Properties

Label 4002.2.a.bb.1.4
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.23252.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-0.634868\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.51539 q^{5} -1.00000 q^{6} -1.88053 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.51539 q^{5} -1.00000 q^{6} -1.88053 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.51539 q^{10} -3.63487 q^{11} +1.00000 q^{12} +2.59694 q^{13} +1.88053 q^{14} +1.51539 q^{15} +1.00000 q^{16} +1.88053 q^{17} -1.00000 q^{18} -5.07441 q^{19} +1.51539 q^{20} -1.88053 q^{21} +3.63487 q^{22} +1.00000 q^{23} -1.00000 q^{24} -2.70358 q^{25} -2.59694 q^{26} +1.00000 q^{27} -1.88053 q^{28} -1.00000 q^{29} -1.51539 q^{30} -5.32721 q^{31} -1.00000 q^{32} -3.63487 q^{33} -1.88053 q^{34} -2.84974 q^{35} +1.00000 q^{36} +5.01955 q^{37} +5.07441 q^{38} +2.59694 q^{39} -1.51539 q^{40} -8.89747 q^{41} +1.88053 q^{42} +10.8400 q^{43} -3.63487 q^{44} +1.51539 q^{45} -1.00000 q^{46} -3.80468 q^{47} +1.00000 q^{48} -3.46362 q^{49} +2.70358 q^{50} +1.88053 q^{51} +2.59694 q^{52} -0.495848 q^{53} -1.00000 q^{54} -5.50826 q^{55} +1.88053 q^{56} -5.07441 q^{57} +1.00000 q^{58} -7.86668 q^{59} +1.51539 q^{60} -2.36513 q^{61} +5.32721 q^{62} -1.88053 q^{63} +1.00000 q^{64} +3.93539 q^{65} +3.63487 q^{66} -7.89177 q^{67} +1.88053 q^{68} +1.00000 q^{69} +2.84974 q^{70} +9.92825 q^{71} -1.00000 q^{72} +2.18105 q^{73} -5.01955 q^{74} -2.70358 q^{75} -5.07441 q^{76} +6.83546 q^{77} -2.59694 q^{78} -1.58000 q^{79} +1.51539 q^{80} +1.00000 q^{81} +8.89747 q^{82} -10.4155 q^{83} -1.88053 q^{84} +2.84974 q^{85} -10.8400 q^{86} -1.00000 q^{87} +3.63487 q^{88} -1.30196 q^{89} -1.51539 q^{90} -4.88362 q^{91} +1.00000 q^{92} -5.32721 q^{93} +3.80468 q^{94} -7.68973 q^{95} -1.00000 q^{96} +2.69804 q^{97} +3.46362 q^{98} -3.63487 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 3 q^{5} - 4 q^{6} - 2 q^{7} - 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 3 q^{5} - 4 q^{6} - 2 q^{7} - 4 q^{8} + 4 q^{9} + 3 q^{10} - 11 q^{11} + 4 q^{12} - q^{13} + 2 q^{14} - 3 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{18} + 8 q^{19} - 3 q^{20} - 2 q^{21} + 11 q^{22} + 4 q^{23} - 4 q^{24} + 3 q^{25} + q^{26} + 4 q^{27} - 2 q^{28} - 4 q^{29} + 3 q^{30} - 17 q^{31} - 4 q^{32} - 11 q^{33} - 2 q^{34} - 24 q^{35} + 4 q^{36} + 15 q^{37} - 8 q^{38} - q^{39} + 3 q^{40} + q^{41} + 2 q^{42} + 4 q^{43} - 11 q^{44} - 3 q^{45} - 4 q^{46} + 6 q^{47} + 4 q^{48} + 16 q^{49} - 3 q^{50} + 2 q^{51} - q^{52} + 2 q^{53} - 4 q^{54} + 13 q^{55} + 2 q^{56} + 8 q^{57} + 4 q^{58} - 13 q^{59} - 3 q^{60} - 13 q^{61} + 17 q^{62} - 2 q^{63} + 4 q^{64} - 13 q^{65} + 11 q^{66} - 13 q^{67} + 2 q^{68} + 4 q^{69} + 24 q^{70} - 15 q^{71} - 4 q^{72} - 22 q^{73} - 15 q^{74} + 3 q^{75} + 8 q^{76} - 12 q^{77} + q^{78} - 26 q^{79} - 3 q^{80} + 4 q^{81} - q^{82} - 22 q^{83} - 2 q^{84} + 24 q^{85} - 4 q^{86} - 4 q^{87} + 11 q^{88} - 24 q^{89} + 3 q^{90} + 30 q^{91} + 4 q^{92} - 17 q^{93} - 6 q^{94} - 4 q^{95} - 4 q^{96} - 8 q^{97} - 16 q^{98} - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.51539 0.677705 0.338852 0.940840i \(-0.389961\pi\)
0.338852 + 0.940840i \(0.389961\pi\)
\(6\) −1.00000 −0.408248
\(7\) −1.88053 −0.710772 −0.355386 0.934720i \(-0.615651\pi\)
−0.355386 + 0.934720i \(0.615651\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.51539 −0.479210
\(11\) −3.63487 −1.09595 −0.547977 0.836493i \(-0.684602\pi\)
−0.547977 + 0.836493i \(0.684602\pi\)
\(12\) 1.00000 0.288675
\(13\) 2.59694 0.720262 0.360131 0.932902i \(-0.382732\pi\)
0.360131 + 0.932902i \(0.382732\pi\)
\(14\) 1.88053 0.502592
\(15\) 1.51539 0.391273
\(16\) 1.00000 0.250000
\(17\) 1.88053 0.456095 0.228047 0.973650i \(-0.426766\pi\)
0.228047 + 0.973650i \(0.426766\pi\)
\(18\) −1.00000 −0.235702
\(19\) −5.07441 −1.16415 −0.582075 0.813135i \(-0.697759\pi\)
−0.582075 + 0.813135i \(0.697759\pi\)
\(20\) 1.51539 0.338852
\(21\) −1.88053 −0.410364
\(22\) 3.63487 0.774956
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −2.70358 −0.540716
\(26\) −2.59694 −0.509302
\(27\) 1.00000 0.192450
\(28\) −1.88053 −0.355386
\(29\) −1.00000 −0.185695
\(30\) −1.51539 −0.276672
\(31\) −5.32721 −0.956795 −0.478397 0.878143i \(-0.658782\pi\)
−0.478397 + 0.878143i \(0.658782\pi\)
\(32\) −1.00000 −0.176777
\(33\) −3.63487 −0.632749
\(34\) −1.88053 −0.322508
\(35\) −2.84974 −0.481694
\(36\) 1.00000 0.166667
\(37\) 5.01955 0.825208 0.412604 0.910910i \(-0.364619\pi\)
0.412604 + 0.910910i \(0.364619\pi\)
\(38\) 5.07441 0.823178
\(39\) 2.59694 0.415844
\(40\) −1.51539 −0.239605
\(41\) −8.89747 −1.38955 −0.694775 0.719227i \(-0.744496\pi\)
−0.694775 + 0.719227i \(0.744496\pi\)
\(42\) 1.88053 0.290171
\(43\) 10.8400 1.65308 0.826542 0.562875i \(-0.190305\pi\)
0.826542 + 0.562875i \(0.190305\pi\)
\(44\) −3.63487 −0.547977
\(45\) 1.51539 0.225902
\(46\) −1.00000 −0.147442
\(47\) −3.80468 −0.554969 −0.277485 0.960730i \(-0.589501\pi\)
−0.277485 + 0.960730i \(0.589501\pi\)
\(48\) 1.00000 0.144338
\(49\) −3.46362 −0.494803
\(50\) 2.70358 0.382344
\(51\) 1.88053 0.263326
\(52\) 2.59694 0.360131
\(53\) −0.495848 −0.0681099 −0.0340550 0.999420i \(-0.510842\pi\)
−0.0340550 + 0.999420i \(0.510842\pi\)
\(54\) −1.00000 −0.136083
\(55\) −5.50826 −0.742733
\(56\) 1.88053 0.251296
\(57\) −5.07441 −0.672122
\(58\) 1.00000 0.131306
\(59\) −7.86668 −1.02415 −0.512077 0.858939i \(-0.671124\pi\)
−0.512077 + 0.858939i \(0.671124\pi\)
\(60\) 1.51539 0.195637
\(61\) −2.36513 −0.302824 −0.151412 0.988471i \(-0.548382\pi\)
−0.151412 + 0.988471i \(0.548382\pi\)
\(62\) 5.32721 0.676556
\(63\) −1.88053 −0.236924
\(64\) 1.00000 0.125000
\(65\) 3.93539 0.488125
\(66\) 3.63487 0.447421
\(67\) −7.89177 −0.964133 −0.482066 0.876135i \(-0.660114\pi\)
−0.482066 + 0.876135i \(0.660114\pi\)
\(68\) 1.88053 0.228047
\(69\) 1.00000 0.120386
\(70\) 2.84974 0.340609
\(71\) 9.92825 1.17827 0.589134 0.808036i \(-0.299469\pi\)
0.589134 + 0.808036i \(0.299469\pi\)
\(72\) −1.00000 −0.117851
\(73\) 2.18105 0.255273 0.127636 0.991821i \(-0.459261\pi\)
0.127636 + 0.991821i \(0.459261\pi\)
\(74\) −5.01955 −0.583510
\(75\) −2.70358 −0.312183
\(76\) −5.07441 −0.582075
\(77\) 6.83546 0.778973
\(78\) −2.59694 −0.294046
\(79\) −1.58000 −0.177764 −0.0888821 0.996042i \(-0.528329\pi\)
−0.0888821 + 0.996042i \(0.528329\pi\)
\(80\) 1.51539 0.169426
\(81\) 1.00000 0.111111
\(82\) 8.89747 0.982561
\(83\) −10.4155 −1.14325 −0.571623 0.820516i \(-0.693686\pi\)
−0.571623 + 0.820516i \(0.693686\pi\)
\(84\) −1.88053 −0.205182
\(85\) 2.84974 0.309097
\(86\) −10.8400 −1.16891
\(87\) −1.00000 −0.107211
\(88\) 3.63487 0.387478
\(89\) −1.30196 −0.138008 −0.0690039 0.997616i \(-0.521982\pi\)
−0.0690039 + 0.997616i \(0.521982\pi\)
\(90\) −1.51539 −0.159737
\(91\) −4.88362 −0.511942
\(92\) 1.00000 0.104257
\(93\) −5.32721 −0.552406
\(94\) 3.80468 0.392422
\(95\) −7.68973 −0.788950
\(96\) −1.00000 −0.102062
\(97\) 2.69804 0.273944 0.136972 0.990575i \(-0.456263\pi\)
0.136972 + 0.990575i \(0.456263\pi\)
\(98\) 3.46362 0.349879
\(99\) −3.63487 −0.365318
\(100\) −2.70358 −0.270358
\(101\) 4.52109 0.449866 0.224933 0.974374i \(-0.427784\pi\)
0.224933 + 0.974374i \(0.427784\pi\)
\(102\) −1.88053 −0.186200
\(103\) 3.32007 0.327136 0.163568 0.986532i \(-0.447700\pi\)
0.163568 + 0.986532i \(0.447700\pi\)
\(104\) −2.59694 −0.254651
\(105\) −2.84974 −0.278106
\(106\) 0.495848 0.0481610
\(107\) −13.7288 −1.32722 −0.663608 0.748081i \(-0.730976\pi\)
−0.663608 + 0.748081i \(0.730976\pi\)
\(108\) 1.00000 0.0962250
\(109\) −13.6094 −1.30354 −0.651770 0.758417i \(-0.725973\pi\)
−0.651770 + 0.758417i \(0.725973\pi\)
\(110\) 5.50826 0.525192
\(111\) 5.01955 0.476434
\(112\) −1.88053 −0.177693
\(113\) −6.79184 −0.638923 −0.319461 0.947599i \(-0.603502\pi\)
−0.319461 + 0.947599i \(0.603502\pi\)
\(114\) 5.07441 0.475262
\(115\) 1.51539 0.141311
\(116\) −1.00000 −0.0928477
\(117\) 2.59694 0.240087
\(118\) 7.86668 0.724186
\(119\) −3.53638 −0.324179
\(120\) −1.51539 −0.138336
\(121\) 2.21226 0.201115
\(122\) 2.36513 0.214129
\(123\) −8.89747 −0.802258
\(124\) −5.32721 −0.478397
\(125\) −11.6740 −1.04415
\(126\) 1.88053 0.167531
\(127\) −1.47891 −0.131232 −0.0656159 0.997845i \(-0.520901\pi\)
−0.0656159 + 0.997845i \(0.520901\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 10.8400 0.954408
\(130\) −3.93539 −0.345157
\(131\) −12.9113 −1.12807 −0.564033 0.825752i \(-0.690751\pi\)
−0.564033 + 0.825752i \(0.690751\pi\)
\(132\) −3.63487 −0.316375
\(133\) 9.54256 0.827445
\(134\) 7.89177 0.681745
\(135\) 1.51539 0.130424
\(136\) −1.88053 −0.161254
\(137\) 3.34105 0.285446 0.142723 0.989763i \(-0.454414\pi\)
0.142723 + 0.989763i \(0.454414\pi\)
\(138\) −1.00000 −0.0851257
\(139\) −4.42000 −0.374899 −0.187450 0.982274i \(-0.560022\pi\)
−0.187450 + 0.982274i \(0.560022\pi\)
\(140\) −2.84974 −0.240847
\(141\) −3.80468 −0.320412
\(142\) −9.92825 −0.833161
\(143\) −9.43954 −0.789374
\(144\) 1.00000 0.0833333
\(145\) −1.51539 −0.125847
\(146\) −2.18105 −0.180505
\(147\) −3.46362 −0.285675
\(148\) 5.01955 0.412604
\(149\) −7.63487 −0.625473 −0.312736 0.949840i \(-0.601246\pi\)
−0.312736 + 0.949840i \(0.601246\pi\)
\(150\) 2.70358 0.220746
\(151\) −18.3878 −1.49638 −0.748188 0.663487i \(-0.769076\pi\)
−0.748188 + 0.663487i \(0.769076\pi\)
\(152\) 5.07441 0.411589
\(153\) 1.88053 0.152032
\(154\) −6.83546 −0.550817
\(155\) −8.07282 −0.648424
\(156\) 2.59694 0.207922
\(157\) 15.4508 1.23311 0.616553 0.787313i \(-0.288528\pi\)
0.616553 + 0.787313i \(0.288528\pi\)
\(158\) 1.58000 0.125698
\(159\) −0.495848 −0.0393233
\(160\) −1.51539 −0.119802
\(161\) −1.88053 −0.148206
\(162\) −1.00000 −0.0785674
\(163\) 16.3437 1.28014 0.640070 0.768317i \(-0.278906\pi\)
0.640070 + 0.768317i \(0.278906\pi\)
\(164\) −8.89747 −0.694775
\(165\) −5.50826 −0.428817
\(166\) 10.4155 0.808397
\(167\) −1.86215 −0.144097 −0.0720486 0.997401i \(-0.522954\pi\)
−0.0720486 + 0.997401i \(0.522954\pi\)
\(168\) 1.88053 0.145086
\(169\) −6.25589 −0.481222
\(170\) −2.84974 −0.218565
\(171\) −5.07441 −0.388050
\(172\) 10.8400 0.826542
\(173\) −10.0661 −0.765312 −0.382656 0.923891i \(-0.624991\pi\)
−0.382656 + 0.923891i \(0.624991\pi\)
\(174\) 1.00000 0.0758098
\(175\) 5.08415 0.384326
\(176\) −3.63487 −0.273988
\(177\) −7.86668 −0.591296
\(178\) 1.30196 0.0975862
\(179\) −13.6852 −1.02288 −0.511440 0.859319i \(-0.670888\pi\)
−0.511440 + 0.859319i \(0.670888\pi\)
\(180\) 1.51539 0.112951
\(181\) 24.4379 1.81646 0.908229 0.418473i \(-0.137435\pi\)
0.908229 + 0.418473i \(0.137435\pi\)
\(182\) 4.88362 0.361998
\(183\) −2.36513 −0.174836
\(184\) −1.00000 −0.0737210
\(185\) 7.60659 0.559248
\(186\) 5.32721 0.390610
\(187\) −6.83546 −0.499859
\(188\) −3.80468 −0.277485
\(189\) −1.88053 −0.136788
\(190\) 7.68973 0.557872
\(191\) 1.02408 0.0740996 0.0370498 0.999313i \(-0.488204\pi\)
0.0370498 + 0.999313i \(0.488204\pi\)
\(192\) 1.00000 0.0721688
\(193\) 10.4057 0.749020 0.374510 0.927223i \(-0.377811\pi\)
0.374510 + 0.927223i \(0.377811\pi\)
\(194\) −2.69804 −0.193708
\(195\) 3.93539 0.281819
\(196\) −3.46362 −0.247402
\(197\) 10.8257 0.771301 0.385650 0.922645i \(-0.373977\pi\)
0.385650 + 0.922645i \(0.373977\pi\)
\(198\) 3.63487 0.258319
\(199\) −10.8288 −0.767630 −0.383815 0.923410i \(-0.625390\pi\)
−0.383815 + 0.923410i \(0.625390\pi\)
\(200\) 2.70358 0.191172
\(201\) −7.89177 −0.556642
\(202\) −4.52109 −0.318103
\(203\) 1.88053 0.131987
\(204\) 1.88053 0.131663
\(205\) −13.4832 −0.941705
\(206\) −3.32007 −0.231320
\(207\) 1.00000 0.0695048
\(208\) 2.59694 0.180066
\(209\) 18.4448 1.27585
\(210\) 2.84974 0.196651
\(211\) 14.0800 0.969304 0.484652 0.874707i \(-0.338946\pi\)
0.484652 + 0.874707i \(0.338946\pi\)
\(212\) −0.495848 −0.0340550
\(213\) 9.92825 0.680273
\(214\) 13.7288 0.938483
\(215\) 16.4269 1.12030
\(216\) −1.00000 −0.0680414
\(217\) 10.0180 0.680063
\(218\) 13.6094 0.921742
\(219\) 2.18105 0.147382
\(220\) −5.50826 −0.371367
\(221\) 4.88362 0.328508
\(222\) −5.01955 −0.336890
\(223\) 8.38324 0.561383 0.280692 0.959798i \(-0.409436\pi\)
0.280692 + 0.959798i \(0.409436\pi\)
\(224\) 1.88053 0.125648
\(225\) −2.70358 −0.180239
\(226\) 6.79184 0.451787
\(227\) −22.2638 −1.47770 −0.738849 0.673871i \(-0.764630\pi\)
−0.738849 + 0.673871i \(0.764630\pi\)
\(228\) −5.07441 −0.336061
\(229\) 13.2878 0.878085 0.439043 0.898466i \(-0.355318\pi\)
0.439043 + 0.898466i \(0.355318\pi\)
\(230\) −1.51539 −0.0999221
\(231\) 6.83546 0.449741
\(232\) 1.00000 0.0656532
\(233\) 23.5560 1.54320 0.771602 0.636106i \(-0.219456\pi\)
0.771602 + 0.636106i \(0.219456\pi\)
\(234\) −2.59694 −0.169767
\(235\) −5.76558 −0.376105
\(236\) −7.86668 −0.512077
\(237\) −1.58000 −0.102632
\(238\) 3.53638 0.229229
\(239\) −8.75551 −0.566347 −0.283173 0.959069i \(-0.591387\pi\)
−0.283173 + 0.959069i \(0.591387\pi\)
\(240\) 1.51539 0.0978183
\(241\) 4.13290 0.266223 0.133112 0.991101i \(-0.457503\pi\)
0.133112 + 0.991101i \(0.457503\pi\)
\(242\) −2.21226 −0.142210
\(243\) 1.00000 0.0641500
\(244\) −2.36513 −0.151412
\(245\) −5.24875 −0.335330
\(246\) 8.89747 0.567282
\(247\) −13.1780 −0.838493
\(248\) 5.32721 0.338278
\(249\) −10.4155 −0.660053
\(250\) 11.6740 0.738326
\(251\) −3.21487 −0.202921 −0.101460 0.994840i \(-0.532352\pi\)
−0.101460 + 0.994840i \(0.532352\pi\)
\(252\) −1.88053 −0.118462
\(253\) −3.63487 −0.228522
\(254\) 1.47891 0.0927949
\(255\) 2.84974 0.178458
\(256\) 1.00000 0.0625000
\(257\) 0.698038 0.0435424 0.0217712 0.999763i \(-0.493069\pi\)
0.0217712 + 0.999763i \(0.493069\pi\)
\(258\) −10.8400 −0.674869
\(259\) −9.43939 −0.586535
\(260\) 3.93539 0.244063
\(261\) −1.00000 −0.0618984
\(262\) 12.9113 0.797664
\(263\) −21.6755 −1.33657 −0.668283 0.743907i \(-0.732970\pi\)
−0.668283 + 0.743907i \(0.732970\pi\)
\(264\) 3.63487 0.223711
\(265\) −0.751405 −0.0461584
\(266\) −9.54256 −0.585092
\(267\) −1.30196 −0.0796788
\(268\) −7.89177 −0.482066
\(269\) 17.9237 1.09283 0.546414 0.837515i \(-0.315992\pi\)
0.546414 + 0.837515i \(0.315992\pi\)
\(270\) −1.51539 −0.0922239
\(271\) 2.18148 0.132515 0.0662576 0.997803i \(-0.478894\pi\)
0.0662576 + 0.997803i \(0.478894\pi\)
\(272\) 1.88053 0.114024
\(273\) −4.88362 −0.295570
\(274\) −3.34105 −0.201840
\(275\) 9.82716 0.592600
\(276\) 1.00000 0.0601929
\(277\) −8.64510 −0.519434 −0.259717 0.965685i \(-0.583629\pi\)
−0.259717 + 0.965685i \(0.583629\pi\)
\(278\) 4.42000 0.265094
\(279\) −5.32721 −0.318932
\(280\) 2.84974 0.170304
\(281\) 0.344147 0.0205301 0.0102651 0.999947i \(-0.496732\pi\)
0.0102651 + 0.999947i \(0.496732\pi\)
\(282\) 3.80468 0.226565
\(283\) −11.9211 −0.708637 −0.354318 0.935125i \(-0.615287\pi\)
−0.354318 + 0.935125i \(0.615287\pi\)
\(284\) 9.92825 0.589134
\(285\) −7.68973 −0.455500
\(286\) 9.43954 0.558172
\(287\) 16.7319 0.987654
\(288\) −1.00000 −0.0589256
\(289\) −13.4636 −0.791978
\(290\) 1.51539 0.0889870
\(291\) 2.69804 0.158162
\(292\) 2.18105 0.127636
\(293\) 0.615322 0.0359475 0.0179737 0.999838i \(-0.494278\pi\)
0.0179737 + 0.999838i \(0.494278\pi\)
\(294\) 3.46362 0.202002
\(295\) −11.9211 −0.694074
\(296\) −5.01955 −0.291755
\(297\) −3.63487 −0.210916
\(298\) 7.63487 0.442276
\(299\) 2.59694 0.150185
\(300\) −2.70358 −0.156091
\(301\) −20.3849 −1.17497
\(302\) 18.3878 1.05810
\(303\) 4.52109 0.259730
\(304\) −5.07441 −0.291037
\(305\) −3.58411 −0.205225
\(306\) −1.88053 −0.107503
\(307\) −2.41957 −0.138092 −0.0690461 0.997613i \(-0.521996\pi\)
−0.0690461 + 0.997613i \(0.521996\pi\)
\(308\) 6.83546 0.389487
\(309\) 3.32007 0.188872
\(310\) 8.07282 0.458505
\(311\) 24.6356 1.39696 0.698479 0.715631i \(-0.253861\pi\)
0.698479 + 0.715631i \(0.253861\pi\)
\(312\) −2.59694 −0.147023
\(313\) −14.6589 −0.828573 −0.414286 0.910147i \(-0.635969\pi\)
−0.414286 + 0.910147i \(0.635969\pi\)
\(314\) −15.4508 −0.871938
\(315\) −2.84974 −0.160565
\(316\) −1.58000 −0.0888821
\(317\) −30.3018 −1.70192 −0.850958 0.525234i \(-0.823978\pi\)
−0.850958 + 0.525234i \(0.823978\pi\)
\(318\) 0.495848 0.0278058
\(319\) 3.63487 0.203514
\(320\) 1.51539 0.0847131
\(321\) −13.7288 −0.766268
\(322\) 1.88053 0.104798
\(323\) −9.54256 −0.530962
\(324\) 1.00000 0.0555556
\(325\) −7.02105 −0.389458
\(326\) −16.3437 −0.905195
\(327\) −13.6094 −0.752599
\(328\) 8.89747 0.491280
\(329\) 7.15479 0.394457
\(330\) 5.50826 0.303220
\(331\) −1.44625 −0.0794933 −0.0397467 0.999210i \(-0.512655\pi\)
−0.0397467 + 0.999210i \(0.512655\pi\)
\(332\) −10.4155 −0.571623
\(333\) 5.01955 0.275069
\(334\) 1.86215 0.101892
\(335\) −11.9591 −0.653398
\(336\) −1.88053 −0.102591
\(337\) 23.8339 1.29831 0.649157 0.760655i \(-0.275122\pi\)
0.649157 + 0.760655i \(0.275122\pi\)
\(338\) 6.25589 0.340275
\(339\) −6.79184 −0.368882
\(340\) 2.84974 0.154549
\(341\) 19.3637 1.04860
\(342\) 5.07441 0.274393
\(343\) 19.6771 1.06246
\(344\) −10.8400 −0.584453
\(345\) 1.51539 0.0815861
\(346\) 10.0661 0.541157
\(347\) −15.8483 −0.850781 −0.425391 0.905010i \(-0.639863\pi\)
−0.425391 + 0.905010i \(0.639863\pi\)
\(348\) −1.00000 −0.0536056
\(349\) 11.0027 0.588959 0.294480 0.955658i \(-0.404854\pi\)
0.294480 + 0.955658i \(0.404854\pi\)
\(350\) −5.08415 −0.271760
\(351\) 2.59694 0.138615
\(352\) 3.63487 0.193739
\(353\) −5.07441 −0.270084 −0.135042 0.990840i \(-0.543117\pi\)
−0.135042 + 0.990840i \(0.543117\pi\)
\(354\) 7.86668 0.418109
\(355\) 15.0452 0.798517
\(356\) −1.30196 −0.0690039
\(357\) −3.53638 −0.187165
\(358\) 13.6852 0.723285
\(359\) −30.8918 −1.63041 −0.815204 0.579174i \(-0.803375\pi\)
−0.815204 + 0.579174i \(0.803375\pi\)
\(360\) −1.51539 −0.0798683
\(361\) 6.74965 0.355245
\(362\) −24.4379 −1.28443
\(363\) 2.21226 0.116114
\(364\) −4.88362 −0.255971
\(365\) 3.30515 0.172999
\(366\) 2.36513 0.123627
\(367\) 20.1488 1.05176 0.525880 0.850559i \(-0.323736\pi\)
0.525880 + 0.850559i \(0.323736\pi\)
\(368\) 1.00000 0.0521286
\(369\) −8.89747 −0.463184
\(370\) −7.60659 −0.395448
\(371\) 0.932455 0.0484106
\(372\) −5.32721 −0.276203
\(373\) −7.72883 −0.400183 −0.200092 0.979777i \(-0.564124\pi\)
−0.200092 + 0.979777i \(0.564124\pi\)
\(374\) 6.83546 0.353453
\(375\) −11.6740 −0.602841
\(376\) 3.80468 0.196211
\(377\) −2.59694 −0.133749
\(378\) 1.88053 0.0967238
\(379\) 20.0037 1.02752 0.513760 0.857934i \(-0.328252\pi\)
0.513760 + 0.857934i \(0.328252\pi\)
\(380\) −7.68973 −0.394475
\(381\) −1.47891 −0.0757667
\(382\) −1.02408 −0.0523964
\(383\) 13.8386 0.707117 0.353559 0.935412i \(-0.384971\pi\)
0.353559 + 0.935412i \(0.384971\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 10.3584 0.527914
\(386\) −10.4057 −0.529637
\(387\) 10.8400 0.551028
\(388\) 2.69804 0.136972
\(389\) −36.3772 −1.84440 −0.922198 0.386718i \(-0.873609\pi\)
−0.922198 + 0.386718i \(0.873609\pi\)
\(390\) −3.93539 −0.199276
\(391\) 1.88053 0.0951023
\(392\) 3.46362 0.174939
\(393\) −12.9113 −0.651290
\(394\) −10.8257 −0.545392
\(395\) −2.39433 −0.120472
\(396\) −3.63487 −0.182659
\(397\) −0.0758501 −0.00380681 −0.00190340 0.999998i \(-0.500606\pi\)
−0.00190340 + 0.999998i \(0.500606\pi\)
\(398\) 10.8288 0.542796
\(399\) 9.54256 0.477726
\(400\) −2.70358 −0.135179
\(401\) −13.3149 −0.664912 −0.332456 0.943119i \(-0.607877\pi\)
−0.332456 + 0.943119i \(0.607877\pi\)
\(402\) 7.89177 0.393606
\(403\) −13.8345 −0.689143
\(404\) 4.52109 0.224933
\(405\) 1.51539 0.0753005
\(406\) −1.88053 −0.0933289
\(407\) −18.2454 −0.904390
\(408\) −1.88053 −0.0930999
\(409\) 19.8528 0.981659 0.490830 0.871256i \(-0.336694\pi\)
0.490830 + 0.871256i \(0.336694\pi\)
\(410\) 13.4832 0.665886
\(411\) 3.34105 0.164802
\(412\) 3.32007 0.163568
\(413\) 14.7935 0.727940
\(414\) −1.00000 −0.0491473
\(415\) −15.7835 −0.774783
\(416\) −2.59694 −0.127326
\(417\) −4.42000 −0.216448
\(418\) −18.4448 −0.902165
\(419\) −18.3230 −0.895137 −0.447569 0.894250i \(-0.647710\pi\)
−0.447569 + 0.894250i \(0.647710\pi\)
\(420\) −2.84974 −0.139053
\(421\) −17.2006 −0.838306 −0.419153 0.907916i \(-0.637673\pi\)
−0.419153 + 0.907916i \(0.637673\pi\)
\(422\) −14.0800 −0.685401
\(423\) −3.80468 −0.184990
\(424\) 0.495848 0.0240805
\(425\) −5.08415 −0.246618
\(426\) −9.92825 −0.481026
\(427\) 4.44769 0.215239
\(428\) −13.7288 −0.663608
\(429\) −9.43954 −0.455745
\(430\) −16.4269 −0.792174
\(431\) 28.0518 1.35121 0.675605 0.737264i \(-0.263883\pi\)
0.675605 + 0.737264i \(0.263883\pi\)
\(432\) 1.00000 0.0481125
\(433\) 41.2232 1.98106 0.990531 0.137288i \(-0.0438387\pi\)
0.990531 + 0.137288i \(0.0438387\pi\)
\(434\) −10.0180 −0.480877
\(435\) −1.51539 −0.0726576
\(436\) −13.6094 −0.651770
\(437\) −5.07441 −0.242742
\(438\) −2.18105 −0.104215
\(439\) 0.486105 0.0232005 0.0116003 0.999933i \(-0.496307\pi\)
0.0116003 + 0.999933i \(0.496307\pi\)
\(440\) 5.50826 0.262596
\(441\) −3.46362 −0.164934
\(442\) −4.88362 −0.232290
\(443\) −12.8836 −0.612119 −0.306060 0.952012i \(-0.599011\pi\)
−0.306060 + 0.952012i \(0.599011\pi\)
\(444\) 5.01955 0.238217
\(445\) −1.97299 −0.0935285
\(446\) −8.38324 −0.396958
\(447\) −7.63487 −0.361117
\(448\) −1.88053 −0.0888465
\(449\) −22.6842 −1.07053 −0.535267 0.844683i \(-0.679789\pi\)
−0.535267 + 0.844683i \(0.679789\pi\)
\(450\) 2.70358 0.127448
\(451\) 32.3411 1.52288
\(452\) −6.79184 −0.319461
\(453\) −18.3878 −0.863933
\(454\) 22.2638 1.04489
\(455\) −7.40061 −0.346946
\(456\) 5.07441 0.237631
\(457\) −33.0113 −1.54420 −0.772102 0.635499i \(-0.780794\pi\)
−0.772102 + 0.635499i \(0.780794\pi\)
\(458\) −13.2878 −0.620900
\(459\) 1.88053 0.0877754
\(460\) 1.51539 0.0706556
\(461\) 9.88175 0.460239 0.230120 0.973162i \(-0.426088\pi\)
0.230120 + 0.973162i \(0.426088\pi\)
\(462\) −6.83546 −0.318015
\(463\) −20.1443 −0.936185 −0.468092 0.883680i \(-0.655059\pi\)
−0.468092 + 0.883680i \(0.655059\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −8.07282 −0.374368
\(466\) −23.5560 −1.09121
\(467\) 18.3623 0.849704 0.424852 0.905263i \(-0.360326\pi\)
0.424852 + 0.905263i \(0.360326\pi\)
\(468\) 2.59694 0.120044
\(469\) 14.8407 0.685279
\(470\) 5.76558 0.265947
\(471\) 15.4508 0.711935
\(472\) 7.86668 0.362093
\(473\) −39.4020 −1.81170
\(474\) 1.58000 0.0725719
\(475\) 13.7191 0.629475
\(476\) −3.53638 −0.162090
\(477\) −0.495848 −0.0227033
\(478\) 8.75551 0.400468
\(479\) −30.8903 −1.41142 −0.705708 0.708503i \(-0.749371\pi\)
−0.705708 + 0.708503i \(0.749371\pi\)
\(480\) −1.51539 −0.0691680
\(481\) 13.0355 0.594366
\(482\) −4.13290 −0.188248
\(483\) −1.88053 −0.0855669
\(484\) 2.21226 0.100557
\(485\) 4.08859 0.185653
\(486\) −1.00000 −0.0453609
\(487\) −6.24869 −0.283155 −0.141578 0.989927i \(-0.545217\pi\)
−0.141578 + 0.989927i \(0.545217\pi\)
\(488\) 2.36513 0.107065
\(489\) 16.3437 0.739089
\(490\) 5.24875 0.237114
\(491\) 0.796371 0.0359397 0.0179699 0.999839i \(-0.494280\pi\)
0.0179699 + 0.999839i \(0.494280\pi\)
\(492\) −8.89747 −0.401129
\(493\) −1.88053 −0.0846946
\(494\) 13.1780 0.592904
\(495\) −5.50826 −0.247578
\(496\) −5.32721 −0.239199
\(497\) −18.6703 −0.837479
\(498\) 10.4155 0.466728
\(499\) 2.09833 0.0939343 0.0469672 0.998896i \(-0.485044\pi\)
0.0469672 + 0.998896i \(0.485044\pi\)
\(500\) −11.6740 −0.522075
\(501\) −1.86215 −0.0831946
\(502\) 3.21487 0.143487
\(503\) −7.84377 −0.349736 −0.174868 0.984592i \(-0.555950\pi\)
−0.174868 + 0.984592i \(0.555950\pi\)
\(504\) 1.88053 0.0837653
\(505\) 6.85124 0.304876
\(506\) 3.63487 0.161590
\(507\) −6.25589 −0.277834
\(508\) −1.47891 −0.0656159
\(509\) −18.9986 −0.842096 −0.421048 0.907038i \(-0.638338\pi\)
−0.421048 + 0.907038i \(0.638338\pi\)
\(510\) −2.84974 −0.126189
\(511\) −4.10152 −0.181441
\(512\) −1.00000 −0.0441942
\(513\) −5.07441 −0.224041
\(514\) −0.698038 −0.0307891
\(515\) 5.03121 0.221702
\(516\) 10.8400 0.477204
\(517\) 13.8295 0.608220
\(518\) 9.43939 0.414743
\(519\) −10.0661 −0.441853
\(520\) −3.93539 −0.172578
\(521\) −4.34415 −0.190321 −0.0951603 0.995462i \(-0.530336\pi\)
−0.0951603 + 0.995462i \(0.530336\pi\)
\(522\) 1.00000 0.0437688
\(523\) 12.8467 0.561747 0.280874 0.959745i \(-0.409376\pi\)
0.280874 + 0.959745i \(0.409376\pi\)
\(524\) −12.9113 −0.564033
\(525\) 5.08415 0.221891
\(526\) 21.6755 0.945095
\(527\) −10.0180 −0.436389
\(528\) −3.63487 −0.158187
\(529\) 1.00000 0.0434783
\(530\) 0.751405 0.0326389
\(531\) −7.86668 −0.341385
\(532\) 9.54256 0.413723
\(533\) −23.1062 −1.00084
\(534\) 1.30196 0.0563414
\(535\) −20.8046 −0.899460
\(536\) 7.89177 0.340872
\(537\) −13.6852 −0.590560
\(538\) −17.9237 −0.772747
\(539\) 12.5898 0.542281
\(540\) 1.51539 0.0652122
\(541\) −6.52807 −0.280664 −0.140332 0.990105i \(-0.544817\pi\)
−0.140332 + 0.990105i \(0.544817\pi\)
\(542\) −2.18148 −0.0937024
\(543\) 24.4379 1.04873
\(544\) −1.88053 −0.0806269
\(545\) −20.6235 −0.883415
\(546\) 4.88362 0.209000
\(547\) −11.8842 −0.508132 −0.254066 0.967187i \(-0.581768\pi\)
−0.254066 + 0.967187i \(0.581768\pi\)
\(548\) 3.34105 0.142723
\(549\) −2.36513 −0.100941
\(550\) −9.82716 −0.419031
\(551\) 5.07441 0.216177
\(552\) −1.00000 −0.0425628
\(553\) 2.97124 0.126350
\(554\) 8.64510 0.367295
\(555\) 7.60659 0.322882
\(556\) −4.42000 −0.187450
\(557\) 31.1444 1.31963 0.659814 0.751429i \(-0.270635\pi\)
0.659814 + 0.751429i \(0.270635\pi\)
\(558\) 5.32721 0.225519
\(559\) 28.1508 1.19065
\(560\) −2.84974 −0.120423
\(561\) −6.83546 −0.288594
\(562\) −0.344147 −0.0145170
\(563\) 2.23224 0.0940776 0.0470388 0.998893i \(-0.485022\pi\)
0.0470388 + 0.998893i \(0.485022\pi\)
\(564\) −3.80468 −0.160206
\(565\) −10.2923 −0.433001
\(566\) 11.9211 0.501082
\(567\) −1.88053 −0.0789747
\(568\) −9.92825 −0.416580
\(569\) 28.4200 1.19143 0.595714 0.803197i \(-0.296869\pi\)
0.595714 + 0.803197i \(0.296869\pi\)
\(570\) 7.68973 0.322087
\(571\) 26.7484 1.11938 0.559692 0.828701i \(-0.310919\pi\)
0.559692 + 0.828701i \(0.310919\pi\)
\(572\) −9.43954 −0.394687
\(573\) 1.02408 0.0427814
\(574\) −16.7319 −0.698377
\(575\) −2.70358 −0.112747
\(576\) 1.00000 0.0416667
\(577\) −43.9392 −1.82921 −0.914607 0.404344i \(-0.867500\pi\)
−0.914607 + 0.404344i \(0.867500\pi\)
\(578\) 13.4636 0.560013
\(579\) 10.4057 0.432447
\(580\) −1.51539 −0.0629233
\(581\) 19.5866 0.812587
\(582\) −2.69804 −0.111837
\(583\) 1.80234 0.0746453
\(584\) −2.18105 −0.0902525
\(585\) 3.93539 0.162708
\(586\) −0.615322 −0.0254187
\(587\) −29.8226 −1.23091 −0.615456 0.788171i \(-0.711028\pi\)
−0.615456 + 0.788171i \(0.711028\pi\)
\(588\) −3.46362 −0.142837
\(589\) 27.0324 1.11385
\(590\) 11.9211 0.490785
\(591\) 10.8257 0.445311
\(592\) 5.01955 0.206302
\(593\) −40.1570 −1.64905 −0.824526 0.565824i \(-0.808558\pi\)
−0.824526 + 0.565824i \(0.808558\pi\)
\(594\) 3.63487 0.149140
\(595\) −5.35901 −0.219698
\(596\) −7.63487 −0.312736
\(597\) −10.8288 −0.443191
\(598\) −2.59694 −0.106197
\(599\) 8.28172 0.338382 0.169191 0.985583i \(-0.445885\pi\)
0.169191 + 0.985583i \(0.445885\pi\)
\(600\) 2.70358 0.110373
\(601\) 26.4562 1.07917 0.539586 0.841931i \(-0.318581\pi\)
0.539586 + 0.841931i \(0.318581\pi\)
\(602\) 20.3849 0.830826
\(603\) −7.89177 −0.321378
\(604\) −18.3878 −0.748188
\(605\) 3.35245 0.136297
\(606\) −4.52109 −0.183657
\(607\) −6.66784 −0.270639 −0.135320 0.990802i \(-0.543206\pi\)
−0.135320 + 0.990802i \(0.543206\pi\)
\(608\) 5.07441 0.205795
\(609\) 1.88053 0.0762028
\(610\) 3.58411 0.145116
\(611\) −9.88053 −0.399723
\(612\) 1.88053 0.0760158
\(613\) 19.4320 0.784850 0.392425 0.919784i \(-0.371636\pi\)
0.392425 + 0.919784i \(0.371636\pi\)
\(614\) 2.41957 0.0976459
\(615\) −13.4832 −0.543694
\(616\) −6.83546 −0.275409
\(617\) 42.0698 1.69367 0.846833 0.531859i \(-0.178506\pi\)
0.846833 + 0.531859i \(0.178506\pi\)
\(618\) −3.32007 −0.133553
\(619\) −13.3358 −0.536013 −0.268006 0.963417i \(-0.586365\pi\)
−0.268006 + 0.963417i \(0.586365\pi\)
\(620\) −8.07282 −0.324212
\(621\) 1.00000 0.0401286
\(622\) −24.6356 −0.987798
\(623\) 2.44837 0.0980920
\(624\) 2.59694 0.103961
\(625\) −4.17275 −0.166910
\(626\) 14.6589 0.585889
\(627\) 18.4448 0.736615
\(628\) 15.4508 0.616553
\(629\) 9.43939 0.376373
\(630\) 2.84974 0.113536
\(631\) −1.60552 −0.0639147 −0.0319573 0.999489i \(-0.510174\pi\)
−0.0319573 + 0.999489i \(0.510174\pi\)
\(632\) 1.58000 0.0628491
\(633\) 14.0800 0.559628
\(634\) 30.3018 1.20344
\(635\) −2.24113 −0.0889364
\(636\) −0.495848 −0.0196616
\(637\) −8.99483 −0.356388
\(638\) −3.63487 −0.143906
\(639\) 9.92825 0.392756
\(640\) −1.51539 −0.0599012
\(641\) −3.83403 −0.151435 −0.0757175 0.997129i \(-0.524125\pi\)
−0.0757175 + 0.997129i \(0.524125\pi\)
\(642\) 13.7288 0.541834
\(643\) 4.05790 0.160028 0.0800139 0.996794i \(-0.474504\pi\)
0.0800139 + 0.996794i \(0.474504\pi\)
\(644\) −1.88053 −0.0741031
\(645\) 16.4269 0.646807
\(646\) 9.54256 0.375447
\(647\) −25.7329 −1.01167 −0.505833 0.862631i \(-0.668815\pi\)
−0.505833 + 0.862631i \(0.668815\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 28.5943 1.12243
\(650\) 7.02105 0.275388
\(651\) 10.0180 0.392635
\(652\) 16.3437 0.640070
\(653\) −22.0335 −0.862236 −0.431118 0.902296i \(-0.641881\pi\)
−0.431118 + 0.902296i \(0.641881\pi\)
\(654\) 13.6094 0.532168
\(655\) −19.5657 −0.764496
\(656\) −8.89747 −0.347388
\(657\) 2.18105 0.0850909
\(658\) −7.15479 −0.278923
\(659\) 25.8038 1.00517 0.502587 0.864527i \(-0.332382\pi\)
0.502587 + 0.864527i \(0.332382\pi\)
\(660\) −5.50826 −0.214409
\(661\) 42.6373 1.65840 0.829199 0.558954i \(-0.188797\pi\)
0.829199 + 0.558954i \(0.188797\pi\)
\(662\) 1.44625 0.0562103
\(663\) 4.88362 0.189664
\(664\) 10.4155 0.404198
\(665\) 14.4607 0.560764
\(666\) −5.01955 −0.194503
\(667\) −1.00000 −0.0387202
\(668\) −1.86215 −0.0720486
\(669\) 8.38324 0.324115
\(670\) 11.9591 0.462022
\(671\) 8.59694 0.331881
\(672\) 1.88053 0.0725429
\(673\) 2.56514 0.0988790 0.0494395 0.998777i \(-0.484257\pi\)
0.0494395 + 0.998777i \(0.484257\pi\)
\(674\) −23.8339 −0.918046
\(675\) −2.70358 −0.104061
\(676\) −6.25589 −0.240611
\(677\) 17.4605 0.671063 0.335531 0.942029i \(-0.391084\pi\)
0.335531 + 0.942029i \(0.391084\pi\)
\(678\) 6.79184 0.260839
\(679\) −5.07373 −0.194712
\(680\) −2.84974 −0.109282
\(681\) −22.2638 −0.853149
\(682\) −19.3637 −0.741474
\(683\) 25.8720 0.989965 0.494983 0.868903i \(-0.335174\pi\)
0.494983 + 0.868903i \(0.335174\pi\)
\(684\) −5.07441 −0.194025
\(685\) 5.06301 0.193448
\(686\) −19.6771 −0.751276
\(687\) 13.2878 0.506963
\(688\) 10.8400 0.413271
\(689\) −1.28769 −0.0490570
\(690\) −1.51539 −0.0576901
\(691\) 0.758812 0.0288666 0.0144333 0.999896i \(-0.495406\pi\)
0.0144333 + 0.999896i \(0.495406\pi\)
\(692\) −10.0661 −0.382656
\(693\) 6.83546 0.259658
\(694\) 15.8483 0.601593
\(695\) −6.69804 −0.254071
\(696\) 1.00000 0.0379049
\(697\) −16.7319 −0.633767
\(698\) −11.0027 −0.416457
\(699\) 23.5560 0.890969
\(700\) 5.08415 0.192163
\(701\) 22.9046 0.865095 0.432547 0.901611i \(-0.357615\pi\)
0.432547 + 0.901611i \(0.357615\pi\)
\(702\) −2.59694 −0.0980153
\(703\) −25.4712 −0.960666
\(704\) −3.63487 −0.136994
\(705\) −5.76558 −0.217144
\(706\) 5.07441 0.190978
\(707\) −8.50203 −0.319752
\(708\) −7.86668 −0.295648
\(709\) 37.4456 1.40630 0.703149 0.711043i \(-0.251777\pi\)
0.703149 + 0.711043i \(0.251777\pi\)
\(710\) −15.0452 −0.564637
\(711\) −1.58000 −0.0592547
\(712\) 1.30196 0.0487931
\(713\) −5.32721 −0.199505
\(714\) 3.53638 0.132346
\(715\) −14.3046 −0.534963
\(716\) −13.6852 −0.511440
\(717\) −8.75551 −0.326980
\(718\) 30.8918 1.15287
\(719\) −26.3776 −0.983719 −0.491859 0.870675i \(-0.663683\pi\)
−0.491859 + 0.870675i \(0.663683\pi\)
\(720\) 1.51539 0.0564754
\(721\) −6.24348 −0.232519
\(722\) −6.74965 −0.251196
\(723\) 4.13290 0.153704
\(724\) 24.4379 0.908229
\(725\) 2.70358 0.100408
\(726\) −2.21226 −0.0821048
\(727\) 6.60626 0.245013 0.122506 0.992468i \(-0.460907\pi\)
0.122506 + 0.992468i \(0.460907\pi\)
\(728\) 4.88362 0.180999
\(729\) 1.00000 0.0370370
\(730\) −3.30515 −0.122329
\(731\) 20.3849 0.753963
\(732\) −2.36513 −0.0874178
\(733\) 32.2037 1.18947 0.594735 0.803922i \(-0.297257\pi\)
0.594735 + 0.803922i \(0.297257\pi\)
\(734\) −20.1488 −0.743707
\(735\) −5.24875 −0.193603
\(736\) −1.00000 −0.0368605
\(737\) 28.6855 1.05665
\(738\) 8.89747 0.327520
\(739\) 5.95846 0.219185 0.109593 0.993977i \(-0.465045\pi\)
0.109593 + 0.993977i \(0.465045\pi\)
\(740\) 7.60659 0.279624
\(741\) −13.1780 −0.484104
\(742\) −0.932455 −0.0342315
\(743\) 7.56355 0.277480 0.138740 0.990329i \(-0.455695\pi\)
0.138740 + 0.990329i \(0.455695\pi\)
\(744\) 5.32721 0.195305
\(745\) −11.5698 −0.423886
\(746\) 7.72883 0.282972
\(747\) −10.4155 −0.381082
\(748\) −6.83546 −0.249929
\(749\) 25.8174 0.943348
\(750\) 11.6740 0.426273
\(751\) 25.0692 0.914788 0.457394 0.889264i \(-0.348783\pi\)
0.457394 + 0.889264i \(0.348783\pi\)
\(752\) −3.80468 −0.138742
\(753\) −3.21487 −0.117156
\(754\) 2.59694 0.0945751
\(755\) −27.8647 −1.01410
\(756\) −1.88053 −0.0683941
\(757\) −11.4207 −0.415094 −0.207547 0.978225i \(-0.566548\pi\)
−0.207547 + 0.978225i \(0.566548\pi\)
\(758\) −20.0037 −0.726566
\(759\) −3.63487 −0.131937
\(760\) 7.68973 0.278936
\(761\) 2.46362 0.0893062 0.0446531 0.999003i \(-0.485782\pi\)
0.0446531 + 0.999003i \(0.485782\pi\)
\(762\) 1.47891 0.0535752
\(763\) 25.5927 0.926520
\(764\) 1.02408 0.0370498
\(765\) 2.84974 0.103032
\(766\) −13.8386 −0.500007
\(767\) −20.4293 −0.737660
\(768\) 1.00000 0.0360844
\(769\) −9.55449 −0.344544 −0.172272 0.985049i \(-0.555111\pi\)
−0.172272 + 0.985049i \(0.555111\pi\)
\(770\) −10.3584 −0.373292
\(771\) 0.698038 0.0251392
\(772\) 10.4057 0.374510
\(773\) −31.5951 −1.13640 −0.568198 0.822892i \(-0.692359\pi\)
−0.568198 + 0.822892i \(0.692359\pi\)
\(774\) −10.8400 −0.389636
\(775\) 14.4025 0.517354
\(776\) −2.69804 −0.0968539
\(777\) −9.43939 −0.338636
\(778\) 36.3772 1.30418
\(779\) 45.1494 1.61765
\(780\) 3.93539 0.140910
\(781\) −36.0879 −1.29133
\(782\) −1.88053 −0.0672475
\(783\) −1.00000 −0.0357371
\(784\) −3.46362 −0.123701
\(785\) 23.4140 0.835683
\(786\) 12.9113 0.460531
\(787\) −8.69501 −0.309943 −0.154972 0.987919i \(-0.549529\pi\)
−0.154972 + 0.987919i \(0.549529\pi\)
\(788\) 10.8257 0.385650
\(789\) −21.6755 −0.771667
\(790\) 2.39433 0.0851863
\(791\) 12.7722 0.454128
\(792\) 3.63487 0.129159
\(793\) −6.14211 −0.218113
\(794\) 0.0758501 0.00269182
\(795\) −0.751405 −0.0266496
\(796\) −10.8288 −0.383815
\(797\) 5.49809 0.194752 0.0973761 0.995248i \(-0.468955\pi\)
0.0973761 + 0.995248i \(0.468955\pi\)
\(798\) −9.54256 −0.337803
\(799\) −7.15479 −0.253118
\(800\) 2.70358 0.0955860
\(801\) −1.30196 −0.0460026
\(802\) 13.3149 0.470164
\(803\) −7.92783 −0.279767
\(804\) −7.89177 −0.278321
\(805\) −2.84974 −0.100440
\(806\) 13.8345 0.487298
\(807\) 17.9237 0.630945
\(808\) −4.52109 −0.159051
\(809\) −6.11249 −0.214904 −0.107452 0.994210i \(-0.534269\pi\)
−0.107452 + 0.994210i \(0.534269\pi\)
\(810\) −1.51539 −0.0532455
\(811\) −34.3022 −1.20451 −0.602256 0.798303i \(-0.705731\pi\)
−0.602256 + 0.798303i \(0.705731\pi\)
\(812\) 1.88053 0.0659935
\(813\) 2.18148 0.0765077
\(814\) 18.2454 0.639501
\(815\) 24.7672 0.867556
\(816\) 1.88053 0.0658316
\(817\) −55.0066 −1.92444
\(818\) −19.8528 −0.694138
\(819\) −4.88362 −0.170647
\(820\) −13.4832 −0.470853
\(821\) −19.5914 −0.683745 −0.341872 0.939746i \(-0.611061\pi\)
−0.341872 + 0.939746i \(0.611061\pi\)
\(822\) −3.34105 −0.116533
\(823\) −32.0702 −1.11790 −0.558949 0.829202i \(-0.688795\pi\)
−0.558949 + 0.829202i \(0.688795\pi\)
\(824\) −3.32007 −0.115660
\(825\) 9.82716 0.342138
\(826\) −14.7935 −0.514732
\(827\) −7.36572 −0.256131 −0.128066 0.991766i \(-0.540877\pi\)
−0.128066 + 0.991766i \(0.540877\pi\)
\(828\) 1.00000 0.0347524
\(829\) 21.2036 0.736432 0.368216 0.929740i \(-0.379969\pi\)
0.368216 + 0.929740i \(0.379969\pi\)
\(830\) 15.7835 0.547855
\(831\) −8.64510 −0.299895
\(832\) 2.59694 0.0900328
\(833\) −6.51343 −0.225677
\(834\) 4.42000 0.153052
\(835\) −2.82189 −0.0976554
\(836\) 18.4448 0.637927
\(837\) −5.32721 −0.184135
\(838\) 18.3230 0.632958
\(839\) 4.81283 0.166157 0.0830786 0.996543i \(-0.473525\pi\)
0.0830786 + 0.996543i \(0.473525\pi\)
\(840\) 2.84974 0.0983253
\(841\) 1.00000 0.0344828
\(842\) 17.2006 0.592772
\(843\) 0.344147 0.0118531
\(844\) 14.0800 0.484652
\(845\) −9.48014 −0.326127
\(846\) 3.80468 0.130807
\(847\) −4.16022 −0.142947
\(848\) −0.495848 −0.0170275
\(849\) −11.9211 −0.409132
\(850\) 5.08415 0.174385
\(851\) 5.01955 0.172068
\(852\) 9.92825 0.340136
\(853\) 1.03765 0.0355286 0.0177643 0.999842i \(-0.494345\pi\)
0.0177643 + 0.999842i \(0.494345\pi\)
\(854\) −4.44769 −0.152197
\(855\) −7.68973 −0.262983
\(856\) 13.7288 0.469242
\(857\) 28.5057 0.973737 0.486868 0.873475i \(-0.338139\pi\)
0.486868 + 0.873475i \(0.338139\pi\)
\(858\) 9.43954 0.322261
\(859\) 12.9325 0.441250 0.220625 0.975359i \(-0.429190\pi\)
0.220625 + 0.975359i \(0.429190\pi\)
\(860\) 16.4269 0.560151
\(861\) 16.7319 0.570222
\(862\) −28.0518 −0.955449
\(863\) 48.7983 1.66111 0.830556 0.556935i \(-0.188023\pi\)
0.830556 + 0.556935i \(0.188023\pi\)
\(864\) −1.00000 −0.0340207
\(865\) −15.2541 −0.518656
\(866\) −41.2232 −1.40082
\(867\) −13.4636 −0.457249
\(868\) 10.0180 0.340031
\(869\) 5.74310 0.194821
\(870\) 1.51539 0.0513767
\(871\) −20.4945 −0.694429
\(872\) 13.6094 0.460871
\(873\) 2.69804 0.0913147
\(874\) 5.07441 0.171645
\(875\) 21.9532 0.742153
\(876\) 2.18105 0.0736908
\(877\) −40.6341 −1.37212 −0.686058 0.727547i \(-0.740660\pi\)
−0.686058 + 0.727547i \(0.740660\pi\)
\(878\) −0.486105 −0.0164052
\(879\) 0.615322 0.0207543
\(880\) −5.50826 −0.185683
\(881\) −13.4336 −0.452591 −0.226295 0.974059i \(-0.572661\pi\)
−0.226295 + 0.974059i \(0.572661\pi\)
\(882\) 3.46362 0.116626
\(883\) 30.9370 1.04111 0.520556 0.853827i \(-0.325725\pi\)
0.520556 + 0.853827i \(0.325725\pi\)
\(884\) 4.88362 0.164254
\(885\) −11.9211 −0.400724
\(886\) 12.8836 0.432834
\(887\) 14.1436 0.474896 0.237448 0.971400i \(-0.423689\pi\)
0.237448 + 0.971400i \(0.423689\pi\)
\(888\) −5.01955 −0.168445
\(889\) 2.78112 0.0932759
\(890\) 1.97299 0.0661346
\(891\) −3.63487 −0.121773
\(892\) 8.38324 0.280692
\(893\) 19.3065 0.646067
\(894\) 7.63487 0.255348
\(895\) −20.7385 −0.693211
\(896\) 1.88053 0.0628240
\(897\) 2.59694 0.0867094
\(898\) 22.6842 0.756981
\(899\) 5.32721 0.177672
\(900\) −2.70358 −0.0901194
\(901\) −0.932455 −0.0310646
\(902\) −32.3411 −1.07684
\(903\) −20.3849 −0.678367
\(904\) 6.79184 0.225893
\(905\) 37.0331 1.23102
\(906\) 18.3878 0.610893
\(907\) −4.42889 −0.147059 −0.0735294 0.997293i \(-0.523426\pi\)
−0.0735294 + 0.997293i \(0.523426\pi\)
\(908\) −22.2638 −0.738849
\(909\) 4.52109 0.149955
\(910\) 7.40061 0.245328
\(911\) 21.4246 0.709828 0.354914 0.934899i \(-0.384510\pi\)
0.354914 + 0.934899i \(0.384510\pi\)
\(912\) −5.07441 −0.168031
\(913\) 37.8588 1.25294
\(914\) 33.0113 1.09192
\(915\) −3.58411 −0.118487
\(916\) 13.2878 0.439043
\(917\) 24.2801 0.801798
\(918\) −1.88053 −0.0620666
\(919\) 43.8632 1.44691 0.723457 0.690369i \(-0.242552\pi\)
0.723457 + 0.690369i \(0.242552\pi\)
\(920\) −1.51539 −0.0499611
\(921\) −2.41957 −0.0797276
\(922\) −9.88175 −0.325438
\(923\) 25.7831 0.848661
\(924\) 6.83546 0.224870
\(925\) −13.5707 −0.446204
\(926\) 20.1443 0.661983
\(927\) 3.32007 0.109045
\(928\) 1.00000 0.0328266
\(929\) 36.0040 1.18125 0.590626 0.806945i \(-0.298881\pi\)
0.590626 + 0.806945i \(0.298881\pi\)
\(930\) 8.07282 0.264718
\(931\) 17.5758 0.576025
\(932\) 23.5560 0.771602
\(933\) 24.6356 0.806534
\(934\) −18.3623 −0.600831
\(935\) −10.3584 −0.338757
\(936\) −2.59694 −0.0848837
\(937\) −11.4989 −0.375654 −0.187827 0.982202i \(-0.560144\pi\)
−0.187827 + 0.982202i \(0.560144\pi\)
\(938\) −14.8407 −0.484565
\(939\) −14.6589 −0.478377
\(940\) −5.76558 −0.188053
\(941\) −35.9023 −1.17038 −0.585191 0.810896i \(-0.698980\pi\)
−0.585191 + 0.810896i \(0.698980\pi\)
\(942\) −15.4508 −0.503414
\(943\) −8.89747 −0.289741
\(944\) −7.86668 −0.256039
\(945\) −2.84974 −0.0927020
\(946\) 39.4020 1.28107
\(947\) 20.3832 0.662366 0.331183 0.943566i \(-0.392552\pi\)
0.331183 + 0.943566i \(0.392552\pi\)
\(948\) −1.58000 −0.0513161
\(949\) 5.66406 0.183863
\(950\) −13.7191 −0.445106
\(951\) −30.3018 −0.982602
\(952\) 3.53638 0.114615
\(953\) 17.6016 0.570173 0.285086 0.958502i \(-0.407978\pi\)
0.285086 + 0.958502i \(0.407978\pi\)
\(954\) 0.495848 0.0160537
\(955\) 1.55188 0.0502177
\(956\) −8.75551 −0.283173
\(957\) 3.63487 0.117499
\(958\) 30.8903 0.998021
\(959\) −6.28294 −0.202887
\(960\) 1.51539 0.0489091
\(961\) −2.62086 −0.0845440
\(962\) −13.0355 −0.420281
\(963\) −13.7288 −0.442405
\(964\) 4.13290 0.133112
\(965\) 15.7688 0.507615
\(966\) 1.88053 0.0605049
\(967\) 22.2953 0.716969 0.358484 0.933536i \(-0.383294\pi\)
0.358484 + 0.933536i \(0.383294\pi\)
\(968\) −2.21226 −0.0711049
\(969\) −9.54256 −0.306551
\(970\) −4.08859 −0.131277
\(971\) −6.47033 −0.207643 −0.103821 0.994596i \(-0.533107\pi\)
−0.103821 + 0.994596i \(0.533107\pi\)
\(972\) 1.00000 0.0320750
\(973\) 8.31192 0.266468
\(974\) 6.24869 0.200221
\(975\) −7.02105 −0.224853
\(976\) −2.36513 −0.0757060
\(977\) 45.0880 1.44249 0.721246 0.692679i \(-0.243570\pi\)
0.721246 + 0.692679i \(0.243570\pi\)
\(978\) −16.3437 −0.522615
\(979\) 4.73246 0.151250
\(980\) −5.24875 −0.167665
\(981\) −13.6094 −0.434513
\(982\) −0.796371 −0.0254132
\(983\) 8.60542 0.274470 0.137235 0.990538i \(-0.456178\pi\)
0.137235 + 0.990538i \(0.456178\pi\)
\(984\) 8.89747 0.283641
\(985\) 16.4052 0.522714
\(986\) 1.88053 0.0598882
\(987\) 7.15479 0.227740
\(988\) −13.1780 −0.419247
\(989\) 10.8400 0.344692
\(990\) 5.50826 0.175064
\(991\) 0.196126 0.00623014 0.00311507 0.999995i \(-0.499008\pi\)
0.00311507 + 0.999995i \(0.499008\pi\)
\(992\) 5.32721 0.169139
\(993\) −1.44625 −0.0458955
\(994\) 18.6703 0.592187
\(995\) −16.4098 −0.520227
\(996\) −10.4155 −0.330027
\(997\) 8.35757 0.264687 0.132343 0.991204i \(-0.457750\pi\)
0.132343 + 0.991204i \(0.457750\pi\)
\(998\) −2.09833 −0.0664216
\(999\) 5.01955 0.158811
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bb.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bb.1.4 4 1.1 even 1 trivial