\(74\) 1.94241 0.225800
\(75\) −4.85507 −0.560616
\(76\) −5.09369 −0.584286
\(77\) −3.83315 −0.436828
\(78\) −4.89710 −0.554487
\(79\) −3.86428 −0.434766 −0.217383 0.976086i \(-0.569752\pi\)
−0.217383 + 0.976086i \(0.569752\pi\)
\(80\) 0.380691 0.0425626
\(81\) 1.00000 0.111111
\(82\) −1.80341 −0.199153
\(83\) −9.03282 −0.991480 −0.495740 0.868471i \(-0.665103\pi\)
−0.495740 + 0.868471i \(0.665103\pi\)
\(84\) −2.38069 −0.259755
\(85\) −1.17774 −0.127744
\(86\) −10.1265 −1.09197
\(87\) −1.00000 −0.107211
\(88\) 1.61010 0.171637
\(89\) −5.69743 −0.603927 −0.301963 0.953320i \(-0.597642\pi\)
−0.301963 + 0.953320i \(0.597642\pi\)
\(90\) 0.380691 0.0401284
\(91\) 11.6585 1.22214
\(92\) −1.00000 −0.104257
\(93\) −8.59453 −0.891211
\(94\) 8.12651 0.838185
\(95\) −1.93912 −0.198950
\(96\) 1.00000 0.102062
\(97\) 13.3592 1.35642 0.678211 0.734868i \(-0.262756\pi\)
0.678211 + 0.734868i \(0.262756\pi\)
\(98\) −1.33231 −0.134583
\(99\) 1.61010 0.161821
\(100\) −4.85507 −0.485507
\(101\) 4.06563 0.404545 0.202273 0.979329i \(-0.435167\pi\)
0.202273 + 0.979329i \(0.435167\pi\)
\(102\) −3.09369 −0.306321
\(103\) −14.6337 −1.44190 −0.720951 0.692986i \(-0.756295\pi\)
−0.720951 + 0.692986i \(0.756295\pi\)
\(104\) −4.89710 −0.480200
\(105\) −0.906309 −0.0884467
\(106\) −5.95162 −0.578072
\(107\) 1.71936 0.166217 0.0831083 0.996541i \(-0.473515\pi\)
0.0831083 + 0.996541i \(0.473515\pi\)
\(108\) 1.00000 0.0962250
\(109\) 4.18738 0.401079 0.200539 0.979686i \(-0.435731\pi\)
0.200539 + 0.979686i \(0.435731\pi\)
\(110\) 0.612951 0.0584426
\(111\) 1.94241 0.184365
\(112\) −2.38069 −0.224954
\(113\) 5.28107 0.496802 0.248401 0.968657i \(-0.420095\pi\)
0.248401 + 0.968657i \(0.420095\pi\)
\(114\) −5.09369 −0.477068
\(115\) −0.380691 −0.0354997
\(116\) −1.00000 −0.0928477
\(117\) −4.89710 −0.452737
\(118\) 8.88789 0.818197
\(119\) 7.36512 0.675160
\(120\) 0.380691 0.0347522
\(121\) −8.40758 −0.764326
\(122\) 11.5400 1.04478
\(123\) −1.80341 −0.162608
\(124\) −8.59453 −0.771812
\(125\) −3.75174 −0.335566
\(126\) −2.38069 −0.212089
\(127\) −19.4732 −1.72797 −0.863984 0.503519i \(-0.832038\pi\)
−0.863984 + 0.503519i \(0.832038\pi\)
\(128\) 1.00000 0.0883883
\(129\) −10.1265 −0.891589
\(130\) −1.86428 −0.163508
\(131\) 14.8787 1.29996 0.649978 0.759953i \(-0.274778\pi\)
0.649978 + 0.759953i \(0.274778\pi\)
\(132\) 1.61010 0.140141
\(133\) 12.1265 1.05150
\(134\) 0.713000 0.0615938
\(135\) 0.380691 0.0327647
\(136\) −3.09369 −0.265282
\(137\) −7.61338 −0.650455 −0.325228 0.945636i \(-0.605441\pi\)
−0.325228 + 0.945636i \(0.605441\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 0.664617 0.0563721 0.0281860 0.999603i \(-0.491027\pi\)
0.0281860 + 0.999603i \(0.491027\pi\)
\(140\) −0.906309 −0.0765971
\(141\) 8.12651 0.684375
\(142\) 13.6273 1.14358
\(143\) −7.88482 −0.659361
\(144\) 1.00000 0.0833333
\(145\) −0.380691 −0.0316147
\(146\) −0.574000 −0.0475046
\(147\) −1.33231 −0.109887
\(148\) 1.94241 0.159665
\(149\) 11.2077 0.918171 0.459086 0.888392i \(-0.348177\pi\)
0.459086 + 0.888392i \(0.348177\pi\)
\(150\) −4.85507 −0.396415
\(151\) 11.8034 0.960548 0.480274 0.877119i \(-0.340537\pi\)
0.480274 + 0.877119i \(0.340537\pi\)
\(152\) −5.09369 −0.413153
\(153\) −3.09369 −0.250110
\(154\) −3.83315 −0.308884
\(155\) −3.27186 −0.262802
\(156\) −4.89710 −0.392082
\(157\) 0.0264580 0.00211158 0.00105579 0.999999i \(-0.499664\pi\)
0.00105579 + 0.999999i \(0.499664\pi\)
\(158\) −3.86428 −0.307426
\(159\) −5.95162 −0.471994
\(160\) 0.380691 0.0300963
\(161\) 2.38069 0.187625
\(162\) 1.00000 0.0785674
\(163\) 2.86736 0.224589 0.112294 0.993675i \(-0.464180\pi\)
0.112294 + 0.993675i \(0.464180\pi\)
\(164\) −1.80341 −0.140823
\(165\) 0.612951 0.0477182
\(166\) −9.03282 −0.701082
\(167\) 10.1874 0.788323 0.394162 0.919041i \(-0.371035\pi\)
0.394162 + 0.919041i \(0.371035\pi\)
\(168\) −2.38069 −0.183674
\(169\) 10.9816 0.844737
\(170\) −1.17774 −0.0903287
\(171\) −5.09369 −0.389524
\(172\) −10.1265 −0.772139
\(173\) −12.4807 −0.948893 −0.474447 0.880284i \(-0.657352\pi\)
−0.474447 + 0.880284i \(0.657352\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 11.5584 0.873735
\(176\) 1.61010 0.121366
\(177\) 8.88789 0.668055
\(178\) −5.69743 −0.427041
\(179\) −8.52445 −0.637147 −0.318574 0.947898i \(-0.603204\pi\)
−0.318574 + 0.947898i \(0.603204\pi\)
\(180\) 0.380691 0.0283751
\(181\) −16.2390 −1.20704 −0.603519 0.797348i \(-0.706235\pi\)
−0.603519 + 0.797348i \(0.706235\pi\)
\(182\) 11.6585 0.864184
\(183\) 11.5400 0.853062
\(184\) −1.00000 −0.0737210
\(185\) 0.739458 0.0543660
\(186\) −8.59453 −0.630182
\(187\) −4.98115 −0.364258
\(188\) 8.12651 0.592686
\(189\) −2.38069 −0.173170
\(190\) −1.93912 −0.140679
\(191\) −25.2282 −1.82545 −0.912726 0.408573i \(-0.866026\pi\)
−0.912726 + 0.408573i \(0.866026\pi\)
\(192\) 1.00000 0.0721688
\(193\) −5.98158 −0.430564 −0.215282 0.976552i \(-0.569067\pi\)
−0.215282 + 0.976552i \(0.569067\pi\)
\(194\) 13.3592 0.959135
\(195\) −1.86428 −0.133504
\(196\) −1.33231 −0.0951649
\(197\) −9.29504 −0.662244 −0.331122 0.943588i \(-0.607427\pi\)
−0.331122 + 0.943588i \(0.607427\pi\)
\(198\) 1.61010 0.114425
\(199\) 8.04838 0.570535 0.285267 0.958448i \(-0.407918\pi\)
0.285267 + 0.958448i \(0.407918\pi\)
\(200\) −4.85507 −0.343306
\(201\) 0.713000 0.0502911
\(202\) 4.06563 0.286057
\(203\) 2.38069 0.167092
\(204\) −3.09369 −0.216602
\(205\) −0.686542 −0.0479502
\(206\) −14.6337 −1.01958
\(207\) −1.00000 −0.0695048
\(208\) −4.89710 −0.339553
\(209\) −8.20135 −0.567299
\(210\) −0.906309 −0.0625412
\(211\) −19.1799 −1.32040 −0.660198 0.751092i \(-0.729528\pi\)
−0.660198 + 0.751092i \(0.729528\pi\)
\(212\) −5.95162 −0.408759
\(213\) 13.6273 0.933730
\(214\) 1.71936 0.117533
\(215\) −3.85507 −0.262914
\(216\) 1.00000 0.0680414
\(217\) 20.4609 1.38898
\(218\) 4.18738 0.283605
\(219\) −0.574000 −0.0387873
\(220\) 0.612951 0.0413251
\(221\) 15.1501 1.01911
\(222\) 1.94241 0.130366
\(223\) 22.9833 1.53907 0.769537 0.638603i \(-0.220487\pi\)
0.769537 + 0.638603i \(0.220487\pi\)
\(224\) −2.38069 −0.159067
\(225\) −4.85507 −0.323672
\(226\) 5.28107 0.351292
\(227\) 4.44961 0.295331 0.147665 0.989037i \(-0.452824\pi\)
0.147665 + 0.989037i \(0.452824\pi\)
\(228\) −5.09369 −0.337338
\(229\) −0.787841 −0.0520620 −0.0260310 0.999661i \(-0.508287\pi\)
−0.0260310 + 0.999661i \(0.508287\pi\)
\(230\) −0.380691 −0.0251020
\(231\) −3.83315 −0.252203
\(232\) −1.00000 −0.0656532
\(233\) 4.18082 0.273894 0.136947 0.990578i \(-0.456271\pi\)
0.136947 + 0.990578i \(0.456271\pi\)
\(234\) −4.89710 −0.320133
\(235\) 3.09369 0.201810
\(236\) 8.88789 0.578552
\(237\) −3.86428 −0.251012
\(238\) 7.36512 0.477410
\(239\) −23.6479 −1.52965 −0.764827 0.644236i \(-0.777176\pi\)
−0.764827 + 0.644236i \(0.777176\pi\)
\(240\) 0.380691 0.0245735
\(241\) 6.46802 0.416642 0.208321 0.978060i \(-0.433200\pi\)
0.208321 + 0.978060i \(0.433200\pi\)
\(242\) −8.40758 −0.540460
\(243\) 1.00000 0.0641500
\(244\) 11.5400 0.738774
\(245\) −0.507198 −0.0324037
\(246\) −1.80341 −0.114981
\(247\) 24.9443 1.58717
\(248\) −8.59453 −0.545753
\(249\) −9.03282 −0.572431
\(250\) −3.75174 −0.237281
\(251\) 8.01725 0.506044 0.253022 0.967460i \(-0.418575\pi\)
0.253022 + 0.967460i \(0.418575\pi\)
\(252\) −2.38069 −0.149969
\(253\) −1.61010 −0.101226
\(254\) −19.4732 −1.22186
\(255\) −1.17774 −0.0737530
\(256\) 1.00000 0.0625000
\(257\) 4.23248 0.264015 0.132007 0.991249i \(-0.457858\pi\)
0.132007 + 0.991249i \(0.457858\pi\)
\(258\) −10.1265 −0.630449
\(259\) −4.62427 −0.287338
\(260\) −1.86428 −0.115618
\(261\) −1.00000 −0.0618984
\(262\) 14.8787 0.919208
\(263\) 7.82066 0.482242 0.241121 0.970495i \(-0.422485\pi\)
0.241121 + 0.970495i \(0.422485\pi\)
\(264\) 1.61010 0.0990948
\(265\) −2.26573 −0.139183
\(266\) 12.1265 0.743524
\(267\) −5.69743 −0.348677
\(268\) 0.713000 0.0435534
\(269\) 26.1895 1.59680 0.798401 0.602126i \(-0.205680\pi\)
0.798401 + 0.602126i \(0.205680\pi\)
\(270\) 0.380691 0.0231681
\(271\) 12.0968 0.734826 0.367413 0.930058i \(-0.380244\pi\)
0.367413 + 0.930058i \(0.380244\pi\)
\(272\) −3.09369 −0.187583
\(273\) 11.6585 0.705603
\(274\) −7.61338 −0.459941
\(275\) −7.81715 −0.471392
\(276\) −1.00000 −0.0601929
\(277\) −22.9443 −1.37859 −0.689295 0.724481i \(-0.742080\pi\)
−0.689295 + 0.724481i \(0.742080\pi\)
\(278\) 0.664617 0.0398611
\(279\) −8.59453 −0.514541
\(280\) −0.906309 −0.0541623
\(281\) −18.2046 −1.08600 −0.542999 0.839734i \(-0.682711\pi\)
−0.542999 + 0.839734i \(0.682711\pi\)
\(282\) 8.12651 0.483926
\(283\) −2.96390 −0.176186 −0.0880928 0.996112i \(-0.528077\pi\)
−0.0880928 + 0.996112i \(0.528077\pi\)
\(284\) 13.6273 0.808634
\(285\) −1.93912 −0.114864
\(286\) −7.88482 −0.466239
\(287\) 4.29336 0.253429
\(288\) 1.00000 0.0589256
\(289\) −7.42907 −0.437004
\(290\) −0.380691 −0.0223550
\(291\) 13.3592 0.783130
\(292\) −0.574000 −0.0335908
\(293\) −25.2674 −1.47614 −0.738069 0.674725i \(-0.764262\pi\)
−0.738069 + 0.674725i \(0.764262\pi\)
\(294\) −1.33231 −0.0777018
\(295\) 3.38354 0.196997
\(296\) 1.94241 0.112900
\(297\) 1.61010 0.0934274
\(298\) 11.2077 0.649245
\(299\) 4.89710 0.283207
\(300\) −4.85507 −0.280308
\(301\) 24.1081 1.38957
\(302\) 11.8034 0.679210
\(303\) 4.06563 0.233564
\(304\) −5.09369 −0.292143
\(305\) 4.39318 0.251553
\(306\) −3.09369 −0.176855
\(307\) −23.9632 −1.36765 −0.683825 0.729646i \(-0.739685\pi\)
−0.683825 + 0.729646i \(0.739685\pi\)
\(308\) −3.83315 −0.218414
\(309\) −14.6337 −0.832482
\(310\) −3.27186 −0.185829
\(311\) −18.1921 −1.03158 −0.515791 0.856715i \(-0.672502\pi\)
−0.515791 + 0.856715i \(0.672502\pi\)
\(312\) −4.89710 −0.277244
\(313\) −19.4640 −1.10017 −0.550085 0.835109i \(-0.685405\pi\)
−0.550085 + 0.835109i \(0.685405\pi\)
\(314\) 0.0264580 0.00149311
\(315\) −0.906309 −0.0510647
\(316\) −3.86428 −0.217383
\(317\) 14.4793 0.813241 0.406621 0.913597i \(-0.366707\pi\)
0.406621 + 0.913597i \(0.366707\pi\)
\(318\) −5.95162 −0.333750
\(319\) −1.61010 −0.0901482
\(320\) 0.380691 0.0212813
\(321\) 1.71936 0.0959652
\(322\) 2.38069 0.132671
\(323\) 15.7583 0.876816
\(324\) 1.00000 0.0555556
\(325\) 23.7758 1.31884
\(326\) 2.86736 0.158808
\(327\) 4.18738 0.231563
\(328\) −1.80341 −0.0995765
\(329\) −19.3467 −1.06662
\(330\) 0.612951 0.0337418
\(331\) 9.50084 0.522213 0.261107 0.965310i \(-0.415913\pi\)
0.261107 + 0.965310i \(0.415913\pi\)
\(332\) −9.03282 −0.495740
\(333\) 1.94241 0.106443
\(334\) 10.1874 0.557429
\(335\) 0.271433 0.0148300
\(336\) −2.38069 −0.129877
\(337\) 2.79705 0.152365 0.0761825 0.997094i \(-0.475727\pi\)
0.0761825 + 0.997094i \(0.475727\pi\)
\(338\) 10.9816 0.597319
\(339\) 5.28107 0.286829
\(340\) −1.17774 −0.0638720
\(341\) −13.8380 −0.749372
\(342\) −5.09369 −0.275435
\(343\) 19.8367 1.07108
\(344\) −10.1265 −0.545985
\(345\) −0.380691 −0.0204957
\(346\) −12.4807 −0.670969
\(347\) 4.17942 0.224363 0.112182 0.993688i \(-0.464216\pi\)
0.112182 + 0.993688i \(0.464216\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 17.2202 0.921776 0.460888 0.887458i \(-0.347531\pi\)
0.460888 + 0.887458i \(0.347531\pi\)
\(350\) 11.5584 0.617824
\(351\) −4.89710 −0.261388
\(352\) 1.61010 0.0858186
\(353\) 36.3002 1.93207 0.966033 0.258419i \(-0.0832014\pi\)
0.966033 + 0.258419i \(0.0832014\pi\)
\(354\) 8.88789 0.472386
\(355\) 5.18781 0.275341
\(356\) −5.69743 −0.301963
\(357\) 7.36512 0.389804
\(358\) −8.52445 −0.450531
\(359\) −4.42579 −0.233584 −0.116792 0.993156i \(-0.537261\pi\)
−0.116792 + 0.993156i \(0.537261\pi\)
\(360\) 0.380691 0.0200642
\(361\) 6.94569 0.365563
\(362\) −16.2390 −0.853505
\(363\) −8.40758 −0.441284
\(364\) 11.6585 0.611070
\(365\) −0.218517 −0.0114377
\(366\) 11.5400 0.603206
\(367\) 37.6216 1.96383 0.981917 0.189312i \(-0.0606259\pi\)
0.981917 + 0.189312i \(0.0606259\pi\)
\(368\) −1.00000 −0.0521286
\(369\) −1.80341 −0.0938817
\(370\) 0.739458 0.0384426
\(371\) 14.1690 0.735616
\(372\) −8.59453 −0.445606
\(373\) 7.64452 0.395818 0.197909 0.980220i \(-0.436585\pi\)
0.197909 + 0.980220i \(0.436585\pi\)
\(374\) −4.98115 −0.257569
\(375\) −3.75174 −0.193739
\(376\) 8.12651 0.419093
\(377\) 4.89710 0.252213
\(378\) −2.38069 −0.122450
\(379\) 24.0288 1.23428 0.617138 0.786855i \(-0.288292\pi\)
0.617138 + 0.786855i \(0.288292\pi\)
\(380\) −1.93912 −0.0994750
\(381\) −19.4732 −0.997643
\(382\) −25.2282 −1.29079
\(383\) −3.15011 −0.160963 −0.0804816 0.996756i \(-0.525646\pi\)
−0.0804816 + 0.996756i \(0.525646\pi\)
\(384\) 1.00000 0.0510310
\(385\) −1.45925 −0.0743701
\(386\) −5.98158 −0.304454
\(387\) −10.1265 −0.514759
\(388\) 13.3592 0.678211
\(389\) −7.49163 −0.379841 −0.189920 0.981799i \(-0.560823\pi\)
−0.189920 + 0.981799i \(0.560823\pi\)
\(390\) −1.86428 −0.0944017
\(391\) 3.09369 0.156455
\(392\) −1.33231 −0.0672917
\(393\) 14.8787 0.750530
\(394\) −9.29504 −0.468277
\(395\) −1.47110 −0.0740190
\(396\) 1.61010 0.0809105
\(397\) 14.4728 0.726368 0.363184 0.931717i \(-0.381690\pi\)
0.363184 + 0.931717i \(0.381690\pi\)
\(398\) 8.04838 0.403429
\(399\) 12.1265 0.607085
\(400\) −4.85507 −0.242754
\(401\) −39.9021 −1.99261 −0.996307 0.0858626i \(-0.972635\pi\)
−0.996307 + 0.0858626i \(0.972635\pi\)
\(402\) 0.713000 0.0355612
\(403\) 42.0883 2.09657
\(404\) 4.06563 0.202273
\(405\) 0.380691 0.0189167
\(406\) 2.38069 0.118152
\(407\) 3.12747 0.155023
\(408\) −3.09369 −0.153161
\(409\) 35.9837 1.77928 0.889640 0.456663i \(-0.150956\pi\)
0.889640 + 0.456663i \(0.150956\pi\)
\(410\) −0.686542 −0.0339059
\(411\) −7.61338 −0.375540
\(412\) −14.6337 −0.720951
\(413\) −21.1593 −1.04118
\(414\) −1.00000 −0.0491473
\(415\) −3.43872 −0.168800
\(416\) −4.89710 −0.240100
\(417\) 0.664617 0.0325464
\(418\) −8.20135 −0.401141
\(419\) 10.6304 0.519330 0.259665 0.965699i \(-0.416388\pi\)
0.259665 + 0.965699i \(0.416388\pi\)
\(420\) −0.906309 −0.0442233
\(421\) −24.4576 −1.19199 −0.595996 0.802987i \(-0.703243\pi\)
−0.595996 + 0.802987i \(0.703243\pi\)
\(422\) −19.1799 −0.933661
\(423\) 8.12651 0.395124
\(424\) −5.95162 −0.289036
\(425\) 15.0201 0.728582
\(426\) 13.6273 0.660247
\(427\) −27.4732 −1.32952
\(428\) 1.71936 0.0831083
\(429\) −7.88482 −0.380682
\(430\) −3.85507 −0.185908
\(431\) 21.9837 1.05892 0.529459 0.848336i \(-0.322395\pi\)
0.529459 + 0.848336i \(0.322395\pi\)
\(432\) 1.00000 0.0481125
\(433\) −13.4572 −0.646712 −0.323356 0.946277i \(-0.604811\pi\)
−0.323356 + 0.946277i \(0.604811\pi\)
\(434\) 20.4609 0.982156
\(435\) −0.380691 −0.0182528
\(436\) 4.18738 0.200539
\(437\) 5.09369 0.243664
\(438\) −0.574000 −0.0274268
\(439\) 39.4951 1.88500 0.942500 0.334206i \(-0.108468\pi\)
0.942500 + 0.334206i \(0.108468\pi\)
\(440\) 0.612951 0.0292213
\(441\) −1.33231 −0.0634433
\(442\) 15.1501 0.720617
\(443\) −11.5950 −0.550893 −0.275447 0.961316i \(-0.588826\pi\)
−0.275447 + 0.961316i \(0.588826\pi\)
\(444\) 1.94241 0.0921826
\(445\) −2.16896 −0.102819
\(446\) 22.9833 1.08829
\(447\) 11.2077 0.530106
\(448\) −2.38069 −0.112477
\(449\) −18.9330 −0.893503 −0.446752 0.894658i \(-0.647419\pi\)
−0.446752 + 0.894658i \(0.647419\pi\)
\(450\) −4.85507 −0.228870
\(451\) −2.90367 −0.136728
\(452\) 5.28107 0.248401
\(453\) 11.8034 0.554572
\(454\) 4.44961 0.208830
\(455\) 4.43828 0.208070
\(456\) −5.09369 −0.238534
\(457\) −36.3590 −1.70080 −0.850401 0.526135i \(-0.823641\pi\)
−0.850401 + 0.526135i \(0.823641\pi\)
\(458\) −0.787841 −0.0368134
\(459\) −3.09369 −0.144401
\(460\) −0.380691 −0.0177498
\(461\) −1.89542 −0.0882784 −0.0441392 0.999025i \(-0.514055\pi\)
−0.0441392 + 0.999025i \(0.514055\pi\)
\(462\) −3.83315 −0.178334
\(463\) −8.93605 −0.415293 −0.207647 0.978204i \(-0.566580\pi\)
−0.207647 + 0.978204i \(0.566580\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −3.27186 −0.151729
\(466\) 4.18082 0.193673
\(467\) 8.75195 0.404992 0.202496 0.979283i \(-0.435095\pi\)
0.202496 + 0.979283i \(0.435095\pi\)
\(468\) −4.89710 −0.226368
\(469\) −1.69743 −0.0783802
\(470\) 3.09369 0.142701
\(471\) 0.0264580 0.00121912
\(472\) 8.88789 0.409098
\(473\) −16.3047 −0.749690
\(474\) −3.86428 −0.177492
\(475\) 24.7302 1.13470
\(476\) 7.36512 0.337580
\(477\) −5.95162 −0.272506
\(478\) −23.6479 −1.08163
\(479\) 2.22305 0.101574 0.0507869 0.998710i \(-0.483827\pi\)
0.0507869 + 0.998710i \(0.483827\pi\)
\(480\) 0.380691 0.0173761
\(481\) −9.51216 −0.433717
\(482\) 6.46802 0.294610
\(483\) 2.38069 0.108325
\(484\) −8.40758 −0.382163
\(485\) 5.08573 0.230931
\(486\) 1.00000 0.0453609
\(487\) −4.19659 −0.190166 −0.0950829 0.995469i \(-0.530312\pi\)
−0.0950829 + 0.995469i \(0.530312\pi\)
\(488\) 11.5400 0.522392
\(489\) 2.86736 0.129666
\(490\) −0.507198 −0.0229129
\(491\) 8.49777 0.383499 0.191749 0.981444i \(-0.438584\pi\)
0.191749 + 0.981444i \(0.438584\pi\)
\(492\) −1.80341 −0.0813039
\(493\) 3.09369 0.139333
\(494\) 24.9443 1.12230
\(495\) 0.612951 0.0275501
\(496\) −8.59453 −0.385906
\(497\) −32.4425 −1.45525
\(498\) −9.03282 −0.404770
\(499\) −7.32478 −0.327902 −0.163951 0.986468i \(-0.552424\pi\)
−0.163951 + 0.986468i \(0.552424\pi\)
\(500\) −3.75174 −0.167783
\(501\) 10.1874 0.455139
\(502\) 8.01725 0.357827
\(503\) 4.78169 0.213205 0.106603 0.994302i \(-0.466003\pi\)
0.106603 + 0.994302i \(0.466003\pi\)
\(504\) −2.38069 −0.106044
\(505\) 1.54775 0.0688740
\(506\) −1.61010 −0.0715776
\(507\) 10.9816 0.487709
\(508\) −19.4732 −0.863984
\(509\) 33.7600 1.49639 0.748193 0.663481i \(-0.230922\pi\)
0.748193 + 0.663481i \(0.230922\pi\)
\(510\) −1.17774 −0.0521513
\(511\) 1.36652 0.0604512
\(512\) 1.00000 0.0441942
\(513\) −5.09369 −0.224892
\(514\) 4.23248 0.186687
\(515\) −5.57093 −0.245484
\(516\) −10.1265 −0.445795
\(517\) 13.0845 0.575455
\(518\) −4.62427 −0.203179
\(519\) −12.4807 −0.547844
\(520\) −1.86428 −0.0817542
\(521\) −19.5605 −0.856963 −0.428482 0.903551i \(-0.640951\pi\)
−0.428482 + 0.903551i \(0.640951\pi\)
\(522\) −1.00000 −0.0437688
\(523\) −35.6713 −1.55980 −0.779898 0.625907i \(-0.784729\pi\)
−0.779898 + 0.625907i \(0.784729\pi\)
\(524\) 14.8787 0.649978
\(525\) 11.5584 0.504451
\(526\) 7.82066 0.340997
\(527\) 26.5888 1.15823
\(528\) 1.61010 0.0700706
\(529\) 1.00000 0.0434783
\(530\) −2.26573 −0.0984170
\(531\) 8.88789 0.385702
\(532\) 12.1265 0.525751
\(533\) 8.83147 0.382533
\(534\) −5.69743 −0.246552
\(535\) 0.654545 0.0282984
\(536\) 0.713000 0.0307969
\(537\) −8.52445 −0.367857
\(538\) 26.1895 1.12911
\(539\) −2.14515 −0.0923981
\(540\) 0.380691 0.0163823
\(541\) −6.34502 −0.272794 −0.136397 0.990654i \(-0.543552\pi\)
−0.136397 + 0.990654i \(0.543552\pi\)
\(542\) 12.0968 0.519601
\(543\) −16.2390 −0.696884
\(544\) −3.09369 −0.132641
\(545\) 1.59410 0.0682838
\(546\) 11.6585 0.498937
\(547\) 30.5187 1.30489 0.652444 0.757837i \(-0.273744\pi\)
0.652444 + 0.757837i \(0.273744\pi\)
\(548\) −7.61338 −0.325228
\(549\) 11.5400 0.492516
\(550\) −7.81715 −0.333324
\(551\) 5.09369 0.216999
\(552\) −1.00000 −0.0425628
\(553\) 9.19967 0.391210
\(554\) −22.9443 −0.974810
\(555\) 0.739458 0.0313882
\(556\) 0.664617 0.0281860
\(557\) 0.826791 0.0350323 0.0175161 0.999847i \(-0.494424\pi\)
0.0175161 + 0.999847i \(0.494424\pi\)
\(558\) −8.59453 −0.363836
\(559\) 49.5905 2.09746
\(560\) −0.906309 −0.0382985
\(561\) −4.98115 −0.210304
\(562\) −18.2046 −0.767916
\(563\) −11.3526 −0.478456 −0.239228 0.970963i \(-0.576894\pi\)
−0.239228 + 0.970963i \(0.576894\pi\)
\(564\) 8.12651 0.342188
\(565\) 2.01046 0.0845807
\(566\) −2.96390 −0.124582
\(567\) −2.38069 −0.0999796
\(568\) 13.6273 0.571791
\(569\) −25.0031 −1.04818 −0.524092 0.851662i \(-0.675595\pi\)
−0.524092 + 0.851662i \(0.675595\pi\)
\(570\) −1.93912 −0.0812210
\(571\) −18.9271 −0.792073 −0.396036 0.918235i \(-0.629615\pi\)
−0.396036 + 0.918235i \(0.629615\pi\)
\(572\) −7.88482 −0.329681
\(573\) −25.2282 −1.05392
\(574\) 4.29336 0.179201
\(575\) 4.85507 0.202471
\(576\) 1.00000 0.0416667
\(577\) −45.3409 −1.88756 −0.943782 0.330568i \(-0.892760\pi\)
−0.943782 + 0.330568i \(0.892760\pi\)
\(578\) −7.42907 −0.309009
\(579\) −5.98158 −0.248586
\(580\) −0.380691 −0.0158073
\(581\) 21.5043 0.892151
\(582\) 13.3592 0.553757
\(583\) −9.58269 −0.396875
\(584\) −0.574000 −0.0237523
\(585\) −1.86428 −0.0770786
\(586\) −25.2674 −1.04379
\(587\) −33.6243 −1.38782 −0.693911 0.720060i \(-0.744114\pi\)
−0.693911 + 0.720060i \(0.744114\pi\)
\(588\) −1.33231 −0.0549435
\(589\) 43.7779 1.80384
\(590\) 3.38354 0.139298
\(591\) −9.29504 −0.382347
\(592\) 1.94241 0.0798325
\(593\) −14.8647 −0.610421 −0.305210 0.952285i \(-0.598727\pi\)
−0.305210 + 0.952285i \(0.598727\pi\)
\(594\) 1.61010 0.0660632
\(595\) 2.80384 0.114946
\(596\) 11.2077 0.459086
\(597\) 8.04838 0.329398
\(598\) 4.89710 0.200257
\(599\) −3.47321 −0.141912 −0.0709558 0.997479i \(-0.522605\pi\)
−0.0709558 + 0.997479i \(0.522605\pi\)
\(600\) −4.85507 −0.198208
\(601\) −21.8782 −0.892432 −0.446216 0.894925i \(-0.647229\pi\)
−0.446216 + 0.894925i \(0.647229\pi\)
\(602\) 24.1081 0.982572
\(603\) 0.713000 0.0290356
\(604\) 11.8034 0.480274
\(605\) −3.20069 −0.130127
\(606\) 4.06563 0.165155
\(607\) −10.4921 −0.425860 −0.212930 0.977067i \(-0.568301\pi\)
−0.212930 + 0.977067i \(0.568301\pi\)
\(608\) −5.09369 −0.206576
\(609\) 2.38069 0.0964705
\(610\) 4.39318 0.177875
\(611\) −39.7963 −1.60999
\(612\) −3.09369 −0.125055
\(613\) −20.7053 −0.836278 −0.418139 0.908383i \(-0.637317\pi\)
−0.418139 + 0.908383i \(0.637317\pi\)
\(614\) −23.9632 −0.967075
\(615\) −0.686542 −0.0276840
\(616\) −3.83315 −0.154442
\(617\) 3.17159 0.127684 0.0638418 0.997960i \(-0.479665\pi\)
0.0638418 + 0.997960i \(0.479665\pi\)
\(618\) −14.6337 −0.588654
\(619\) 21.5214 0.865017 0.432508 0.901630i \(-0.357629\pi\)
0.432508 + 0.901630i \(0.357629\pi\)
\(620\) −3.27186 −0.131401
\(621\) −1.00000 −0.0401286
\(622\) −18.1921 −0.729438
\(623\) 13.5638 0.543423
\(624\) −4.89710 −0.196041
\(625\) 22.8471 0.913885
\(626\) −19.4640 −0.777938
\(627\) −8.20135 −0.327530
\(628\) 0.0264580 0.00105579
\(629\) −6.00921 −0.239603
\(630\) −0.906309 −0.0361082
\(631\) −28.2782 −1.12574 −0.562869 0.826546i \(-0.690302\pi\)
−0.562869 + 0.826546i \(0.690302\pi\)
\(632\) −3.86428 −0.153713
\(633\) −19.1799 −0.762331
\(634\) 14.4793 0.575048
\(635\) −7.41328 −0.294187
\(636\) −5.95162 −0.235997
\(637\) 6.52445 0.258508
\(638\) −1.61010 −0.0637444
\(639\) 13.6273 0.539090
\(640\) 0.380691 0.0150481
\(641\) −18.0425 −0.712634 −0.356317 0.934365i \(-0.615968\pi\)
−0.356317 + 0.934365i \(0.615968\pi\)
\(642\) 1.71936 0.0678576
\(643\) 38.2067 1.50673 0.753363 0.657604i \(-0.228430\pi\)
0.753363 + 0.657604i \(0.228430\pi\)
\(644\) 2.38069 0.0938124
\(645\) −3.85507 −0.151793
\(646\) 15.7583 0.620002
\(647\) 5.50560 0.216447 0.108224 0.994127i \(-0.465484\pi\)
0.108224 + 0.994127i \(0.465484\pi\)
\(648\) 1.00000 0.0392837
\(649\) 14.3104 0.561732
\(650\) 23.7758 0.932563
\(651\) 20.4609 0.801927
\(652\) 2.86736 0.112294
\(653\) −3.41943 −0.133813 −0.0669064 0.997759i \(-0.521313\pi\)
−0.0669064 + 0.997759i \(0.521313\pi\)
\(654\) 4.18738 0.163740
\(655\) 5.66419 0.221318
\(656\) −1.80341 −0.0704113
\(657\) −0.574000 −0.0223939
\(658\) −19.3467 −0.754213
\(659\) 1.94505 0.0757684 0.0378842 0.999282i \(-0.487938\pi\)
0.0378842 + 0.999282i \(0.487938\pi\)
\(660\) 0.612951 0.0238591
\(661\) −6.72454 −0.261554 −0.130777 0.991412i \(-0.541747\pi\)
−0.130777 + 0.991412i \(0.541747\pi\)
\(662\) 9.50084 0.369261
\(663\) 15.1501 0.588382
\(664\) −9.03282 −0.350541
\(665\) 4.61646 0.179019
\(666\) 1.94241 0.0752668
\(667\) 1.00000 0.0387202
\(668\) 10.1874 0.394162
\(669\) 22.9833 0.888584
\(670\) 0.271433 0.0104864
\(671\) 18.5806 0.717295
\(672\) −2.38069 −0.0918372
\(673\) 8.21056 0.316494 0.158247 0.987400i \(-0.449416\pi\)
0.158247 + 0.987400i \(0.449416\pi\)
\(674\) 2.79705 0.107738
\(675\) −4.85507 −0.186872
\(676\) 10.9816 0.422369
\(677\) −17.9439 −0.689639 −0.344820 0.938669i \(-0.612060\pi\)
−0.344820 + 0.938669i \(0.612060\pi\)
\(678\) 5.28107 0.202818
\(679\) −31.8041 −1.22053
\(680\) −1.17774 −0.0451643
\(681\) 4.44961 0.170509
\(682\) −13.8380 −0.529886
\(683\) −45.2722 −1.73229 −0.866146 0.499792i \(-0.833410\pi\)
−0.866146 + 0.499792i \(0.833410\pi\)
\(684\) −5.09369 −0.194762
\(685\) −2.89835 −0.110740
\(686\) 19.8367 0.757367
\(687\) −0.787841 −0.0300580
\(688\) −10.1265 −0.386069
\(689\) 29.1457 1.11036
\(690\) −0.380691 −0.0144927
\(691\) 38.5454 1.46634 0.733169 0.680047i \(-0.238041\pi\)
0.733169 + 0.680047i \(0.238041\pi\)
\(692\) −12.4807 −0.474447
\(693\) −3.83315 −0.145609
\(694\) 4.17942 0.158649
\(695\) 0.253014 0.00959737
\(696\) −1.00000 −0.0379049
\(697\) 5.57919 0.211327
\(698\) 17.2202 0.651794
\(699\) 4.18082 0.158133
\(700\) 11.5584 0.436868
\(701\) −29.8412 −1.12709 −0.563543 0.826087i \(-0.690562\pi\)
−0.563543 + 0.826087i \(0.690562\pi\)
\(702\) −4.89710 −0.184829
\(703\) −9.89402 −0.373160
\(704\) 1.61010 0.0606829
\(705\) 3.09369 0.116515
\(706\) 36.3002 1.36618
\(707\) −9.67901 −0.364017
\(708\) 8.88789 0.334027
\(709\) 6.69786 0.251544 0.125772 0.992059i \(-0.459859\pi\)
0.125772 + 0.992059i \(0.459859\pi\)
\(710\) 5.18781 0.194695
\(711\) −3.86428 −0.144922
\(712\) −5.69743 −0.213520
\(713\) 8.59453 0.321868
\(714\) 7.36512 0.275633
\(715\) −3.00168 −0.112257
\(716\) −8.52445 −0.318574
\(717\) −23.6479 −0.883146
\(718\) −4.42579 −0.165169
\(719\) 44.8541 1.67278 0.836388 0.548138i \(-0.184663\pi\)
0.836388 + 0.548138i \(0.184663\pi\)
\(720\) 0.380691 0.0141875
\(721\) 34.8383 1.29745
\(722\) 6.94569 0.258492
\(723\) 6.46802 0.240548
\(724\) −16.2390 −0.603519
\(725\) 4.85507 0.180313
\(726\) −8.40758 −0.312035
\(727\) −38.8742 −1.44177 −0.720883 0.693057i \(-0.756263\pi\)
−0.720883 + 0.693057i \(0.756263\pi\)
\(728\) 11.6585 0.432092
\(729\) 1.00000 0.0370370
\(730\) −0.218517 −0.00808768
\(731\) 31.3283 1.15872
\(732\) 11.5400 0.426531
\(733\) −20.2112 −0.746518 −0.373259 0.927727i \(-0.621760\pi\)
−0.373259 + 0.927727i \(0.621760\pi\)
\(734\) 37.6216 1.38864
\(735\) −0.507198 −0.0187083
\(736\) −1.00000 −0.0368605
\(737\) 1.14800 0.0422871
\(738\) −1.80341 −0.0663844
\(739\) 0.331361 0.0121893 0.00609465 0.999981i \(-0.498060\pi\)
0.00609465 + 0.999981i \(0.498060\pi\)
\(740\) 0.739458 0.0271830
\(741\) 24.9443 0.916352
\(742\) 14.1690 0.520159
\(743\) 8.01419 0.294012 0.147006 0.989136i \(-0.453036\pi\)
0.147006 + 0.989136i \(0.453036\pi\)
\(744\) −8.59453 −0.315091
\(745\) 4.26668 0.156319
\(746\) 7.64452 0.279886
\(747\) −9.03282 −0.330493
\(748\) −4.98115 −0.182129
\(749\) −4.09326 −0.149564
\(750\) −3.75174 −0.136994
\(751\) −18.2714 −0.666734 −0.333367 0.942797i \(-0.608185\pi\)
−0.333367 + 0.942797i \(0.608185\pi\)
\(752\) 8.12651 0.296343
\(753\) 8.01725 0.292165
\(754\) 4.89710 0.178342
\(755\) 4.49346 0.163534
\(756\) −2.38069 −0.0865849
\(757\) 24.8846 0.904446 0.452223 0.891905i \(-0.350631\pi\)
0.452223 + 0.891905i \(0.350631\pi\)
\(758\) 24.0288 0.872765
\(759\) −1.61010 −0.0584429
\(760\) −1.93912 −0.0703394
\(761\) −3.68962 −0.133748 −0.0668742 0.997761i \(-0.521303\pi\)
−0.0668742 + 0.997761i \(0.521303\pi\)
\(762\) −19.4732 −0.705440
\(763\) −9.96887 −0.360897
\(764\) −25.2282 −0.912726
\(765\) −1.17774 −0.0425813
\(766\) −3.15011 −0.113818
\(767\) −43.5249 −1.57159
\(768\) 1.00000 0.0360844
\(769\) −43.4949 −1.56847 −0.784233 0.620466i \(-0.786943\pi\)
−0.784233 + 0.620466i \(0.786943\pi\)
\(770\) −1.45925 −0.0525876
\(771\) 4.23248 0.152429
\(772\) −5.98158 −0.215282
\(773\) 21.7836 0.783501 0.391751 0.920071i \(-0.371870\pi\)
0.391751 + 0.920071i \(0.371870\pi\)
\(774\) −10.1265 −0.363990
\(775\) 41.7271 1.49888
\(776\) 13.3592 0.479567
\(777\) −4.62427 −0.165895
\(778\) −7.49163 −0.268588
\(779\) 9.18600 0.329123
\(780\) −1.86428 −0.0667521
\(781\) 21.9414 0.785124
\(782\) 3.09369 0.110630
\(783\) −1.00000 −0.0357371
\(784\) −1.33231 −0.0475824
\(785\) 0.0100723 0.000359497 0
\(786\) 14.8787 0.530705
\(787\) −24.9988 −0.891112 −0.445556 0.895254i \(-0.646994\pi\)
−0.445556 + 0.895254i \(0.646994\pi\)
\(788\) −9.29504 −0.331122
\(789\) 7.82066 0.278423
\(790\) −1.47110 −0.0523394
\(791\) −12.5726 −0.447030
\(792\) 1.61010 0.0572124
\(793\) −56.5126 −2.00682
\(794\) 14.4728 0.513620
\(795\) −2.26573 −0.0803571
\(796\) 8.04838 0.285267
\(797\) 24.1669 0.856034 0.428017 0.903771i \(-0.359212\pi\)
0.428017 + 0.903771i \(0.359212\pi\)
\(798\) 12.1265 0.429274
\(799\) −25.1409 −0.889421
\(800\) −4.85507 −0.171653
\(801\) −5.69743 −0.201309
\(802\) −39.9021 −1.40899
\(803\) −0.924197 −0.0326142
\(804\) 0.713000 0.0251456
\(805\) 0.906309 0.0319432
\(806\) 42.0883 1.48250
\(807\) 26.1895 0.921914
\(808\) 4.06563 0.143028
\(809\) 6.56830 0.230929 0.115465 0.993312i \(-0.463164\pi\)
0.115465 + 0.993312i \(0.463164\pi\)
\(810\) 0.380691 0.0133761
\(811\) 5.77533 0.202799 0.101400 0.994846i \(-0.467668\pi\)
0.101400 + 0.994846i \(0.467668\pi\)
\(812\) 2.38069 0.0835459
\(813\) 12.0968 0.424252
\(814\) 3.12747 0.109618
\(815\) 1.09158 0.0382363
\(816\) −3.09369 −0.108301
\(817\) 51.5813 1.80460
\(818\) 35.9837 1.25814
\(819\) 11.6585 0.407380
\(820\) −0.686542 −0.0239751
\(821\) 13.3515 0.465969 0.232985 0.972480i \(-0.425151\pi\)
0.232985 + 0.972480i \(0.425151\pi\)
\(822\) −7.61338 −0.265547
\(823\) 43.7963 1.52664 0.763322 0.646019i \(-0.223567\pi\)
0.763322 + 0.646019i \(0.223567\pi\)
\(824\) −14.6337 −0.509789
\(825\) −7.81715 −0.272158
\(826\) −21.1593 −0.736227
\(827\) −25.4498 −0.884977 −0.442488 0.896774i \(-0.645904\pi\)
−0.442488 + 0.896774i \(0.645904\pi\)
\(828\) −1.00000 −0.0347524
\(829\) 41.8117 1.45218 0.726090 0.687600i \(-0.241336\pi\)
0.726090 + 0.687600i \(0.241336\pi\)
\(830\) −3.43872 −0.119360
\(831\) −22.9443 −0.795929
\(832\) −4.89710 −0.169776
\(833\) 4.12175 0.142810
\(834\) 0.664617 0.0230138
\(835\) 3.87825 0.134212
\(836\) −8.20135 −0.283650
\(837\) −8.59453 −0.297070
\(838\) 10.6304 0.367222
\(839\) −16.9502 −0.585187 −0.292594 0.956237i \(-0.594518\pi\)
−0.292594 + 0.956237i \(0.594518\pi\)
\(840\) −0.906309 −0.0312706
\(841\) 1.00000 0.0344828
\(842\) −24.4576 −0.842866
\(843\) −18.2046 −0.627001
\(844\) −19.1799 −0.660198
\(845\) 4.18059 0.143817
\(846\) 8.12651 0.279395
\(847\) 20.0159 0.687753
\(848\) −5.95162 −0.204379
\(849\) −2.96390 −0.101721
\(850\) 15.0201 0.515185
\(851\) −1.94241 −0.0665849
\(852\) 13.6273 0.466865
\(853\) 44.6821 1.52989 0.764943 0.644098i \(-0.222767\pi\)
0.764943 + 0.644098i \(0.222767\pi\)
\(854\) −27.4732 −0.940114
\(855\) −1.93912 −0.0663167
\(856\) 1.71936 0.0587664
\(857\) 0.565738 0.0193253 0.00966263 0.999953i \(-0.496924\pi\)
0.00966263 + 0.999953i \(0.496924\pi\)
\(858\) −7.88482 −0.269183
\(859\) 32.5091 1.10920 0.554598 0.832118i \(-0.312872\pi\)
0.554598 + 0.832118i \(0.312872\pi\)
\(860\) −3.85507 −0.131457
\(861\) 4.29336 0.146317
\(862\) 21.9837 0.748768
\(863\) 46.3269 1.57699 0.788493 0.615044i \(-0.210862\pi\)
0.788493 + 0.615044i \(0.210862\pi\)
\(864\) 1.00000 0.0340207
\(865\) −4.75131 −0.161549
\(866\) −13.4572 −0.457295
\(867\) −7.42907 −0.252305
\(868\) 20.4609 0.694489
\(869\) −6.22188 −0.211063
\(870\) −0.380691 −0.0129066
\(871\) −3.49163 −0.118309
\(872\) 4.18738 0.141803
\(873\) 13.3592 0.452140
\(874\) 5.09369 0.172297
\(875\) 8.93174 0.301948
\(876\) −0.574000 −0.0193937
\(877\) 3.10056 0.104698 0.0523492 0.998629i \(-0.483329\pi\)
0.0523492 + 0.998629i \(0.483329\pi\)
\(878\) 39.4951 1.33290
\(879\) −25.2674 −0.852249
\(880\) 0.612951 0.0206626
\(881\) 9.72536 0.327656 0.163828 0.986489i \(-0.447616\pi\)
0.163828 + 0.986489i \(0.447616\pi\)
\(882\) −1.33231 −0.0448612
\(883\) −36.1829 −1.21765 −0.608826 0.793304i \(-0.708359\pi\)
−0.608826 + 0.793304i \(0.708359\pi\)
\(884\) 15.1501 0.509553
\(885\) 3.38354 0.113737
\(886\) −11.5950 −0.389540
\(887\) 28.3309 0.951259 0.475630 0.879646i \(-0.342220\pi\)
0.475630 + 0.879646i \(0.342220\pi\)
\(888\) 1.94241 0.0651829
\(889\) 46.3597 1.55485
\(890\) −2.16896 −0.0727038
\(891\) 1.61010 0.0539404
\(892\) 22.9833 0.769537
\(893\) −41.3939 −1.38519
\(894\) 11.2077 0.374842
\(895\) −3.24518 −0.108475
\(896\) −2.38069 −0.0795333
\(897\) 4.89710 0.163509
\(898\) −18.9330 −0.631802
\(899\) 8.59453 0.286644
\(900\) −4.85507 −0.161836
\(901\) 18.4125 0.613408
\(902\) −2.90367 −0.0966815
\(903\) 24.1081 0.802267
\(904\) 5.28107 0.175646
\(905\) −6.18207 −0.205499
\(906\) 11.8034 0.392142
\(907\) −31.8353 −1.05707 −0.528536 0.848911i \(-0.677259\pi\)
−0.528536 + 0.848911i \(0.677259\pi\)
\(908\) 4.44961 0.147665
\(909\) 4.06563 0.134848
\(910\) 4.43828 0.147128
\(911\) 40.3854 1.33803 0.669015 0.743249i \(-0.266716\pi\)
0.669015 + 0.743249i \(0.266716\pi\)
\(912\) −5.09369 −0.168669
\(913\) −14.5437 −0.481327
\(914\) −36.3590 −1.20265
\(915\) 4.39318 0.145234
\(916\) −0.787841 −0.0260310
\(917\) −35.4215 −1.16972
\(918\) −3.09369 −0.102107
\(919\) −19.3767 −0.639177 −0.319589 0.947556i \(-0.603545\pi\)
−0.319589 + 0.947556i \(0.603545\pi\)
\(920\) −0.380691 −0.0125510
\(921\) −23.9632 −0.789613
\(922\) −1.89542 −0.0624223
\(923\) −66.7345 −2.19659
\(924\) −3.83315 −0.126101
\(925\) −9.43053 −0.310074
\(926\) −8.93605 −0.293657
\(927\) −14.6337 −0.480634
\(928\) −1.00000 −0.0328266
\(929\) 31.5827 1.03619 0.518097 0.855322i \(-0.326641\pi\)
0.518097 + 0.855322i \(0.326641\pi\)
\(930\) −3.27186 −0.107289
\(931\) 6.78637 0.222414
\(932\) 4.18082 0.136947
\(933\) −18.1921 −0.595584
\(934\) 8.75195 0.286373
\(935\) −1.89628 −0.0620150
\(936\) −4.89710 −0.160067
\(937\) 7.81568 0.255327 0.127664 0.991818i \(-0.459252\pi\)
0.127664 + 0.991818i \(0.459252\pi\)
\(938\) −1.69743 −0.0554231
\(939\) −19.4640 −0.635184
\(940\) 3.09369 0.100905
\(941\) −39.3408 −1.28247 −0.641236 0.767343i \(-0.721578\pi\)
−0.641236 + 0.767343i \(0.721578\pi\)
\(942\) 0.0264580 0.000862048 0
\(943\) 1.80341 0.0587270
\(944\) 8.88789 0.289276
\(945\) −0.906309 −0.0294822
\(946\) −16.3047 −0.530111
\(947\) −26.3769 −0.857133 −0.428567 0.903510i \(-0.640981\pi\)
−0.428567 + 0.903510i \(0.640981\pi\)
\(948\) −3.86428 −0.125506
\(949\) 2.81094 0.0912468
\(950\) 24.7302 0.802355
\(951\) 14.4793 0.469525
\(952\) 7.36512 0.238705
\(953\) −7.98275 −0.258587 −0.129293 0.991606i \(-0.541271\pi\)
−0.129293 + 0.991606i \(0.541271\pi\)
\(954\) −5.95162 −0.192691
\(955\) −9.60417 −0.310784
\(956\) −23.6479 −0.764827
\(957\) −1.61010 −0.0520471
\(958\) 2.22305 0.0718235
\(959\) 18.1251 0.585290
\(960\) 0.380691 0.0122868
\(961\) 42.8660 1.38277
\(962\) −9.51216 −0.306684
\(963\) 1.71936 0.0554055
\(964\) 6.46802 0.208321
\(965\) −2.27714 −0.0733036
\(966\) 2.38069 0.0765975
\(967\) 39.6877 1.27627 0.638135 0.769924i \(-0.279706\pi\)
0.638135 + 0.769924i \(0.279706\pi\)
\(968\) −8.40758 −0.270230
\(969\) 15.7583 0.506230
\(970\) 5.08573 0.163293
\(971\) 17.1617 0.550744 0.275372 0.961338i \(-0.411199\pi\)
0.275372 + 0.961338i \(0.411199\pi\)
\(972\) 1.00000 0.0320750
\(973\) −1.58225 −0.0507245
\(974\) −4.19659 −0.134467
\(975\) 23.7758 0.761434
\(976\) 11.5400 0.369387
\(977\) 6.19637 0.198239 0.0991197 0.995076i \(-0.468397\pi\)
0.0991197 + 0.995076i \(0.468397\pi\)
\(978\) 2.86736 0.0916880
\(979\) −9.17343 −0.293184
\(980\) −0.507198 −0.0162019
\(981\) 4.18738 0.133693
\(982\) 8.49777 0.271175
\(983\) −16.2726 −0.519015 −0.259508 0.965741i \(-0.583560\pi\)
−0.259508 + 0.965741i \(0.583560\pi\)
\(984\) −1.80341 −0.0574905
\(985\) −3.53854 −0.112747
\(986\) 3.09369 0.0985232
\(987\) −19.3467 −0.615812
\(988\) 24.9443 0.793584
\(989\) 10.1265 0.322004
\(990\) 0.612951 0.0194809
\(991\) 34.6304 1.10007 0.550036 0.835141i \(-0.314614\pi\)
0.550036 + 0.835141i \(0.314614\pi\)
\(992\) −8.59453 −0.272877
\(993\) 9.50084 0.301500
\(994\) −32.4425 −1.02901
\(995\) 3.06395 0.0971337
\(996\) −9.03282 −0.286216
\(997\) −1.88957 −0.0598433 −0.0299217 0.999552i \(-0.509526\pi\)
−0.0299217 + 0.999552i \(0.509526\pi\)
\(998\) −7.32478 −0.231862
\(999\) 1.94241 0.0614551
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bc.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bc.1.3 4 1.1 even 1 trivial