Properties

Label 4002.2.a.bb.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $1$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(1\)
Dimension: \(4\)
Coefficient field: 4.4.23252.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 6x^{2} + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.95372\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.27661 q^{5} -1.00000 q^{6} -5.23034 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} +1.27661 q^{5} -1.00000 q^{6} -5.23034 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.27661 q^{10} -0.0462763 q^{11} +1.00000 q^{12} -5.72448 q^{13} +5.23034 q^{14} +1.27661 q^{15} +1.00000 q^{16} +5.23034 q^{17} -1.00000 q^{18} +8.21863 q^{19} +1.27661 q^{20} -5.23034 q^{21} +0.0462763 q^{22} +1.00000 q^{23} -1.00000 q^{24} -3.37026 q^{25} +5.72448 q^{26} +1.00000 q^{27} -5.23034 q^{28} -1.00000 q^{29} -1.27661 q^{30} -4.18296 q^{31} -1.00000 q^{32} -0.0462763 q^{33} -5.23034 q^{34} -6.67711 q^{35} +1.00000 q^{36} +6.31965 q^{37} -8.21863 q^{38} -5.72448 q^{39} -1.27661 q^{40} +7.07871 q^{41} +5.23034 q^{42} -11.1691 q^{43} -0.0462763 q^{44} +1.27661 q^{45} -1.00000 q^{46} +2.31118 q^{47} +1.00000 q^{48} +20.3564 q^{49} +3.37026 q^{50} +5.23034 q^{51} -5.72448 q^{52} +1.04304 q^{53} -1.00000 q^{54} -0.0590769 q^{55} +5.23034 q^{56} +8.21863 q^{57} +1.00000 q^{58} +7.63193 q^{59} +1.27661 q^{60} -5.95372 q^{61} +4.18296 q^{62} -5.23034 q^{63} +1.00000 q^{64} -7.30795 q^{65} +0.0462763 q^{66} -9.46391 q^{67} +5.23034 q^{68} +1.00000 q^{69} +6.67711 q^{70} -6.52548 q^{71} -1.00000 q^{72} -2.12389 q^{73} -6.31965 q^{74} -3.37026 q^{75} +8.21863 q^{76} +0.242041 q^{77} +5.72448 q^{78} -12.5846 q^{79} +1.27661 q^{80} +1.00000 q^{81} -7.07871 q^{82} -14.8266 q^{83} -5.23034 q^{84} +6.67711 q^{85} +11.1691 q^{86} -1.00000 q^{87} +0.0462763 q^{88} -16.4059 q^{89} -1.27661 q^{90} +29.9410 q^{91} +1.00000 q^{92} -4.18296 q^{93} -2.31118 q^{94} +10.4920 q^{95} -1.00000 q^{96} -12.4059 q^{97} -20.3564 q^{98} -0.0462763 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 3 q^{5} - 4 q^{6} - 2 q^{7} - 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} + 4 q^{3} + 4 q^{4} - 3 q^{5} - 4 q^{6} - 2 q^{7} - 4 q^{8} + 4 q^{9} + 3 q^{10} - 11 q^{11} + 4 q^{12} - q^{13} + 2 q^{14} - 3 q^{15} + 4 q^{16} + 2 q^{17} - 4 q^{18} + 8 q^{19} - 3 q^{20} - 2 q^{21} + 11 q^{22} + 4 q^{23} - 4 q^{24} + 3 q^{25} + q^{26} + 4 q^{27} - 2 q^{28} - 4 q^{29} + 3 q^{30} - 17 q^{31} - 4 q^{32} - 11 q^{33} - 2 q^{34} - 24 q^{35} + 4 q^{36} + 15 q^{37} - 8 q^{38} - q^{39} + 3 q^{40} + q^{41} + 2 q^{42} + 4 q^{43} - 11 q^{44} - 3 q^{45} - 4 q^{46} + 6 q^{47} + 4 q^{48} + 16 q^{49} - 3 q^{50} + 2 q^{51} - q^{52} + 2 q^{53} - 4 q^{54} + 13 q^{55} + 2 q^{56} + 8 q^{57} + 4 q^{58} - 13 q^{59} - 3 q^{60} - 13 q^{61} + 17 q^{62} - 2 q^{63} + 4 q^{64} - 13 q^{65} + 11 q^{66} - 13 q^{67} + 2 q^{68} + 4 q^{69} + 24 q^{70} - 15 q^{71} - 4 q^{72} - 22 q^{73} - 15 q^{74} + 3 q^{75} + 8 q^{76} - 12 q^{77} + q^{78} - 26 q^{79} - 3 q^{80} + 4 q^{81} - q^{82} - 22 q^{83} - 2 q^{84} + 24 q^{85} - 4 q^{86} - 4 q^{87} + 11 q^{88} - 24 q^{89} + 3 q^{90} + 30 q^{91} + 4 q^{92} - 17 q^{93} - 6 q^{94} - 4 q^{95} - 4 q^{96} - 8 q^{97} - 16 q^{98} - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) 1.27661 0.570918 0.285459 0.958391i \(-0.407854\pi\)
0.285459 + 0.958391i \(0.407854\pi\)
\(6\) −1.00000 −0.408248
\(7\) −5.23034 −1.97688 −0.988441 0.151609i \(-0.951555\pi\)
−0.988441 + 0.151609i \(0.951555\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.27661 −0.403700
\(11\) −0.0462763 −0.0139528 −0.00697641 0.999976i \(-0.502221\pi\)
−0.00697641 + 0.999976i \(0.502221\pi\)
\(12\) 1.00000 0.288675
\(13\) −5.72448 −1.58769 −0.793843 0.608123i \(-0.791923\pi\)
−0.793843 + 0.608123i \(0.791923\pi\)
\(14\) 5.23034 1.39787
\(15\) 1.27661 0.329620
\(16\) 1.00000 0.250000
\(17\) 5.23034 1.26854 0.634271 0.773110i \(-0.281300\pi\)
0.634271 + 0.773110i \(0.281300\pi\)
\(18\) −1.00000 −0.235702
\(19\) 8.21863 1.88548 0.942742 0.333524i \(-0.108238\pi\)
0.942742 + 0.333524i \(0.108238\pi\)
\(20\) 1.27661 0.285459
\(21\) −5.23034 −1.14135
\(22\) 0.0462763 0.00986614
\(23\) 1.00000 0.208514
\(24\) −1.00000 −0.204124
\(25\) −3.37026 −0.674052
\(26\) 5.72448 1.12266
\(27\) 1.00000 0.192450
\(28\) −5.23034 −0.988441
\(29\) −1.00000 −0.185695
\(30\) −1.27661 −0.233076
\(31\) −4.18296 −0.751282 −0.375641 0.926765i \(-0.622577\pi\)
−0.375641 + 0.926765i \(0.622577\pi\)
\(32\) −1.00000 −0.176777
\(33\) −0.0462763 −0.00805567
\(34\) −5.23034 −0.896995
\(35\) −6.67711 −1.12864
\(36\) 1.00000 0.166667
\(37\) 6.31965 1.03894 0.519472 0.854487i \(-0.326129\pi\)
0.519472 + 0.854487i \(0.326129\pi\)
\(38\) −8.21863 −1.33324
\(39\) −5.72448 −0.916651
\(40\) −1.27661 −0.201850
\(41\) 7.07871 1.10551 0.552754 0.833344i \(-0.313577\pi\)
0.552754 + 0.833344i \(0.313577\pi\)
\(42\) 5.23034 0.807058
\(43\) −11.1691 −1.70327 −0.851637 0.524132i \(-0.824390\pi\)
−0.851637 + 0.524132i \(0.824390\pi\)
\(44\) −0.0462763 −0.00697641
\(45\) 1.27661 0.190306
\(46\) −1.00000 −0.147442
\(47\) 2.31118 0.337121 0.168560 0.985691i \(-0.446088\pi\)
0.168560 + 0.985691i \(0.446088\pi\)
\(48\) 1.00000 0.144338
\(49\) 20.3564 2.90806
\(50\) 3.37026 0.476627
\(51\) 5.23034 0.732394
\(52\) −5.72448 −0.793843
\(53\) 1.04304 0.143272 0.0716362 0.997431i \(-0.477178\pi\)
0.0716362 + 0.997431i \(0.477178\pi\)
\(54\) −1.00000 −0.136083
\(55\) −0.0590769 −0.00796592
\(56\) 5.23034 0.698933
\(57\) 8.21863 1.08858
\(58\) 1.00000 0.131306
\(59\) 7.63193 0.993593 0.496796 0.867867i \(-0.334510\pi\)
0.496796 + 0.867867i \(0.334510\pi\)
\(60\) 1.27661 0.164810
\(61\) −5.95372 −0.762296 −0.381148 0.924514i \(-0.624471\pi\)
−0.381148 + 0.924514i \(0.624471\pi\)
\(62\) 4.18296 0.531237
\(63\) −5.23034 −0.658960
\(64\) 1.00000 0.125000
\(65\) −7.30795 −0.906439
\(66\) 0.0462763 0.00569622
\(67\) −9.46391 −1.15620 −0.578100 0.815966i \(-0.696206\pi\)
−0.578100 + 0.815966i \(0.696206\pi\)
\(68\) 5.23034 0.634271
\(69\) 1.00000 0.120386
\(70\) 6.67711 0.798067
\(71\) −6.52548 −0.774432 −0.387216 0.921989i \(-0.626563\pi\)
−0.387216 + 0.921989i \(0.626563\pi\)
\(72\) −1.00000 −0.117851
\(73\) −2.12389 −0.248582 −0.124291 0.992246i \(-0.539666\pi\)
−0.124291 + 0.992246i \(0.539666\pi\)
\(74\) −6.31965 −0.734645
\(75\) −3.37026 −0.389164
\(76\) 8.21863 0.942742
\(77\) 0.242041 0.0275831
\(78\) 5.72448 0.648170
\(79\) −12.5846 −1.41587 −0.707937 0.706276i \(-0.750374\pi\)
−0.707937 + 0.706276i \(0.750374\pi\)
\(80\) 1.27661 0.142730
\(81\) 1.00000 0.111111
\(82\) −7.07871 −0.781712
\(83\) −14.8266 −1.62743 −0.813715 0.581264i \(-0.802559\pi\)
−0.813715 + 0.581264i \(0.802559\pi\)
\(84\) −5.23034 −0.570676
\(85\) 6.67711 0.724234
\(86\) 11.1691 1.20440
\(87\) −1.00000 −0.107211
\(88\) 0.0462763 0.00493307
\(89\) −16.4059 −1.73902 −0.869512 0.493911i \(-0.835567\pi\)
−0.869512 + 0.493911i \(0.835567\pi\)
\(90\) −1.27661 −0.134567
\(91\) 29.9410 3.13867
\(92\) 1.00000 0.104257
\(93\) −4.18296 −0.433753
\(94\) −2.31118 −0.238380
\(95\) 10.4920 1.07646
\(96\) −1.00000 −0.102062
\(97\) −12.4059 −1.25963 −0.629816 0.776745i \(-0.716870\pi\)
−0.629816 + 0.776745i \(0.716870\pi\)
\(98\) −20.3564 −2.05631
\(99\) −0.0462763 −0.00465094
\(100\) −3.37026 −0.337026
\(101\) −13.2660 −1.32002 −0.660008 0.751258i \(-0.729447\pi\)
−0.660008 + 0.751258i \(0.729447\pi\)
\(102\) −5.23034 −0.517880
\(103\) −3.03457 −0.299005 −0.149503 0.988761i \(-0.547767\pi\)
−0.149503 + 0.988761i \(0.547767\pi\)
\(104\) 5.72448 0.561332
\(105\) −6.67711 −0.651619
\(106\) −1.04304 −0.101309
\(107\) 1.85270 0.179108 0.0895538 0.995982i \(-0.471456\pi\)
0.0895538 + 0.995982i \(0.471456\pi\)
\(108\) 1.00000 0.0962250
\(109\) −1.37763 −0.131953 −0.0659766 0.997821i \(-0.521016\pi\)
−0.0659766 + 0.997821i \(0.521016\pi\)
\(110\) 0.0590769 0.00563276
\(111\) 6.31965 0.599835
\(112\) −5.23034 −0.494220
\(113\) −13.0139 −1.22424 −0.612122 0.790763i \(-0.709684\pi\)
−0.612122 + 0.790763i \(0.709684\pi\)
\(114\) −8.21863 −0.769745
\(115\) 1.27661 0.119045
\(116\) −1.00000 −0.0928477
\(117\) −5.72448 −0.529229
\(118\) −7.63193 −0.702576
\(119\) −27.3564 −2.50776
\(120\) −1.27661 −0.116538
\(121\) −10.9979 −0.999805
\(122\) 5.95372 0.539025
\(123\) 7.07871 0.638265
\(124\) −4.18296 −0.375641
\(125\) −10.6856 −0.955747
\(126\) 5.23034 0.465955
\(127\) −19.2660 −1.70958 −0.854791 0.518973i \(-0.826315\pi\)
−0.854791 + 0.518973i \(0.826315\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −11.1691 −0.983386
\(130\) 7.30795 0.640949
\(131\) −15.7836 −1.37902 −0.689508 0.724278i \(-0.742173\pi\)
−0.689508 + 0.724278i \(0.742173\pi\)
\(132\) −0.0462763 −0.00402783
\(133\) −42.9862 −3.72738
\(134\) 9.46391 0.817557
\(135\) 1.27661 0.109873
\(136\) −5.23034 −0.448498
\(137\) 21.0452 1.79802 0.899008 0.437933i \(-0.144289\pi\)
0.899008 + 0.437933i \(0.144289\pi\)
\(138\) −1.00000 −0.0851257
\(139\) 6.58456 0.558495 0.279247 0.960219i \(-0.409915\pi\)
0.279247 + 0.960219i \(0.409915\pi\)
\(140\) −6.67711 −0.564319
\(141\) 2.31118 0.194637
\(142\) 6.52548 0.547606
\(143\) 0.264908 0.0221527
\(144\) 1.00000 0.0833333
\(145\) −1.27661 −0.106017
\(146\) 2.12389 0.175774
\(147\) 20.3564 1.67897
\(148\) 6.31965 0.519472
\(149\) −4.04628 −0.331484 −0.165742 0.986169i \(-0.553002\pi\)
−0.165742 + 0.986169i \(0.553002\pi\)
\(150\) 3.37026 0.275181
\(151\) 14.8979 1.21238 0.606188 0.795321i \(-0.292698\pi\)
0.606188 + 0.795321i \(0.292698\pi\)
\(152\) −8.21863 −0.666619
\(153\) 5.23034 0.422848
\(154\) −0.242041 −0.0195042
\(155\) −5.34002 −0.428921
\(156\) −5.72448 −0.458326
\(157\) 3.96867 0.316734 0.158367 0.987380i \(-0.449377\pi\)
0.158367 + 0.987380i \(0.449377\pi\)
\(158\) 12.5846 1.00117
\(159\) 1.04304 0.0827183
\(160\) −1.27661 −0.100925
\(161\) −5.23034 −0.412208
\(162\) −1.00000 −0.0785674
\(163\) 4.30112 0.336890 0.168445 0.985711i \(-0.446126\pi\)
0.168445 + 0.985711i \(0.446126\pi\)
\(164\) 7.07871 0.552754
\(165\) −0.0590769 −0.00459913
\(166\) 14.8266 1.15077
\(167\) −1.77923 −0.137681 −0.0688404 0.997628i \(-0.521930\pi\)
−0.0688404 + 0.997628i \(0.521930\pi\)
\(168\) 5.23034 0.403529
\(169\) 19.7697 1.52075
\(170\) −6.67711 −0.512111
\(171\) 8.21863 0.628494
\(172\) −11.1691 −0.851637
\(173\) 6.30471 0.479338 0.239669 0.970855i \(-0.422961\pi\)
0.239669 + 0.970855i \(0.422961\pi\)
\(174\) 1.00000 0.0758098
\(175\) 17.6276 1.33252
\(176\) −0.0462763 −0.00348821
\(177\) 7.63193 0.573651
\(178\) 16.4059 1.22968
\(179\) −10.9192 −0.816136 −0.408068 0.912952i \(-0.633797\pi\)
−0.408068 + 0.912952i \(0.633797\pi\)
\(180\) 1.27661 0.0951531
\(181\) 25.2937 1.88007 0.940035 0.341079i \(-0.110792\pi\)
0.940035 + 0.341079i \(0.110792\pi\)
\(182\) −29.9410 −2.21937
\(183\) −5.95372 −0.440112
\(184\) −1.00000 −0.0737210
\(185\) 8.06774 0.593152
\(186\) 4.18296 0.306710
\(187\) −0.242041 −0.0176998
\(188\) 2.31118 0.168560
\(189\) −5.23034 −0.380451
\(190\) −10.4920 −0.761170
\(191\) −13.0915 −0.947268 −0.473634 0.880722i \(-0.657058\pi\)
−0.473634 + 0.880722i \(0.657058\pi\)
\(192\) 1.00000 0.0721688
\(193\) −11.0196 −0.793210 −0.396605 0.917989i \(-0.629812\pi\)
−0.396605 + 0.917989i \(0.629812\pi\)
\(194\) 12.4059 0.890694
\(195\) −7.30795 −0.523333
\(196\) 20.3564 1.45403
\(197\) −21.6042 −1.53923 −0.769617 0.638505i \(-0.779553\pi\)
−0.769617 + 0.638505i \(0.779553\pi\)
\(198\) 0.0462763 0.00328871
\(199\) 9.40269 0.666539 0.333270 0.942832i \(-0.391848\pi\)
0.333270 + 0.942832i \(0.391848\pi\)
\(200\) 3.37026 0.238313
\(201\) −9.46391 −0.667533
\(202\) 13.2660 0.933393
\(203\) 5.23034 0.367098
\(204\) 5.23034 0.366197
\(205\) 9.03676 0.631155
\(206\) 3.03457 0.211429
\(207\) 1.00000 0.0695048
\(208\) −5.72448 −0.396922
\(209\) −0.380328 −0.0263078
\(210\) 6.67711 0.460764
\(211\) 16.5576 1.13987 0.569935 0.821690i \(-0.306969\pi\)
0.569935 + 0.821690i \(0.306969\pi\)
\(212\) 1.04304 0.0716362
\(213\) −6.52548 −0.447119
\(214\) −1.85270 −0.126648
\(215\) −14.2586 −0.972431
\(216\) −1.00000 −0.0680414
\(217\) 21.8783 1.48520
\(218\) 1.37763 0.0933050
\(219\) −2.12389 −0.143519
\(220\) −0.0590769 −0.00398296
\(221\) −29.9410 −2.01405
\(222\) −6.31965 −0.424147
\(223\) −9.48678 −0.635282 −0.317641 0.948211i \(-0.602891\pi\)
−0.317641 + 0.948211i \(0.602891\pi\)
\(224\) 5.23034 0.349467
\(225\) −3.37026 −0.224684
\(226\) 13.0139 0.865672
\(227\) −7.74356 −0.513958 −0.256979 0.966417i \(-0.582727\pi\)
−0.256979 + 0.966417i \(0.582727\pi\)
\(228\) 8.21863 0.544292
\(229\) −15.3479 −1.01422 −0.507110 0.861881i \(-0.669286\pi\)
−0.507110 + 0.861881i \(0.669286\pi\)
\(230\) −1.27661 −0.0841773
\(231\) 0.242041 0.0159251
\(232\) 1.00000 0.0656532
\(233\) −1.69674 −0.111157 −0.0555786 0.998454i \(-0.517700\pi\)
−0.0555786 + 0.998454i \(0.517700\pi\)
\(234\) 5.72448 0.374221
\(235\) 2.95049 0.192468
\(236\) 7.63193 0.496796
\(237\) −12.5846 −0.817455
\(238\) 27.3564 1.77325
\(239\) 0.315518 0.0204092 0.0102046 0.999948i \(-0.496752\pi\)
0.0102046 + 0.999948i \(0.496752\pi\)
\(240\) 1.27661 0.0824050
\(241\) 28.0591 1.80745 0.903724 0.428116i \(-0.140823\pi\)
0.903724 + 0.428116i \(0.140823\pi\)
\(242\) 10.9979 0.706969
\(243\) 1.00000 0.0641500
\(244\) −5.95372 −0.381148
\(245\) 25.9873 1.66026
\(246\) −7.07871 −0.451322
\(247\) −47.0474 −2.99356
\(248\) 4.18296 0.265618
\(249\) −14.8266 −0.939598
\(250\) 10.6856 0.675815
\(251\) −10.6308 −0.671012 −0.335506 0.942038i \(-0.608907\pi\)
−0.335506 + 0.942038i \(0.608907\pi\)
\(252\) −5.23034 −0.329480
\(253\) −0.0462763 −0.00290937
\(254\) 19.2660 1.20886
\(255\) 6.67711 0.418137
\(256\) 1.00000 0.0625000
\(257\) −14.4059 −0.898617 −0.449309 0.893377i \(-0.648330\pi\)
−0.449309 + 0.893377i \(0.648330\pi\)
\(258\) 11.1691 0.695359
\(259\) −33.0539 −2.05387
\(260\) −7.30795 −0.453220
\(261\) −1.00000 −0.0618984
\(262\) 15.7836 0.975112
\(263\) 6.92708 0.427142 0.213571 0.976928i \(-0.431491\pi\)
0.213571 + 0.976928i \(0.431491\pi\)
\(264\) 0.0462763 0.00284811
\(265\) 1.33156 0.0817968
\(266\) 42.9862 2.63565
\(267\) −16.4059 −1.00403
\(268\) −9.46391 −0.578100
\(269\) 16.8857 1.02954 0.514769 0.857329i \(-0.327878\pi\)
0.514769 + 0.857329i \(0.327878\pi\)
\(270\) −1.27661 −0.0776922
\(271\) −10.5511 −0.640933 −0.320466 0.947260i \(-0.603840\pi\)
−0.320466 + 0.947260i \(0.603840\pi\)
\(272\) 5.23034 0.317136
\(273\) 29.9410 1.81211
\(274\) −21.0452 −1.27139
\(275\) 0.155963 0.00940493
\(276\) 1.00000 0.0601929
\(277\) 27.9075 1.67680 0.838400 0.545056i \(-0.183492\pi\)
0.838400 + 0.545056i \(0.183492\pi\)
\(278\) −6.58456 −0.394916
\(279\) −4.18296 −0.250427
\(280\) 6.67711 0.399034
\(281\) −20.1261 −1.20062 −0.600311 0.799767i \(-0.704956\pi\)
−0.600311 + 0.799767i \(0.704956\pi\)
\(282\) −2.31118 −0.137629
\(283\) 9.74302 0.579162 0.289581 0.957153i \(-0.406484\pi\)
0.289581 + 0.957153i \(0.406484\pi\)
\(284\) −6.52548 −0.387216
\(285\) 10.4920 0.621493
\(286\) −0.264908 −0.0156643
\(287\) −37.0240 −2.18546
\(288\) −1.00000 −0.0589256
\(289\) 10.3564 0.609201
\(290\) 1.27661 0.0749653
\(291\) −12.4059 −0.727248
\(292\) −2.12389 −0.124291
\(293\) −4.27337 −0.249653 −0.124827 0.992179i \(-0.539837\pi\)
−0.124827 + 0.992179i \(0.539837\pi\)
\(294\) −20.3564 −1.18721
\(295\) 9.74302 0.567260
\(296\) −6.31965 −0.367322
\(297\) −0.0462763 −0.00268522
\(298\) 4.04628 0.234394
\(299\) −5.72448 −0.331055
\(300\) −3.37026 −0.194582
\(301\) 58.4182 3.36717
\(302\) −14.8979 −0.857280
\(303\) −13.2660 −0.762112
\(304\) 8.21863 0.471371
\(305\) −7.60060 −0.435209
\(306\) −5.23034 −0.298998
\(307\) 0.157362 0.00898115 0.00449057 0.999990i \(-0.498571\pi\)
0.00449057 + 0.999990i \(0.498571\pi\)
\(308\) 0.242041 0.0137915
\(309\) −3.03457 −0.172631
\(310\) 5.34002 0.303293
\(311\) 27.3420 1.55042 0.775212 0.631702i \(-0.217643\pi\)
0.775212 + 0.631702i \(0.217643\pi\)
\(312\) 5.72448 0.324085
\(313\) 3.04523 0.172127 0.0860633 0.996290i \(-0.472571\pi\)
0.0860633 + 0.996290i \(0.472571\pi\)
\(314\) −3.96867 −0.223965
\(315\) −6.67711 −0.376213
\(316\) −12.5846 −0.707937
\(317\) 29.8585 1.67702 0.838510 0.544886i \(-0.183427\pi\)
0.838510 + 0.544886i \(0.183427\pi\)
\(318\) −1.04304 −0.0584907
\(319\) 0.0462763 0.00259097
\(320\) 1.27661 0.0713648
\(321\) 1.85270 0.103408
\(322\) 5.23034 0.291475
\(323\) 42.9862 2.39182
\(324\) 1.00000 0.0555556
\(325\) 19.2930 1.07018
\(326\) −4.30112 −0.238217
\(327\) −1.37763 −0.0761832
\(328\) −7.07871 −0.390856
\(329\) −12.0883 −0.666448
\(330\) 0.0590769 0.00325207
\(331\) −5.37982 −0.295702 −0.147851 0.989010i \(-0.547236\pi\)
−0.147851 + 0.989010i \(0.547236\pi\)
\(332\) −14.8266 −0.813715
\(333\) 6.31965 0.346315
\(334\) 1.77923 0.0973550
\(335\) −12.0817 −0.660096
\(336\) −5.23034 −0.285338
\(337\) 27.8007 1.51440 0.757200 0.653183i \(-0.226567\pi\)
0.757200 + 0.653183i \(0.226567\pi\)
\(338\) −19.7697 −1.07533
\(339\) −13.0139 −0.706818
\(340\) 6.67711 0.362117
\(341\) 0.193572 0.0104825
\(342\) −8.21863 −0.444413
\(343\) −69.8585 −3.77201
\(344\) 11.1691 0.602198
\(345\) 1.27661 0.0687305
\(346\) −6.30471 −0.338943
\(347\) 3.08304 0.165506 0.0827531 0.996570i \(-0.473629\pi\)
0.0827531 + 0.996570i \(0.473629\pi\)
\(348\) −1.00000 −0.0536056
\(349\) −18.7441 −1.00335 −0.501675 0.865056i \(-0.667283\pi\)
−0.501675 + 0.865056i \(0.667283\pi\)
\(350\) −17.6276 −0.942235
\(351\) −5.72448 −0.305550
\(352\) 0.0462763 0.00246653
\(353\) 8.21863 0.437434 0.218717 0.975788i \(-0.429813\pi\)
0.218717 + 0.975788i \(0.429813\pi\)
\(354\) −7.63193 −0.405633
\(355\) −8.33051 −0.442138
\(356\) −16.4059 −0.869512
\(357\) −27.3564 −1.44786
\(358\) 10.9192 0.577095
\(359\) 17.9089 0.945195 0.472598 0.881278i \(-0.343316\pi\)
0.472598 + 0.881278i \(0.343316\pi\)
\(360\) −1.27661 −0.0672834
\(361\) 48.5459 2.55505
\(362\) −25.2937 −1.32941
\(363\) −10.9979 −0.577238
\(364\) 29.9410 1.56933
\(365\) −2.71138 −0.141920
\(366\) 5.95372 0.311206
\(367\) −6.43726 −0.336022 −0.168011 0.985785i \(-0.553734\pi\)
−0.168011 + 0.985785i \(0.553734\pi\)
\(368\) 1.00000 0.0521286
\(369\) 7.07871 0.368503
\(370\) −8.06774 −0.419422
\(371\) −5.45544 −0.283232
\(372\) −4.18296 −0.216877
\(373\) 7.85270 0.406598 0.203299 0.979117i \(-0.434834\pi\)
0.203299 + 0.979117i \(0.434834\pi\)
\(374\) 0.242041 0.0125156
\(375\) −10.6856 −0.551801
\(376\) −2.31118 −0.119190
\(377\) 5.72448 0.294826
\(378\) 5.23034 0.269019
\(379\) 21.4432 1.10146 0.550732 0.834682i \(-0.314348\pi\)
0.550732 + 0.834682i \(0.314348\pi\)
\(380\) 10.4920 0.538229
\(381\) −19.2660 −0.987027
\(382\) 13.0915 0.669820
\(383\) −30.9293 −1.58041 −0.790206 0.612841i \(-0.790026\pi\)
−0.790206 + 0.612841i \(0.790026\pi\)
\(384\) −1.00000 −0.0510310
\(385\) 0.308992 0.0157477
\(386\) 11.0196 0.560884
\(387\) −11.1691 −0.567758
\(388\) −12.4059 −0.629816
\(389\) 5.88977 0.298623 0.149312 0.988790i \(-0.452294\pi\)
0.149312 + 0.988790i \(0.452294\pi\)
\(390\) 7.30795 0.370052
\(391\) 5.23034 0.264509
\(392\) −20.3564 −1.02815
\(393\) −15.7836 −0.796175
\(394\) 21.6042 1.08840
\(395\) −16.0656 −0.808348
\(396\) −0.0462763 −0.00232547
\(397\) −9.54152 −0.478875 −0.239438 0.970912i \(-0.576963\pi\)
−0.239438 + 0.970912i \(0.576963\pi\)
\(398\) −9.40269 −0.471314
\(399\) −42.9862 −2.15200
\(400\) −3.37026 −0.168513
\(401\) 34.2920 1.71246 0.856229 0.516596i \(-0.172801\pi\)
0.856229 + 0.516596i \(0.172801\pi\)
\(402\) 9.46391 0.472017
\(403\) 23.9453 1.19280
\(404\) −13.2660 −0.660008
\(405\) 1.27661 0.0634354
\(406\) −5.23034 −0.259577
\(407\) −0.292450 −0.0144962
\(408\) −5.23034 −0.258940
\(409\) −14.4942 −0.716692 −0.358346 0.933589i \(-0.616659\pi\)
−0.358346 + 0.933589i \(0.616659\pi\)
\(410\) −9.03676 −0.446294
\(411\) 21.0452 1.03808
\(412\) −3.03457 −0.149503
\(413\) −39.9176 −1.96421
\(414\) −1.00000 −0.0491473
\(415\) −18.9278 −0.929130
\(416\) 5.72448 0.280666
\(417\) 6.58456 0.322447
\(418\) 0.380328 0.0186024
\(419\) −7.11292 −0.347489 −0.173745 0.984791i \(-0.555587\pi\)
−0.173745 + 0.984791i \(0.555587\pi\)
\(420\) −6.67711 −0.325810
\(421\) −14.1958 −0.691859 −0.345930 0.938260i \(-0.612436\pi\)
−0.345930 + 0.938260i \(0.612436\pi\)
\(422\) −16.5576 −0.806009
\(423\) 2.31118 0.112374
\(424\) −1.04304 −0.0506544
\(425\) −17.6276 −0.855064
\(426\) 6.52548 0.316161
\(427\) 31.1400 1.50697
\(428\) 1.85270 0.0895538
\(429\) 0.264908 0.0127899
\(430\) 14.2586 0.687612
\(431\) 1.26022 0.0607027 0.0303513 0.999539i \(-0.490337\pi\)
0.0303513 + 0.999539i \(0.490337\pi\)
\(432\) 1.00000 0.0481125
\(433\) 1.34411 0.0645936 0.0322968 0.999478i \(-0.489718\pi\)
0.0322968 + 0.999478i \(0.489718\pi\)
\(434\) −21.8783 −1.05019
\(435\) −1.27661 −0.0612089
\(436\) −1.37763 −0.0659766
\(437\) 8.21863 0.393150
\(438\) 2.12389 0.101483
\(439\) −26.8893 −1.28335 −0.641677 0.766975i \(-0.721761\pi\)
−0.641677 + 0.766975i \(0.721761\pi\)
\(440\) 0.0590769 0.00281638
\(441\) 20.3564 0.969353
\(442\) 29.9410 1.42415
\(443\) 21.9410 1.04245 0.521224 0.853420i \(-0.325476\pi\)
0.521224 + 0.853420i \(0.325476\pi\)
\(444\) 6.31965 0.299917
\(445\) −20.9440 −0.992841
\(446\) 9.48678 0.449212
\(447\) −4.04628 −0.191382
\(448\) −5.23034 −0.247110
\(449\) 11.2682 0.531779 0.265890 0.964004i \(-0.414334\pi\)
0.265890 + 0.964004i \(0.414334\pi\)
\(450\) 3.37026 0.158876
\(451\) −0.327576 −0.0154250
\(452\) −13.0139 −0.612122
\(453\) 14.8979 0.699966
\(454\) 7.74356 0.363423
\(455\) 38.2230 1.79192
\(456\) −8.21863 −0.384873
\(457\) 19.1392 0.895296 0.447648 0.894210i \(-0.352262\pi\)
0.447648 + 0.894210i \(0.352262\pi\)
\(458\) 15.3479 0.717163
\(459\) 5.23034 0.244131
\(460\) 1.27661 0.0595224
\(461\) −39.2739 −1.82917 −0.914585 0.404395i \(-0.867482\pi\)
−0.914585 + 0.404395i \(0.867482\pi\)
\(462\) −0.242041 −0.0112607
\(463\) −8.97390 −0.417052 −0.208526 0.978017i \(-0.566867\pi\)
−0.208526 + 0.978017i \(0.566867\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −5.34002 −0.247638
\(466\) 1.69674 0.0786000
\(467\) −23.5666 −1.09053 −0.545266 0.838263i \(-0.683571\pi\)
−0.545266 + 0.838263i \(0.683571\pi\)
\(468\) −5.72448 −0.264614
\(469\) 49.4994 2.28567
\(470\) −2.95049 −0.136096
\(471\) 3.96867 0.182866
\(472\) −7.63193 −0.351288
\(473\) 0.516865 0.0237655
\(474\) 12.5846 0.578028
\(475\) −27.6989 −1.27091
\(476\) −27.3564 −1.25388
\(477\) 1.04304 0.0477575
\(478\) −0.315518 −0.0144314
\(479\) −9.70376 −0.443376 −0.221688 0.975118i \(-0.571157\pi\)
−0.221688 + 0.975118i \(0.571157\pi\)
\(480\) −1.27661 −0.0582691
\(481\) −36.1767 −1.64952
\(482\) −28.0591 −1.27806
\(483\) −5.23034 −0.237989
\(484\) −10.9979 −0.499903
\(485\) −15.8376 −0.719147
\(486\) −1.00000 −0.0453609
\(487\) −25.3856 −1.15033 −0.575165 0.818038i \(-0.695062\pi\)
−0.575165 + 0.818038i \(0.695062\pi\)
\(488\) 5.95372 0.269512
\(489\) 4.30112 0.194503
\(490\) −25.9873 −1.17398
\(491\) −8.39726 −0.378963 −0.189482 0.981884i \(-0.560681\pi\)
−0.189482 + 0.981884i \(0.560681\pi\)
\(492\) 7.07871 0.319133
\(493\) −5.23034 −0.235562
\(494\) 47.0474 2.11676
\(495\) −0.0590769 −0.00265531
\(496\) −4.18296 −0.187821
\(497\) 34.1305 1.53096
\(498\) 14.8266 0.664396
\(499\) 8.00867 0.358517 0.179259 0.983802i \(-0.442630\pi\)
0.179259 + 0.983802i \(0.442630\pi\)
\(500\) −10.6856 −0.477874
\(501\) −1.77923 −0.0794900
\(502\) 10.6308 0.474477
\(503\) −4.32812 −0.192981 −0.0964906 0.995334i \(-0.530762\pi\)
−0.0964906 + 0.995334i \(0.530762\pi\)
\(504\) 5.23034 0.232978
\(505\) −16.9355 −0.753622
\(506\) 0.0462763 0.00205723
\(507\) 19.7697 0.878004
\(508\) −19.2660 −0.854791
\(509\) 3.76015 0.166666 0.0833329 0.996522i \(-0.473444\pi\)
0.0833329 + 0.996522i \(0.473444\pi\)
\(510\) −6.67711 −0.295667
\(511\) 11.1086 0.491417
\(512\) −1.00000 −0.0441942
\(513\) 8.21863 0.362861
\(514\) 14.4059 0.635418
\(515\) −3.87397 −0.170708
\(516\) −11.1691 −0.491693
\(517\) −0.106953 −0.00470379
\(518\) 33.0539 1.45230
\(519\) 6.30471 0.276746
\(520\) 7.30795 0.320475
\(521\) 16.1261 0.706496 0.353248 0.935530i \(-0.385077\pi\)
0.353248 + 0.935530i \(0.385077\pi\)
\(522\) 1.00000 0.0437688
\(523\) 4.47561 0.195705 0.0978525 0.995201i \(-0.468803\pi\)
0.0978525 + 0.995201i \(0.468803\pi\)
\(524\) −15.7836 −0.689508
\(525\) 17.6276 0.769331
\(526\) −6.92708 −0.302035
\(527\) −21.8783 −0.953034
\(528\) −0.0462763 −0.00201392
\(529\) 1.00000 0.0434783
\(530\) −1.33156 −0.0578391
\(531\) 7.63193 0.331198
\(532\) −42.9862 −1.86369
\(533\) −40.5219 −1.75520
\(534\) 16.4059 0.709954
\(535\) 2.36519 0.102256
\(536\) 9.46391 0.408779
\(537\) −10.9192 −0.471196
\(538\) −16.8857 −0.727993
\(539\) −0.942019 −0.0405756
\(540\) 1.27661 0.0549366
\(541\) −27.2703 −1.17244 −0.586222 0.810151i \(-0.699385\pi\)
−0.586222 + 0.810151i \(0.699385\pi\)
\(542\) 10.5511 0.453208
\(543\) 25.2937 1.08546
\(544\) −5.23034 −0.224249
\(545\) −1.75870 −0.0753345
\(546\) −29.9410 −1.28136
\(547\) −16.6736 −0.712910 −0.356455 0.934312i \(-0.616015\pi\)
−0.356455 + 0.934312i \(0.616015\pi\)
\(548\) 21.0452 0.899008
\(549\) −5.95372 −0.254099
\(550\) −0.155963 −0.00665029
\(551\) −8.21863 −0.350125
\(552\) −1.00000 −0.0425628
\(553\) 65.8215 2.79901
\(554\) −27.9075 −1.18568
\(555\) 8.06774 0.342457
\(556\) 6.58456 0.279247
\(557\) −30.3989 −1.28804 −0.644022 0.765007i \(-0.722735\pi\)
−0.644022 + 0.765007i \(0.722735\pi\)
\(558\) 4.18296 0.177079
\(559\) 63.9374 2.70427
\(560\) −6.67711 −0.282159
\(561\) −0.242041 −0.0102190
\(562\) 20.1261 0.848967
\(563\) −18.1054 −0.763052 −0.381526 0.924358i \(-0.624601\pi\)
−0.381526 + 0.924358i \(0.624601\pi\)
\(564\) 2.31118 0.0973184
\(565\) −16.6137 −0.698944
\(566\) −9.74302 −0.409530
\(567\) −5.23034 −0.219653
\(568\) 6.52548 0.273803
\(569\) 17.4154 0.730093 0.365047 0.930989i \(-0.381053\pi\)
0.365047 + 0.930989i \(0.381053\pi\)
\(570\) −10.4920 −0.439462
\(571\) 12.4669 0.521725 0.260863 0.965376i \(-0.415993\pi\)
0.260863 + 0.965376i \(0.415993\pi\)
\(572\) 0.264908 0.0110764
\(573\) −13.0915 −0.546906
\(574\) 37.0240 1.54535
\(575\) −3.37026 −0.140550
\(576\) 1.00000 0.0416667
\(577\) −0.816482 −0.0339906 −0.0169953 0.999856i \(-0.505410\pi\)
−0.0169953 + 0.999856i \(0.505410\pi\)
\(578\) −10.3564 −0.430770
\(579\) −11.0196 −0.457960
\(580\) −1.27661 −0.0530084
\(581\) 77.5481 3.21724
\(582\) 12.4059 0.514242
\(583\) −0.0482680 −0.00199905
\(584\) 2.12389 0.0878871
\(585\) −7.30795 −0.302146
\(586\) 4.27337 0.176531
\(587\) −35.5671 −1.46801 −0.734006 0.679143i \(-0.762352\pi\)
−0.734006 + 0.679143i \(0.762352\pi\)
\(588\) 20.3564 0.839484
\(589\) −34.3782 −1.41653
\(590\) −9.74302 −0.401114
\(591\) −21.6042 −0.888678
\(592\) 6.31965 0.259736
\(593\) 0.405187 0.0166390 0.00831951 0.999965i \(-0.497352\pi\)
0.00831951 + 0.999965i \(0.497352\pi\)
\(594\) 0.0462763 0.00189874
\(595\) −34.9235 −1.43173
\(596\) −4.04628 −0.165742
\(597\) 9.40269 0.384827
\(598\) 5.72448 0.234092
\(599\) 5.62186 0.229703 0.114852 0.993383i \(-0.463361\pi\)
0.114852 + 0.993383i \(0.463361\pi\)
\(600\) 3.37026 0.137590
\(601\) −27.4656 −1.12034 −0.560172 0.828376i \(-0.689265\pi\)
−0.560172 + 0.828376i \(0.689265\pi\)
\(602\) −58.4182 −2.38095
\(603\) −9.46391 −0.385400
\(604\) 14.8979 0.606188
\(605\) −14.0400 −0.570807
\(606\) 13.2660 0.538895
\(607\) −31.6554 −1.28485 −0.642426 0.766347i \(-0.722072\pi\)
−0.642426 + 0.766347i \(0.722072\pi\)
\(608\) −8.21863 −0.333310
\(609\) 5.23034 0.211944
\(610\) 7.60060 0.307739
\(611\) −13.2303 −0.535242
\(612\) 5.23034 0.211424
\(613\) 12.9448 0.522834 0.261417 0.965226i \(-0.415810\pi\)
0.261417 + 0.965226i \(0.415810\pi\)
\(614\) −0.157362 −0.00635063
\(615\) 9.03676 0.364397
\(616\) −0.242041 −0.00975209
\(617\) 27.1385 1.09256 0.546278 0.837604i \(-0.316044\pi\)
0.546278 + 0.837604i \(0.316044\pi\)
\(618\) 3.03457 0.122068
\(619\) 10.2122 0.410461 0.205231 0.978714i \(-0.434206\pi\)
0.205231 + 0.978714i \(0.434206\pi\)
\(620\) −5.34002 −0.214460
\(621\) 1.00000 0.0401286
\(622\) −27.3420 −1.09631
\(623\) 85.8085 3.43785
\(624\) −5.72448 −0.229163
\(625\) 3.20996 0.128399
\(626\) −3.04523 −0.121712
\(627\) −0.380328 −0.0151888
\(628\) 3.96867 0.158367
\(629\) 33.0539 1.31795
\(630\) 6.67711 0.266022
\(631\) −21.2532 −0.846077 −0.423038 0.906112i \(-0.639036\pi\)
−0.423038 + 0.906112i \(0.639036\pi\)
\(632\) 12.5846 0.500587
\(633\) 16.5576 0.658104
\(634\) −29.8585 −1.18583
\(635\) −24.5952 −0.976031
\(636\) 1.04304 0.0413592
\(637\) −116.530 −4.61709
\(638\) −0.0462763 −0.00183210
\(639\) −6.52548 −0.258144
\(640\) −1.27661 −0.0504625
\(641\) 25.5181 1.00790 0.503952 0.863731i \(-0.331879\pi\)
0.503952 + 0.863731i \(0.331879\pi\)
\(642\) −1.85270 −0.0731204
\(643\) 1.66321 0.0655908 0.0327954 0.999462i \(-0.489559\pi\)
0.0327954 + 0.999462i \(0.489559\pi\)
\(644\) −5.23034 −0.206104
\(645\) −14.2586 −0.561433
\(646\) −42.9862 −1.69127
\(647\) −3.16333 −0.124363 −0.0621817 0.998065i \(-0.519806\pi\)
−0.0621817 + 0.998065i \(0.519806\pi\)
\(648\) −1.00000 −0.0392837
\(649\) −0.353177 −0.0138634
\(650\) −19.2930 −0.756734
\(651\) 21.8783 0.857478
\(652\) 4.30112 0.168445
\(653\) 8.19089 0.320534 0.160267 0.987074i \(-0.448764\pi\)
0.160267 + 0.987074i \(0.448764\pi\)
\(654\) 1.37763 0.0538697
\(655\) −20.1495 −0.787306
\(656\) 7.07871 0.276377
\(657\) −2.12389 −0.0828607
\(658\) 12.0883 0.471250
\(659\) 36.5432 1.42352 0.711761 0.702422i \(-0.247898\pi\)
0.711761 + 0.702422i \(0.247898\pi\)
\(660\) −0.0590769 −0.00229956
\(661\) −15.5894 −0.606359 −0.303180 0.952933i \(-0.598048\pi\)
−0.303180 + 0.952933i \(0.598048\pi\)
\(662\) 5.37982 0.209093
\(663\) −29.9410 −1.16281
\(664\) 14.8266 0.575384
\(665\) −54.8767 −2.12803
\(666\) −6.31965 −0.244882
\(667\) −1.00000 −0.0387202
\(668\) −1.77923 −0.0688404
\(669\) −9.48678 −0.366780
\(670\) 12.0817 0.466758
\(671\) 0.275516 0.0106362
\(672\) 5.23034 0.201765
\(673\) −36.4651 −1.40562 −0.702812 0.711375i \(-0.748073\pi\)
−0.702812 + 0.711375i \(0.748073\pi\)
\(674\) −27.8007 −1.07084
\(675\) −3.37026 −0.129721
\(676\) 19.7697 0.760374
\(677\) 31.8149 1.22275 0.611373 0.791343i \(-0.290618\pi\)
0.611373 + 0.791343i \(0.290618\pi\)
\(678\) 13.0139 0.499796
\(679\) 64.8872 2.49014
\(680\) −6.67711 −0.256056
\(681\) −7.74356 −0.296734
\(682\) −0.193572 −0.00741226
\(683\) −49.1202 −1.87953 −0.939765 0.341820i \(-0.888957\pi\)
−0.939765 + 0.341820i \(0.888957\pi\)
\(684\) 8.21863 0.314247
\(685\) 26.8666 1.02652
\(686\) 69.8585 2.66721
\(687\) −15.3479 −0.585561
\(688\) −11.1691 −0.425819
\(689\) −5.97086 −0.227472
\(690\) −1.27661 −0.0485998
\(691\) 28.7776 1.09475 0.547376 0.836887i \(-0.315627\pi\)
0.547376 + 0.836887i \(0.315627\pi\)
\(692\) 6.30471 0.239669
\(693\) 0.242041 0.00919436
\(694\) −3.08304 −0.117031
\(695\) 8.40593 0.318855
\(696\) 1.00000 0.0379049
\(697\) 37.0240 1.40238
\(698\) 18.7441 0.709475
\(699\) −1.69674 −0.0641766
\(700\) 17.6276 0.666261
\(701\) 12.1388 0.458477 0.229239 0.973370i \(-0.426376\pi\)
0.229239 + 0.973370i \(0.426376\pi\)
\(702\) 5.72448 0.216057
\(703\) 51.9389 1.95891
\(704\) −0.0462763 −0.00174410
\(705\) 2.95049 0.111122
\(706\) −8.21863 −0.309312
\(707\) 69.3857 2.60952
\(708\) 7.63193 0.286826
\(709\) −15.2887 −0.574180 −0.287090 0.957904i \(-0.592688\pi\)
−0.287090 + 0.957904i \(0.592688\pi\)
\(710\) 8.33051 0.312638
\(711\) −12.5846 −0.471958
\(712\) 16.4059 0.614838
\(713\) −4.18296 −0.156653
\(714\) 27.3564 1.02379
\(715\) 0.338185 0.0126474
\(716\) −10.9192 −0.408068
\(717\) 0.315518 0.0117832
\(718\) −17.9089 −0.668354
\(719\) 24.3170 0.906870 0.453435 0.891289i \(-0.350198\pi\)
0.453435 + 0.891289i \(0.350198\pi\)
\(720\) 1.27661 0.0475765
\(721\) 15.8718 0.591098
\(722\) −48.5459 −1.80669
\(723\) 28.0591 1.04353
\(724\) 25.2937 0.940035
\(725\) 3.37026 0.125168
\(726\) 10.9979 0.408169
\(727\) 32.5489 1.20717 0.603587 0.797297i \(-0.293738\pi\)
0.603587 + 0.797297i \(0.293738\pi\)
\(728\) −29.9410 −1.10969
\(729\) 1.00000 0.0370370
\(730\) 2.71138 0.100353
\(731\) −58.4182 −2.16068
\(732\) −5.95372 −0.220056
\(733\) −8.97555 −0.331519 −0.165760 0.986166i \(-0.553008\pi\)
−0.165760 + 0.986166i \(0.553008\pi\)
\(734\) 6.43726 0.237604
\(735\) 25.9873 0.958554
\(736\) −1.00000 −0.0368605
\(737\) 0.437955 0.0161323
\(738\) −7.07871 −0.260571
\(739\) −50.5868 −1.86087 −0.930433 0.366463i \(-0.880569\pi\)
−0.930433 + 0.366463i \(0.880569\pi\)
\(740\) 8.06774 0.296576
\(741\) −47.0474 −1.72833
\(742\) 5.45544 0.200276
\(743\) −20.9064 −0.766982 −0.383491 0.923545i \(-0.625278\pi\)
−0.383491 + 0.923545i \(0.625278\pi\)
\(744\) 4.18296 0.153355
\(745\) −5.16553 −0.189250
\(746\) −7.85270 −0.287508
\(747\) −14.8266 −0.542477
\(748\) −0.242041 −0.00884988
\(749\) −9.69027 −0.354075
\(750\) 10.6856 0.390182
\(751\) −29.4760 −1.07560 −0.537798 0.843074i \(-0.680744\pi\)
−0.537798 + 0.843074i \(0.680744\pi\)
\(752\) 2.31118 0.0842802
\(753\) −10.6308 −0.387409
\(754\) −5.72448 −0.208473
\(755\) 19.0189 0.692168
\(756\) −5.23034 −0.190225
\(757\) −6.71118 −0.243922 −0.121961 0.992535i \(-0.538918\pi\)
−0.121961 + 0.992535i \(0.538918\pi\)
\(758\) −21.4432 −0.778853
\(759\) −0.0462763 −0.00167972
\(760\) −10.4920 −0.380585
\(761\) −21.3564 −0.774169 −0.387085 0.922044i \(-0.626518\pi\)
−0.387085 + 0.922044i \(0.626518\pi\)
\(762\) 19.2660 0.697934
\(763\) 7.20548 0.260856
\(764\) −13.0915 −0.473634
\(765\) 6.67711 0.241411
\(766\) 30.9293 1.11752
\(767\) −43.6889 −1.57751
\(768\) 1.00000 0.0360844
\(769\) −11.9159 −0.429699 −0.214849 0.976647i \(-0.568926\pi\)
−0.214849 + 0.976647i \(0.568926\pi\)
\(770\) −0.308992 −0.0111353
\(771\) −14.4059 −0.518817
\(772\) −11.0196 −0.396605
\(773\) −8.94256 −0.321642 −0.160821 0.986984i \(-0.551414\pi\)
−0.160821 + 0.986984i \(0.551414\pi\)
\(774\) 11.1691 0.401466
\(775\) 14.0977 0.506404
\(776\) 12.4059 0.445347
\(777\) −33.0539 −1.18580
\(778\) −5.88977 −0.211159
\(779\) 58.1773 2.08442
\(780\) −7.30795 −0.261666
\(781\) 0.301975 0.0108055
\(782\) −5.23034 −0.187036
\(783\) −1.00000 −0.0357371
\(784\) 20.3564 0.727015
\(785\) 5.06645 0.180829
\(786\) 15.7836 0.562981
\(787\) 18.6074 0.663283 0.331642 0.943405i \(-0.392398\pi\)
0.331642 + 0.943405i \(0.392398\pi\)
\(788\) −21.6042 −0.769617
\(789\) 6.92708 0.246610
\(790\) 16.0656 0.571588
\(791\) 68.0671 2.42019
\(792\) 0.0462763 0.00164436
\(793\) 34.0820 1.21029
\(794\) 9.54152 0.338616
\(795\) 1.33156 0.0472254
\(796\) 9.40269 0.333270
\(797\) −17.3600 −0.614921 −0.307461 0.951561i \(-0.599479\pi\)
−0.307461 + 0.951561i \(0.599479\pi\)
\(798\) 42.9862 1.52170
\(799\) 12.0883 0.427652
\(800\) 3.37026 0.119157
\(801\) −16.4059 −0.579675
\(802\) −34.2920 −1.21089
\(803\) 0.0982856 0.00346842
\(804\) −9.46391 −0.333766
\(805\) −6.67711 −0.235337
\(806\) −23.9453 −0.843437
\(807\) 16.8857 0.594404
\(808\) 13.2660 0.466696
\(809\) 35.7667 1.25749 0.628745 0.777612i \(-0.283569\pi\)
0.628745 + 0.777612i \(0.283569\pi\)
\(810\) −1.27661 −0.0448556
\(811\) 34.2857 1.20393 0.601967 0.798521i \(-0.294384\pi\)
0.601967 + 0.798521i \(0.294384\pi\)
\(812\) 5.23034 0.183549
\(813\) −10.5511 −0.370043
\(814\) 0.292450 0.0102504
\(815\) 5.49086 0.192336
\(816\) 5.23034 0.183098
\(817\) −91.7949 −3.21150
\(818\) 14.4942 0.506778
\(819\) 29.9410 1.04622
\(820\) 9.03676 0.315577
\(821\) 4.50067 0.157075 0.0785373 0.996911i \(-0.474975\pi\)
0.0785373 + 0.996911i \(0.474975\pi\)
\(822\) −21.0452 −0.734037
\(823\) −8.71133 −0.303658 −0.151829 0.988407i \(-0.548516\pi\)
−0.151829 + 0.988407i \(0.548516\pi\)
\(824\) 3.03457 0.105714
\(825\) 0.155963 0.00542994
\(826\) 39.9176 1.38891
\(827\) −50.5683 −1.75843 −0.879215 0.476424i \(-0.841933\pi\)
−0.879215 + 0.476424i \(0.841933\pi\)
\(828\) 1.00000 0.0347524
\(829\) 30.3973 1.05574 0.527870 0.849325i \(-0.322991\pi\)
0.527870 + 0.849325i \(0.322991\pi\)
\(830\) 18.9278 0.656994
\(831\) 27.9075 0.968100
\(832\) −5.72448 −0.198461
\(833\) 106.471 3.68900
\(834\) −6.58456 −0.228005
\(835\) −2.27138 −0.0786045
\(836\) −0.380328 −0.0131539
\(837\) −4.18296 −0.144584
\(838\) 7.11292 0.245712
\(839\) 35.0937 1.21157 0.605785 0.795629i \(-0.292859\pi\)
0.605785 + 0.795629i \(0.292859\pi\)
\(840\) 6.67711 0.230382
\(841\) 1.00000 0.0344828
\(842\) 14.1958 0.489218
\(843\) −20.1261 −0.693179
\(844\) 16.5576 0.569935
\(845\) 25.2383 0.868223
\(846\) −2.31118 −0.0794601
\(847\) 57.5225 1.97650
\(848\) 1.04304 0.0358181
\(849\) 9.74302 0.334379
\(850\) 17.6276 0.604622
\(851\) 6.31965 0.216635
\(852\) −6.52548 −0.223559
\(853\) −19.1208 −0.654685 −0.327343 0.944906i \(-0.606153\pi\)
−0.327343 + 0.944906i \(0.606153\pi\)
\(854\) −31.1400 −1.06559
\(855\) 10.4920 0.358819
\(856\) −1.85270 −0.0633241
\(857\) −47.9424 −1.63768 −0.818841 0.574020i \(-0.805383\pi\)
−0.818841 + 0.574020i \(0.805383\pi\)
\(858\) −0.264908 −0.00904380
\(859\) 6.54456 0.223297 0.111649 0.993748i \(-0.464387\pi\)
0.111649 + 0.993748i \(0.464387\pi\)
\(860\) −14.2586 −0.486215
\(861\) −37.0240 −1.26178
\(862\) −1.26022 −0.0429233
\(863\) 43.7670 1.48985 0.744923 0.667150i \(-0.232486\pi\)
0.744923 + 0.667150i \(0.232486\pi\)
\(864\) −1.00000 −0.0340207
\(865\) 8.04867 0.273663
\(866\) −1.34411 −0.0456746
\(867\) 10.3564 0.351722
\(868\) 21.8783 0.742598
\(869\) 0.582367 0.0197554
\(870\) 1.27661 0.0432812
\(871\) 54.1760 1.83568
\(872\) 1.37763 0.0466525
\(873\) −12.4059 −0.419877
\(874\) −8.21863 −0.277999
\(875\) 55.8892 1.88940
\(876\) −2.12389 −0.0717595
\(877\) −3.52786 −0.119127 −0.0595637 0.998225i \(-0.518971\pi\)
−0.0595637 + 0.998225i \(0.518971\pi\)
\(878\) 26.8893 0.907469
\(879\) −4.27337 −0.144137
\(880\) −0.0590769 −0.00199148
\(881\) 53.9867 1.81886 0.909429 0.415859i \(-0.136519\pi\)
0.909429 + 0.415859i \(0.136519\pi\)
\(882\) −20.3564 −0.685436
\(883\) 9.13340 0.307363 0.153682 0.988120i \(-0.450887\pi\)
0.153682 + 0.988120i \(0.450887\pi\)
\(884\) −29.9410 −1.00702
\(885\) 9.74302 0.327508
\(886\) −21.9410 −0.737121
\(887\) −53.6947 −1.80289 −0.901445 0.432894i \(-0.857493\pi\)
−0.901445 + 0.432894i \(0.857493\pi\)
\(888\) −6.31965 −0.212074
\(889\) 100.768 3.37964
\(890\) 20.9440 0.702045
\(891\) −0.0462763 −0.00155031
\(892\) −9.48678 −0.317641
\(893\) 18.9948 0.635636
\(894\) 4.04628 0.135328
\(895\) −13.9395 −0.465947
\(896\) 5.23034 0.174733
\(897\) −5.72448 −0.191135
\(898\) −11.2682 −0.376025
\(899\) 4.18296 0.139510
\(900\) −3.37026 −0.112342
\(901\) 5.45544 0.181747
\(902\) 0.327576 0.0109071
\(903\) 58.4182 1.94404
\(904\) 13.0139 0.432836
\(905\) 32.2903 1.07337
\(906\) −14.8979 −0.494951
\(907\) −36.1161 −1.19921 −0.599607 0.800295i \(-0.704676\pi\)
−0.599607 + 0.800295i \(0.704676\pi\)
\(908\) −7.74356 −0.256979
\(909\) −13.2660 −0.440006
\(910\) −38.2230 −1.26708
\(911\) −55.3685 −1.83444 −0.917221 0.398380i \(-0.869573\pi\)
−0.917221 + 0.398380i \(0.869573\pi\)
\(912\) 8.21863 0.272146
\(913\) 0.686120 0.0227073
\(914\) −19.1392 −0.633070
\(915\) −7.60060 −0.251268
\(916\) −15.3479 −0.507110
\(917\) 82.5533 2.72615
\(918\) −5.23034 −0.172627
\(919\) 24.5938 0.811274 0.405637 0.914034i \(-0.367050\pi\)
0.405637 + 0.914034i \(0.367050\pi\)
\(920\) −1.27661 −0.0420887
\(921\) 0.157362 0.00518527
\(922\) 39.2739 1.29342
\(923\) 37.3550 1.22956
\(924\) 0.242041 0.00796255
\(925\) −21.2989 −0.700303
\(926\) 8.97390 0.294900
\(927\) −3.03457 −0.0996684
\(928\) 1.00000 0.0328266
\(929\) −29.1944 −0.957836 −0.478918 0.877860i \(-0.658971\pi\)
−0.478918 + 0.877860i \(0.658971\pi\)
\(930\) 5.34002 0.175106
\(931\) 167.302 5.48310
\(932\) −1.69674 −0.0555786
\(933\) 27.3420 0.895137
\(934\) 23.5666 0.771122
\(935\) −0.308992 −0.0101051
\(936\) 5.72448 0.187111
\(937\) 28.2143 0.921723 0.460861 0.887472i \(-0.347541\pi\)
0.460861 + 0.887472i \(0.347541\pi\)
\(938\) −49.4994 −1.61621
\(939\) 3.04523 0.0993774
\(940\) 2.95049 0.0962342
\(941\) −19.2331 −0.626980 −0.313490 0.949591i \(-0.601498\pi\)
−0.313490 + 0.949591i \(0.601498\pi\)
\(942\) −3.96867 −0.129306
\(943\) 7.07871 0.230514
\(944\) 7.63193 0.248398
\(945\) −6.67711 −0.217206
\(946\) −0.516865 −0.0168047
\(947\) 2.51322 0.0816688 0.0408344 0.999166i \(-0.486998\pi\)
0.0408344 + 0.999166i \(0.486998\pi\)
\(948\) −12.5846 −0.408727
\(949\) 12.1582 0.394670
\(950\) 27.6989 0.898672
\(951\) 29.8585 0.968228
\(952\) 27.3564 0.886627
\(953\) 41.9061 1.35747 0.678736 0.734382i \(-0.262528\pi\)
0.678736 + 0.734382i \(0.262528\pi\)
\(954\) −1.04304 −0.0337696
\(955\) −16.7128 −0.540813
\(956\) 0.315518 0.0102046
\(957\) 0.0462763 0.00149590
\(958\) 9.70376 0.313514
\(959\) −110.074 −3.55446
\(960\) 1.27661 0.0412025
\(961\) −13.5028 −0.435575
\(962\) 36.1767 1.16638
\(963\) 1.85270 0.0597026
\(964\) 28.0591 0.903724
\(965\) −14.0678 −0.452858
\(966\) 5.23034 0.168283
\(967\) −26.6116 −0.855772 −0.427886 0.903833i \(-0.640741\pi\)
−0.427886 + 0.903833i \(0.640741\pi\)
\(968\) 10.9979 0.353485
\(969\) 42.9862 1.38092
\(970\) 15.8376 0.508513
\(971\) 3.71168 0.119114 0.0595568 0.998225i \(-0.481031\pi\)
0.0595568 + 0.998225i \(0.481031\pi\)
\(972\) 1.00000 0.0320750
\(973\) −34.4395 −1.10408
\(974\) 25.3856 0.813406
\(975\) 19.2930 0.617871
\(976\) −5.95372 −0.190574
\(977\) 25.7520 0.823880 0.411940 0.911211i \(-0.364851\pi\)
0.411940 + 0.911211i \(0.364851\pi\)
\(978\) −4.30112 −0.137535
\(979\) 0.759205 0.0242643
\(980\) 25.9873 0.830132
\(981\) −1.37763 −0.0439844
\(982\) 8.39726 0.267967
\(983\) 11.1992 0.357199 0.178600 0.983922i \(-0.442843\pi\)
0.178600 + 0.983922i \(0.442843\pi\)
\(984\) −7.07871 −0.225661
\(985\) −27.5802 −0.878777
\(986\) 5.23034 0.166568
\(987\) −12.0883 −0.384774
\(988\) −47.0474 −1.49678
\(989\) −11.1691 −0.355157
\(990\) 0.0590769 0.00187759
\(991\) −37.7659 −1.19967 −0.599836 0.800123i \(-0.704768\pi\)
−0.599836 + 0.800123i \(0.704768\pi\)
\(992\) 4.18296 0.132809
\(993\) −5.37982 −0.170724
\(994\) −34.1305 −1.08255
\(995\) 12.0036 0.380539
\(996\) −14.8266 −0.469799
\(997\) 15.1634 0.480229 0.240115 0.970745i \(-0.422815\pi\)
0.240115 + 0.970745i \(0.422815\pi\)
\(998\) −8.00867 −0.253510
\(999\) 6.31965 0.199945
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.bb.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.bb.1.3 4 1.1 even 1 trivial