Properties

Label 4002.2.a.ba.1.3
Level $4002$
Weight $2$
Character 4002.1
Self dual yes
Analytic conductor $31.956$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4002,2,Mod(1,4002)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4002, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4002.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4002 = 2 \cdot 3 \cdot 23 \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4002.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9561308889\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.16448.2
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 2x^{3} - 7x^{2} + 8x + 14 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(2.87996\) of defining polynomial
Character \(\chi\) \(=\) 4002.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.46575 q^{5} +1.00000 q^{6} -2.29417 q^{7} -1.00000 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.00000 q^{2} -1.00000 q^{3} +1.00000 q^{4} +1.46575 q^{5} +1.00000 q^{6} -2.29417 q^{7} -1.00000 q^{8} +1.00000 q^{9} -1.46575 q^{10} -1.24445 q^{11} -1.00000 q^{12} -6.90131 q^{13} +2.29417 q^{14} -1.46575 q^{15} +1.00000 q^{16} +5.12260 q^{17} -1.00000 q^{18} -3.85158 q^{19} +1.46575 q^{20} +2.29417 q^{21} +1.24445 q^{22} +1.00000 q^{23} +1.00000 q^{24} -2.85158 q^{25} +6.90131 q^{26} -1.00000 q^{27} -2.29417 q^{28} -1.00000 q^{29} +1.46575 q^{30} +3.24445 q^{31} -1.00000 q^{32} +1.24445 q^{33} -5.12260 q^{34} -3.36268 q^{35} +1.00000 q^{36} -10.1270 q^{37} +3.85158 q^{38} +6.90131 q^{39} -1.46575 q^{40} -3.53863 q^{41} -2.29417 q^{42} +5.36268 q^{43} -1.24445 q^{44} +1.46575 q^{45} -1.00000 q^{46} +6.29417 q^{47} -1.00000 q^{48} -1.73676 q^{49} +2.85158 q^{50} -5.12260 q^{51} -6.90131 q^{52} -1.27102 q^{53} +1.00000 q^{54} -1.82405 q^{55} +2.29417 q^{56} +3.85158 q^{57} +1.00000 q^{58} -7.36268 q^{59} -1.46575 q^{60} +13.2143 q^{61} -3.24445 q^{62} -2.29417 q^{63} +1.00000 q^{64} -10.1156 q^{65} -1.24445 q^{66} +12.6914 q^{67} +5.12260 q^{68} -1.00000 q^{69} +3.36268 q^{70} +10.1759 q^{71} -1.00000 q^{72} +15.1767 q^{73} +10.1270 q^{74} +2.85158 q^{75} -3.85158 q^{76} +2.85499 q^{77} -6.90131 q^{78} -6.17232 q^{79} +1.46575 q^{80} +1.00000 q^{81} +3.53863 q^{82} +1.61416 q^{83} +2.29417 q^{84} +7.50844 q^{85} -5.36268 q^{86} +1.00000 q^{87} +1.24445 q^{88} -15.8594 q^{89} -1.46575 q^{90} +15.8328 q^{91} +1.00000 q^{92} -3.24445 q^{93} -6.29417 q^{94} -5.64545 q^{95} +1.00000 q^{96} -2.68267 q^{97} +1.73676 q^{98} -1.24445 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 2 q^{5} + 4 q^{6} + 6 q^{7} - 4 q^{8} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 4 q^{2} - 4 q^{3} + 4 q^{4} + 2 q^{5} + 4 q^{6} + 6 q^{7} - 4 q^{8} + 4 q^{9} - 2 q^{10} - 4 q^{12} - 6 q^{14} - 2 q^{15} + 4 q^{16} - 6 q^{17} - 4 q^{18} + 2 q^{19} + 2 q^{20} - 6 q^{21} + 4 q^{23} + 4 q^{24} + 6 q^{25} - 4 q^{27} + 6 q^{28} - 4 q^{29} + 2 q^{30} + 8 q^{31} - 4 q^{32} + 6 q^{34} - 6 q^{35} + 4 q^{36} + 10 q^{37} - 2 q^{38} - 2 q^{40} + 6 q^{41} + 6 q^{42} + 14 q^{43} + 2 q^{45} - 4 q^{46} + 10 q^{47} - 4 q^{48} + 6 q^{49} - 6 q^{50} + 6 q^{51} + 4 q^{53} + 4 q^{54} - 20 q^{55} - 6 q^{56} - 2 q^{57} + 4 q^{58} - 22 q^{59} - 2 q^{60} + 28 q^{61} - 8 q^{62} + 6 q^{63} + 4 q^{64} + 12 q^{65} + 24 q^{67} - 6 q^{68} - 4 q^{69} + 6 q^{70} + 28 q^{71} - 4 q^{72} - 10 q^{74} - 6 q^{75} + 2 q^{76} - 4 q^{77} + 12 q^{79} + 2 q^{80} + 4 q^{81} - 6 q^{82} + 20 q^{83} - 6 q^{84} - 10 q^{85} - 14 q^{86} + 4 q^{87} - 24 q^{89} - 2 q^{90} + 28 q^{91} + 4 q^{92} - 8 q^{93} - 10 q^{94} + 2 q^{95} + 4 q^{96} - 32 q^{97} - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) −1.00000 −0.577350
\(4\) 1.00000 0.500000
\(5\) 1.46575 0.655502 0.327751 0.944764i \(-0.393709\pi\)
0.327751 + 0.944764i \(0.393709\pi\)
\(6\) 1.00000 0.408248
\(7\) −2.29417 −0.867116 −0.433558 0.901126i \(-0.642742\pi\)
−0.433558 + 0.901126i \(0.642742\pi\)
\(8\) −1.00000 −0.353553
\(9\) 1.00000 0.333333
\(10\) −1.46575 −0.463510
\(11\) −1.24445 −0.375217 −0.187608 0.982244i \(-0.560074\pi\)
−0.187608 + 0.982244i \(0.560074\pi\)
\(12\) −1.00000 −0.288675
\(13\) −6.90131 −1.91408 −0.957039 0.289959i \(-0.906358\pi\)
−0.957039 + 0.289959i \(0.906358\pi\)
\(14\) 2.29417 0.613144
\(15\) −1.46575 −0.378454
\(16\) 1.00000 0.250000
\(17\) 5.12260 1.24241 0.621207 0.783647i \(-0.286643\pi\)
0.621207 + 0.783647i \(0.286643\pi\)
\(18\) −1.00000 −0.235702
\(19\) −3.85158 −0.883614 −0.441807 0.897110i \(-0.645662\pi\)
−0.441807 + 0.897110i \(0.645662\pi\)
\(20\) 1.46575 0.327751
\(21\) 2.29417 0.500630
\(22\) 1.24445 0.265318
\(23\) 1.00000 0.208514
\(24\) 1.00000 0.204124
\(25\) −2.85158 −0.570317
\(26\) 6.90131 1.35346
\(27\) −1.00000 −0.192450
\(28\) −2.29417 −0.433558
\(29\) −1.00000 −0.185695
\(30\) 1.46575 0.267608
\(31\) 3.24445 0.582721 0.291360 0.956613i \(-0.405892\pi\)
0.291360 + 0.956613i \(0.405892\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.24445 0.216631
\(34\) −5.12260 −0.878519
\(35\) −3.36268 −0.568397
\(36\) 1.00000 0.166667
\(37\) −10.1270 −1.66486 −0.832432 0.554127i \(-0.813052\pi\)
−0.832432 + 0.554127i \(0.813052\pi\)
\(38\) 3.85158 0.624810
\(39\) 6.90131 1.10509
\(40\) −1.46575 −0.231755
\(41\) −3.53863 −0.552641 −0.276320 0.961066i \(-0.589115\pi\)
−0.276320 + 0.961066i \(0.589115\pi\)
\(42\) −2.29417 −0.353999
\(43\) 5.36268 0.817801 0.408901 0.912579i \(-0.365912\pi\)
0.408901 + 0.912579i \(0.365912\pi\)
\(44\) −1.24445 −0.187608
\(45\) 1.46575 0.218501
\(46\) −1.00000 −0.147442
\(47\) 6.29417 0.918100 0.459050 0.888411i \(-0.348190\pi\)
0.459050 + 0.888411i \(0.348190\pi\)
\(48\) −1.00000 −0.144338
\(49\) −1.73676 −0.248109
\(50\) 2.85158 0.403275
\(51\) −5.12260 −0.717308
\(52\) −6.90131 −0.957039
\(53\) −1.27102 −0.174588 −0.0872938 0.996183i \(-0.527822\pi\)
−0.0872938 + 0.996183i \(0.527822\pi\)
\(54\) 1.00000 0.136083
\(55\) −1.82405 −0.245955
\(56\) 2.29417 0.306572
\(57\) 3.85158 0.510155
\(58\) 1.00000 0.131306
\(59\) −7.36268 −0.958539 −0.479270 0.877668i \(-0.659098\pi\)
−0.479270 + 0.877668i \(0.659098\pi\)
\(60\) −1.46575 −0.189227
\(61\) 13.2143 1.69191 0.845957 0.533252i \(-0.179030\pi\)
0.845957 + 0.533252i \(0.179030\pi\)
\(62\) −3.24445 −0.412046
\(63\) −2.29417 −0.289039
\(64\) 1.00000 0.125000
\(65\) −10.1156 −1.25468
\(66\) −1.24445 −0.153182
\(67\) 12.6914 1.55050 0.775252 0.631653i \(-0.217623\pi\)
0.775252 + 0.631653i \(0.217623\pi\)
\(68\) 5.12260 0.621207
\(69\) −1.00000 −0.120386
\(70\) 3.36268 0.401917
\(71\) 10.1759 1.20766 0.603831 0.797112i \(-0.293640\pi\)
0.603831 + 0.797112i \(0.293640\pi\)
\(72\) −1.00000 −0.117851
\(73\) 15.1767 1.77630 0.888149 0.459556i \(-0.151991\pi\)
0.888149 + 0.459556i \(0.151991\pi\)
\(74\) 10.1270 1.17724
\(75\) 2.85158 0.329273
\(76\) −3.85158 −0.441807
\(77\) 2.85499 0.325356
\(78\) −6.90131 −0.781419
\(79\) −6.17232 −0.694441 −0.347220 0.937784i \(-0.612874\pi\)
−0.347220 + 0.937784i \(0.612874\pi\)
\(80\) 1.46575 0.163876
\(81\) 1.00000 0.111111
\(82\) 3.53863 0.390776
\(83\) 1.61416 0.177177 0.0885887 0.996068i \(-0.471764\pi\)
0.0885887 + 0.996068i \(0.471764\pi\)
\(84\) 2.29417 0.250315
\(85\) 7.50844 0.814405
\(86\) −5.36268 −0.578273
\(87\) 1.00000 0.107211
\(88\) 1.24445 0.132659
\(89\) −15.8594 −1.68109 −0.840545 0.541742i \(-0.817765\pi\)
−0.840545 + 0.541742i \(0.817765\pi\)
\(90\) −1.46575 −0.154503
\(91\) 15.8328 1.65973
\(92\) 1.00000 0.104257
\(93\) −3.24445 −0.336434
\(94\) −6.29417 −0.649195
\(95\) −5.64545 −0.579211
\(96\) 1.00000 0.102062
\(97\) −2.68267 −0.272384 −0.136192 0.990682i \(-0.543486\pi\)
−0.136192 + 0.990682i \(0.543486\pi\)
\(98\) 1.73676 0.175440
\(99\) −1.24445 −0.125072
\(100\) −2.85158 −0.285158
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 5.12260 0.507213
\(103\) 17.6079 1.73496 0.867478 0.497475i \(-0.165739\pi\)
0.867478 + 0.497475i \(0.165739\pi\)
\(104\) 6.90131 0.676729
\(105\) 3.36268 0.328164
\(106\) 1.27102 0.123452
\(107\) 14.8560 1.43618 0.718090 0.695950i \(-0.245017\pi\)
0.718090 + 0.695950i \(0.245017\pi\)
\(108\) −1.00000 −0.0962250
\(109\) 4.38584 0.420087 0.210044 0.977692i \(-0.432639\pi\)
0.210044 + 0.977692i \(0.432639\pi\)
\(110\) 1.82405 0.173917
\(111\) 10.1270 0.961210
\(112\) −2.29417 −0.216779
\(113\) 9.74852 0.917063 0.458532 0.888678i \(-0.348376\pi\)
0.458532 + 0.888678i \(0.348376\pi\)
\(114\) −3.85158 −0.360734
\(115\) 1.46575 0.136682
\(116\) −1.00000 −0.0928477
\(117\) −6.90131 −0.638026
\(118\) 7.36268 0.677790
\(119\) −11.7521 −1.07732
\(120\) 1.46575 0.133804
\(121\) −9.45134 −0.859213
\(122\) −13.2143 −1.19636
\(123\) 3.53863 0.319067
\(124\) 3.24445 0.291360
\(125\) −11.5084 −1.02935
\(126\) 2.29417 0.204381
\(127\) 2.78574 0.247194 0.123597 0.992332i \(-0.460557\pi\)
0.123597 + 0.992332i \(0.460557\pi\)
\(128\) −1.00000 −0.0883883
\(129\) −5.36268 −0.472158
\(130\) 10.1156 0.887194
\(131\) 2.94762 0.257535 0.128767 0.991675i \(-0.458898\pi\)
0.128767 + 0.991675i \(0.458898\pi\)
\(132\) 1.24445 0.108316
\(133\) 8.83621 0.766196
\(134\) −12.6914 −1.09637
\(135\) −1.46575 −0.126151
\(136\) −5.12260 −0.439259
\(137\) 4.52285 0.386413 0.193207 0.981158i \(-0.438111\pi\)
0.193207 + 0.981158i \(0.438111\pi\)
\(138\) 1.00000 0.0851257
\(139\) −16.5883 −1.40701 −0.703503 0.710693i \(-0.748382\pi\)
−0.703503 + 0.710693i \(0.748382\pi\)
\(140\) −3.36268 −0.284198
\(141\) −6.29417 −0.530065
\(142\) −10.1759 −0.853947
\(143\) 8.58835 0.718194
\(144\) 1.00000 0.0833333
\(145\) −1.46575 −0.121724
\(146\) −15.1767 −1.25603
\(147\) 1.73676 0.143246
\(148\) −10.1270 −0.832432
\(149\) −17.7573 −1.45473 −0.727366 0.686250i \(-0.759256\pi\)
−0.727366 + 0.686250i \(0.759256\pi\)
\(150\) −2.85158 −0.232831
\(151\) 7.23305 0.588617 0.294309 0.955710i \(-0.404911\pi\)
0.294309 + 0.955710i \(0.404911\pi\)
\(152\) 3.85158 0.312405
\(153\) 5.12260 0.414138
\(154\) −2.85499 −0.230062
\(155\) 4.75555 0.381975
\(156\) 6.90131 0.552547
\(157\) 2.46137 0.196439 0.0982195 0.995165i \(-0.468685\pi\)
0.0982195 + 0.995165i \(0.468685\pi\)
\(158\) 6.17232 0.491044
\(159\) 1.27102 0.100798
\(160\) −1.46575 −0.115877
\(161\) −2.29417 −0.180806
\(162\) −1.00000 −0.0785674
\(163\) −9.68439 −0.758540 −0.379270 0.925286i \(-0.623825\pi\)
−0.379270 + 0.925286i \(0.623825\pi\)
\(164\) −3.53863 −0.276320
\(165\) 1.82405 0.142002
\(166\) −1.61416 −0.125283
\(167\) 20.8799 1.61573 0.807866 0.589366i \(-0.200622\pi\)
0.807866 + 0.589366i \(0.200622\pi\)
\(168\) −2.29417 −0.176999
\(169\) 34.6280 2.66370
\(170\) −7.50844 −0.575871
\(171\) −3.85158 −0.294538
\(172\) 5.36268 0.408901
\(173\) −6.26399 −0.476242 −0.238121 0.971235i \(-0.576531\pi\)
−0.238121 + 0.971235i \(0.576531\pi\)
\(174\) −1.00000 −0.0758098
\(175\) 6.54203 0.494531
\(176\) −1.24445 −0.0938041
\(177\) 7.36268 0.553413
\(178\) 15.8594 1.18871
\(179\) −5.95368 −0.444999 −0.222500 0.974933i \(-0.571422\pi\)
−0.222500 + 0.974933i \(0.571422\pi\)
\(180\) 1.46575 0.109250
\(181\) −7.63029 −0.567155 −0.283578 0.958949i \(-0.591521\pi\)
−0.283578 + 0.958949i \(0.591521\pi\)
\(182\) −15.8328 −1.17361
\(183\) −13.2143 −0.976827
\(184\) −1.00000 −0.0737210
\(185\) −14.8436 −1.09132
\(186\) 3.24445 0.237895
\(187\) −6.37483 −0.466174
\(188\) 6.29417 0.459050
\(189\) 2.29417 0.166877
\(190\) 5.64545 0.409564
\(191\) −12.2300 −0.884935 −0.442467 0.896785i \(-0.645897\pi\)
−0.442467 + 0.896785i \(0.645897\pi\)
\(192\) −1.00000 −0.0721688
\(193\) 7.69442 0.553857 0.276928 0.960891i \(-0.410684\pi\)
0.276928 + 0.960891i \(0.410684\pi\)
\(194\) 2.68267 0.192604
\(195\) 10.1156 0.724391
\(196\) −1.73676 −0.124055
\(197\) 13.0497 0.929754 0.464877 0.885375i \(-0.346099\pi\)
0.464877 + 0.885375i \(0.346099\pi\)
\(198\) 1.24445 0.0884394
\(199\) −6.45134 −0.457323 −0.228662 0.973506i \(-0.573435\pi\)
−0.228662 + 0.973506i \(0.573435\pi\)
\(200\) 2.85158 0.201638
\(201\) −12.6914 −0.895183
\(202\) 10.0000 0.703598
\(203\) 2.29417 0.161019
\(204\) −5.12260 −0.358654
\(205\) −5.18673 −0.362257
\(206\) −17.6079 −1.22680
\(207\) 1.00000 0.0695048
\(208\) −6.90131 −0.478520
\(209\) 4.79311 0.331547
\(210\) −3.36268 −0.232047
\(211\) 10.5696 0.727639 0.363819 0.931469i \(-0.381473\pi\)
0.363819 + 0.931469i \(0.381473\pi\)
\(212\) −1.27102 −0.0872938
\(213\) −10.1759 −0.697244
\(214\) −14.8560 −1.01553
\(215\) 7.86033 0.536070
\(216\) 1.00000 0.0680414
\(217\) −7.44334 −0.505287
\(218\) −4.38584 −0.297046
\(219\) −15.1767 −1.02555
\(220\) −1.82405 −0.122978
\(221\) −35.3526 −2.37808
\(222\) −10.1270 −0.679678
\(223\) −2.34315 −0.156909 −0.0784543 0.996918i \(-0.524998\pi\)
−0.0784543 + 0.996918i \(0.524998\pi\)
\(224\) 2.29417 0.153286
\(225\) −2.85158 −0.190106
\(226\) −9.74852 −0.648462
\(227\) 7.77871 0.516291 0.258145 0.966106i \(-0.416889\pi\)
0.258145 + 0.966106i \(0.416889\pi\)
\(228\) 3.85158 0.255077
\(229\) 21.5011 1.42083 0.710415 0.703783i \(-0.248507\pi\)
0.710415 + 0.703783i \(0.248507\pi\)
\(230\) −1.46575 −0.0966485
\(231\) −2.85499 −0.187845
\(232\) 1.00000 0.0656532
\(233\) 7.90056 0.517583 0.258791 0.965933i \(-0.416676\pi\)
0.258791 + 0.965933i \(0.416676\pi\)
\(234\) 6.90131 0.451153
\(235\) 9.22567 0.601816
\(236\) −7.36268 −0.479270
\(237\) 6.17232 0.400935
\(238\) 11.7521 0.761778
\(239\) 26.2452 1.69766 0.848831 0.528665i \(-0.177307\pi\)
0.848831 + 0.528665i \(0.177307\pi\)
\(240\) −1.46575 −0.0946136
\(241\) 0.0187836 0.00120996 0.000604979 1.00000i \(-0.499807\pi\)
0.000604979 1.00000i \(0.499807\pi\)
\(242\) 9.45134 0.607555
\(243\) −1.00000 −0.0641500
\(244\) 13.2143 0.845957
\(245\) −2.54566 −0.162636
\(246\) −3.53863 −0.225615
\(247\) 26.5810 1.69131
\(248\) −3.24445 −0.206023
\(249\) −1.61416 −0.102293
\(250\) 11.5084 0.727858
\(251\) 8.30558 0.524243 0.262122 0.965035i \(-0.415578\pi\)
0.262122 + 0.965035i \(0.415578\pi\)
\(252\) −2.29417 −0.144519
\(253\) −1.24445 −0.0782381
\(254\) −2.78574 −0.174793
\(255\) −7.50844 −0.470197
\(256\) 1.00000 0.0625000
\(257\) −18.8106 −1.17337 −0.586687 0.809814i \(-0.699568\pi\)
−0.586687 + 0.809814i \(0.699568\pi\)
\(258\) 5.36268 0.333866
\(259\) 23.2330 1.44363
\(260\) −10.1156 −0.627341
\(261\) −1.00000 −0.0618984
\(262\) −2.94762 −0.182105
\(263\) 11.2294 0.692436 0.346218 0.938154i \(-0.387466\pi\)
0.346218 + 0.938154i \(0.387466\pi\)
\(264\) −1.24445 −0.0765908
\(265\) −1.86299 −0.114443
\(266\) −8.83621 −0.541783
\(267\) 15.8594 0.970577
\(268\) 12.6914 0.775252
\(269\) −5.39021 −0.328647 −0.164324 0.986407i \(-0.552544\pi\)
−0.164324 + 0.986407i \(0.552544\pi\)
\(270\) 1.46575 0.0892025
\(271\) 31.0397 1.88553 0.942763 0.333463i \(-0.108217\pi\)
0.942763 + 0.333463i \(0.108217\pi\)
\(272\) 5.12260 0.310603
\(273\) −15.8328 −0.958245
\(274\) −4.52285 −0.273235
\(275\) 3.54866 0.213992
\(276\) −1.00000 −0.0601929
\(277\) −26.9564 −1.61965 −0.809826 0.586671i \(-0.800438\pi\)
−0.809826 + 0.586671i \(0.800438\pi\)
\(278\) 16.5883 0.994903
\(279\) 3.24445 0.194240
\(280\) 3.36268 0.200959
\(281\) 3.80261 0.226845 0.113422 0.993547i \(-0.463819\pi\)
0.113422 + 0.993547i \(0.463819\pi\)
\(282\) 6.29417 0.374813
\(283\) 24.1348 1.43466 0.717331 0.696732i \(-0.245363\pi\)
0.717331 + 0.696732i \(0.245363\pi\)
\(284\) 10.1759 0.603831
\(285\) 5.64545 0.334408
\(286\) −8.58835 −0.507840
\(287\) 8.11823 0.479204
\(288\) −1.00000 −0.0589256
\(289\) 9.24105 0.543591
\(290\) 1.46575 0.0860716
\(291\) 2.68267 0.157261
\(292\) 15.1767 0.888149
\(293\) 19.4970 1.13903 0.569514 0.821981i \(-0.307131\pi\)
0.569514 + 0.821981i \(0.307131\pi\)
\(294\) −1.73676 −0.101290
\(295\) −10.7918 −0.628325
\(296\) 10.1270 0.588619
\(297\) 1.24445 0.0722105
\(298\) 17.7573 1.02865
\(299\) −6.90131 −0.399113
\(300\) 2.85158 0.164636
\(301\) −12.3029 −0.709129
\(302\) −7.23305 −0.416215
\(303\) 10.0000 0.574485
\(304\) −3.85158 −0.220904
\(305\) 19.3688 1.10905
\(306\) −5.12260 −0.292840
\(307\) 5.86299 0.334618 0.167309 0.985904i \(-0.446492\pi\)
0.167309 + 0.985904i \(0.446492\pi\)
\(308\) 2.85499 0.162678
\(309\) −17.6079 −1.00168
\(310\) −4.75555 −0.270097
\(311\) 10.3317 0.585859 0.292930 0.956134i \(-0.405370\pi\)
0.292930 + 0.956134i \(0.405370\pi\)
\(312\) −6.90131 −0.390710
\(313\) 27.8833 1.57606 0.788028 0.615640i \(-0.211102\pi\)
0.788028 + 0.615640i \(0.211102\pi\)
\(314\) −2.46137 −0.138903
\(315\) −3.36268 −0.189466
\(316\) −6.17232 −0.347220
\(317\) −5.07588 −0.285090 −0.142545 0.989788i \(-0.545529\pi\)
−0.142545 + 0.989788i \(0.545529\pi\)
\(318\) −1.27102 −0.0712751
\(319\) 1.24445 0.0696760
\(320\) 1.46575 0.0819378
\(321\) −14.8560 −0.829179
\(322\) 2.29417 0.127849
\(323\) −19.7301 −1.09781
\(324\) 1.00000 0.0555556
\(325\) 19.6797 1.09163
\(326\) 9.68439 0.536369
\(327\) −4.38584 −0.242537
\(328\) 3.53863 0.195388
\(329\) −14.4399 −0.796099
\(330\) −1.82405 −0.100411
\(331\) −25.2345 −1.38702 −0.693508 0.720449i \(-0.743936\pi\)
−0.693508 + 0.720449i \(0.743936\pi\)
\(332\) 1.61416 0.0885887
\(333\) −10.1270 −0.554955
\(334\) −20.8799 −1.14250
\(335\) 18.6024 1.01636
\(336\) 2.29417 0.125157
\(337\) 2.99699 0.163257 0.0816284 0.996663i \(-0.473988\pi\)
0.0816284 + 0.996663i \(0.473988\pi\)
\(338\) −34.6280 −1.88352
\(339\) −9.74852 −0.529467
\(340\) 7.50844 0.407202
\(341\) −4.03757 −0.218647
\(342\) 3.85158 0.208270
\(343\) 20.0437 1.08226
\(344\) −5.36268 −0.289136
\(345\) −1.46575 −0.0789132
\(346\) 6.26399 0.336754
\(347\) −29.0195 −1.55785 −0.778925 0.627117i \(-0.784235\pi\)
−0.778925 + 0.627117i \(0.784235\pi\)
\(348\) 1.00000 0.0536056
\(349\) 17.2606 0.923938 0.461969 0.886896i \(-0.347143\pi\)
0.461969 + 0.886896i \(0.347143\pi\)
\(350\) −6.54203 −0.349686
\(351\) 6.90131 0.368365
\(352\) 1.24445 0.0663295
\(353\) 14.6259 0.778459 0.389229 0.921141i \(-0.372741\pi\)
0.389229 + 0.921141i \(0.372741\pi\)
\(354\) −7.36268 −0.391322
\(355\) 14.9154 0.791625
\(356\) −15.8594 −0.840545
\(357\) 11.7521 0.621989
\(358\) 5.95368 0.314662
\(359\) 15.6189 0.824333 0.412167 0.911108i \(-0.364772\pi\)
0.412167 + 0.911108i \(0.364772\pi\)
\(360\) −1.46575 −0.0772517
\(361\) −4.16529 −0.219226
\(362\) 7.63029 0.401039
\(363\) 9.45134 0.496067
\(364\) 15.8328 0.829864
\(365\) 22.2452 1.16437
\(366\) 13.2143 0.690721
\(367\) −35.0750 −1.83090 −0.915450 0.402432i \(-0.868165\pi\)
−0.915450 + 0.402432i \(0.868165\pi\)
\(368\) 1.00000 0.0521286
\(369\) −3.53863 −0.184214
\(370\) 14.8436 0.771681
\(371\) 2.91593 0.151388
\(372\) −3.24445 −0.168217
\(373\) 29.6552 1.53549 0.767743 0.640758i \(-0.221380\pi\)
0.767743 + 0.640758i \(0.221380\pi\)
\(374\) 6.37483 0.329635
\(375\) 11.5084 0.594293
\(376\) −6.29417 −0.324597
\(377\) 6.90131 0.355435
\(378\) −2.29417 −0.118000
\(379\) −10.6259 −0.545817 −0.272908 0.962040i \(-0.587986\pi\)
−0.272908 + 0.962040i \(0.587986\pi\)
\(380\) −5.64545 −0.289605
\(381\) −2.78574 −0.142718
\(382\) 12.2300 0.625743
\(383\) 1.56479 0.0799570 0.0399785 0.999201i \(-0.487271\pi\)
0.0399785 + 0.999201i \(0.487271\pi\)
\(384\) 1.00000 0.0510310
\(385\) 4.18470 0.213272
\(386\) −7.69442 −0.391636
\(387\) 5.36268 0.272600
\(388\) −2.68267 −0.136192
\(389\) 15.9249 0.807423 0.403711 0.914886i \(-0.367720\pi\)
0.403711 + 0.914886i \(0.367720\pi\)
\(390\) −10.1156 −0.512222
\(391\) 5.12260 0.259061
\(392\) 1.73676 0.0877198
\(393\) −2.94762 −0.148688
\(394\) −13.0497 −0.657435
\(395\) −9.04707 −0.455207
\(396\) −1.24445 −0.0625361
\(397\) −14.8785 −0.746730 −0.373365 0.927684i \(-0.621796\pi\)
−0.373365 + 0.927684i \(0.621796\pi\)
\(398\) 6.45134 0.323376
\(399\) −8.83621 −0.442364
\(400\) −2.85158 −0.142579
\(401\) 26.9706 1.34685 0.673423 0.739258i \(-0.264823\pi\)
0.673423 + 0.739258i \(0.264823\pi\)
\(402\) 12.6914 0.632990
\(403\) −22.3910 −1.11537
\(404\) −10.0000 −0.497519
\(405\) 1.46575 0.0728336
\(406\) −2.29417 −0.113858
\(407\) 12.6025 0.624685
\(408\) 5.12260 0.253607
\(409\) −4.12088 −0.203765 −0.101882 0.994796i \(-0.532487\pi\)
−0.101882 + 0.994796i \(0.532487\pi\)
\(410\) 5.18673 0.256154
\(411\) −4.52285 −0.223096
\(412\) 17.6079 0.867478
\(413\) 16.8913 0.831165
\(414\) −1.00000 −0.0491473
\(415\) 2.36595 0.116140
\(416\) 6.90131 0.338364
\(417\) 16.5883 0.812335
\(418\) −4.79311 −0.234439
\(419\) 6.08428 0.297237 0.148618 0.988895i \(-0.452517\pi\)
0.148618 + 0.988895i \(0.452517\pi\)
\(420\) 3.36268 0.164082
\(421\) −2.10669 −0.102674 −0.0513369 0.998681i \(-0.516348\pi\)
−0.0513369 + 0.998681i \(0.516348\pi\)
\(422\) −10.5696 −0.514518
\(423\) 6.29417 0.306033
\(424\) 1.27102 0.0617260
\(425\) −14.6075 −0.708569
\(426\) 10.1759 0.493026
\(427\) −30.3158 −1.46709
\(428\) 14.8560 0.718090
\(429\) −8.58835 −0.414649
\(430\) −7.86033 −0.379059
\(431\) 16.9013 0.814107 0.407054 0.913404i \(-0.366556\pi\)
0.407054 + 0.913404i \(0.366556\pi\)
\(432\) −1.00000 −0.0481125
\(433\) 28.6700 1.37779 0.688896 0.724861i \(-0.258096\pi\)
0.688896 + 0.724861i \(0.258096\pi\)
\(434\) 7.44334 0.357292
\(435\) 1.46575 0.0702772
\(436\) 4.38584 0.210044
\(437\) −3.85158 −0.184246
\(438\) 15.1767 0.725171
\(439\) 24.1182 1.15110 0.575550 0.817767i \(-0.304788\pi\)
0.575550 + 0.817767i \(0.304788\pi\)
\(440\) 1.82405 0.0869583
\(441\) −1.73676 −0.0827030
\(442\) 35.3526 1.68155
\(443\) 0.259263 0.0123180 0.00615898 0.999981i \(-0.498040\pi\)
0.00615898 + 0.999981i \(0.498040\pi\)
\(444\) 10.1270 0.480605
\(445\) −23.2458 −1.10196
\(446\) 2.34315 0.110951
\(447\) 17.7573 0.839890
\(448\) −2.29417 −0.108390
\(449\) −25.3788 −1.19770 −0.598850 0.800861i \(-0.704375\pi\)
−0.598850 + 0.800861i \(0.704375\pi\)
\(450\) 2.85158 0.134425
\(451\) 4.40365 0.207360
\(452\) 9.74852 0.458532
\(453\) −7.23305 −0.339838
\(454\) −7.77871 −0.365073
\(455\) 23.2069 1.08796
\(456\) −3.85158 −0.180367
\(457\) 4.72064 0.220822 0.110411 0.993886i \(-0.464783\pi\)
0.110411 + 0.993886i \(0.464783\pi\)
\(458\) −21.5011 −1.00468
\(459\) −5.12260 −0.239103
\(460\) 1.46575 0.0683408
\(461\) 7.48966 0.348828 0.174414 0.984672i \(-0.444197\pi\)
0.174414 + 0.984672i \(0.444197\pi\)
\(462\) 2.85499 0.132826
\(463\) −11.1304 −0.517273 −0.258636 0.965975i \(-0.583273\pi\)
−0.258636 + 0.965975i \(0.583273\pi\)
\(464\) −1.00000 −0.0464238
\(465\) −4.75555 −0.220533
\(466\) −7.90056 −0.365986
\(467\) −31.2835 −1.44763 −0.723814 0.689995i \(-0.757613\pi\)
−0.723814 + 0.689995i \(0.757613\pi\)
\(468\) −6.90131 −0.319013
\(469\) −29.1163 −1.34447
\(470\) −9.22567 −0.425548
\(471\) −2.46137 −0.113414
\(472\) 7.36268 0.338895
\(473\) −6.67360 −0.306852
\(474\) −6.17232 −0.283504
\(475\) 10.9831 0.503940
\(476\) −11.7521 −0.538659
\(477\) −1.27102 −0.0581959
\(478\) −26.2452 −1.20043
\(479\) −2.24883 −0.102752 −0.0513758 0.998679i \(-0.516361\pi\)
−0.0513758 + 0.998679i \(0.516361\pi\)
\(480\) 1.46575 0.0669019
\(481\) 69.8894 3.18668
\(482\) −0.0187836 −0.000855570 0
\(483\) 2.29417 0.104389
\(484\) −9.45134 −0.429606
\(485\) −3.93211 −0.178548
\(486\) 1.00000 0.0453609
\(487\) 32.8295 1.48765 0.743824 0.668376i \(-0.233010\pi\)
0.743824 + 0.668376i \(0.233010\pi\)
\(488\) −13.2143 −0.598182
\(489\) 9.68439 0.437943
\(490\) 2.54566 0.115001
\(491\) 9.38146 0.423380 0.211690 0.977337i \(-0.432103\pi\)
0.211690 + 0.977337i \(0.432103\pi\)
\(492\) 3.53863 0.159534
\(493\) −5.12260 −0.230710
\(494\) −26.5810 −1.19593
\(495\) −1.82405 −0.0819851
\(496\) 3.24445 0.145680
\(497\) −23.3454 −1.04718
\(498\) 1.61416 0.0723323
\(499\) 19.0008 0.850590 0.425295 0.905055i \(-0.360170\pi\)
0.425295 + 0.905055i \(0.360170\pi\)
\(500\) −11.5084 −0.514673
\(501\) −20.8799 −0.932844
\(502\) −8.30558 −0.370696
\(503\) −27.9708 −1.24716 −0.623578 0.781761i \(-0.714322\pi\)
−0.623578 + 0.781761i \(0.714322\pi\)
\(504\) 2.29417 0.102191
\(505\) −14.6575 −0.652249
\(506\) 1.24445 0.0553227
\(507\) −34.6280 −1.53789
\(508\) 2.78574 0.123597
\(509\) 24.6778 1.09382 0.546911 0.837191i \(-0.315804\pi\)
0.546911 + 0.837191i \(0.315804\pi\)
\(510\) 7.50844 0.332479
\(511\) −34.8180 −1.54026
\(512\) −1.00000 −0.0441942
\(513\) 3.85158 0.170052
\(514\) 18.8106 0.829701
\(515\) 25.8087 1.13727
\(516\) −5.36268 −0.236079
\(517\) −7.83280 −0.344486
\(518\) −23.2330 −1.02080
\(519\) 6.26399 0.274958
\(520\) 10.1156 0.443597
\(521\) 1.59441 0.0698524 0.0349262 0.999390i \(-0.488880\pi\)
0.0349262 + 0.999390i \(0.488880\pi\)
\(522\) 1.00000 0.0437688
\(523\) 4.78936 0.209424 0.104712 0.994503i \(-0.466608\pi\)
0.104712 + 0.994503i \(0.466608\pi\)
\(524\) 2.94762 0.128767
\(525\) −6.54203 −0.285518
\(526\) −11.2294 −0.489626
\(527\) 16.6200 0.723980
\(528\) 1.24445 0.0541578
\(529\) 1.00000 0.0434783
\(530\) 1.86299 0.0809231
\(531\) −7.36268 −0.319513
\(532\) 8.83621 0.383098
\(533\) 24.4212 1.05780
\(534\) −15.8594 −0.686302
\(535\) 21.7751 0.941419
\(536\) −12.6914 −0.548186
\(537\) 5.95368 0.256920
\(538\) 5.39021 0.232389
\(539\) 2.16132 0.0930947
\(540\) −1.46575 −0.0630757
\(541\) 17.5312 0.753727 0.376864 0.926269i \(-0.377003\pi\)
0.376864 + 0.926269i \(0.377003\pi\)
\(542\) −31.0397 −1.33327
\(543\) 7.63029 0.327447
\(544\) −5.12260 −0.219630
\(545\) 6.42853 0.275368
\(546\) 15.8328 0.677581
\(547\) 10.3910 0.444285 0.222143 0.975014i \(-0.428695\pi\)
0.222143 + 0.975014i \(0.428695\pi\)
\(548\) 4.52285 0.193207
\(549\) 13.2143 0.563971
\(550\) −3.54866 −0.151315
\(551\) 3.85158 0.164083
\(552\) 1.00000 0.0425628
\(553\) 14.1604 0.602161
\(554\) 26.9564 1.14527
\(555\) 14.8436 0.630075
\(556\) −16.5883 −0.703503
\(557\) 14.6497 0.620727 0.310364 0.950618i \(-0.399549\pi\)
0.310364 + 0.950618i \(0.399549\pi\)
\(558\) −3.24445 −0.137349
\(559\) −37.0095 −1.56534
\(560\) −3.36268 −0.142099
\(561\) 6.37483 0.269146
\(562\) −3.80261 −0.160404
\(563\) −7.32246 −0.308605 −0.154302 0.988024i \(-0.549313\pi\)
−0.154302 + 0.988024i \(0.549313\pi\)
\(564\) −6.29417 −0.265033
\(565\) 14.2889 0.601137
\(566\) −24.1348 −1.01446
\(567\) −2.29417 −0.0963463
\(568\) −10.1759 −0.426973
\(569\) −23.2771 −0.975827 −0.487914 0.872892i \(-0.662242\pi\)
−0.487914 + 0.872892i \(0.662242\pi\)
\(570\) −5.64545 −0.236462
\(571\) 25.8842 1.08322 0.541611 0.840629i \(-0.317815\pi\)
0.541611 + 0.840629i \(0.317815\pi\)
\(572\) 8.58835 0.359097
\(573\) 12.2300 0.510917
\(574\) −8.11823 −0.338848
\(575\) −2.85158 −0.118919
\(576\) 1.00000 0.0416667
\(577\) −7.93225 −0.330224 −0.165112 0.986275i \(-0.552799\pi\)
−0.165112 + 0.986275i \(0.552799\pi\)
\(578\) −9.24105 −0.384377
\(579\) −7.69442 −0.319769
\(580\) −1.46575 −0.0608618
\(581\) −3.70317 −0.153633
\(582\) −2.68267 −0.111200
\(583\) 1.58172 0.0655081
\(584\) −15.1767 −0.628016
\(585\) −10.1156 −0.418227
\(586\) −19.4970 −0.805415
\(587\) −3.95103 −0.163076 −0.0815382 0.996670i \(-0.525983\pi\)
−0.0815382 + 0.996670i \(0.525983\pi\)
\(588\) 1.73676 0.0716229
\(589\) −12.4963 −0.514900
\(590\) 10.7918 0.444293
\(591\) −13.0497 −0.536794
\(592\) −10.1270 −0.416216
\(593\) −16.3910 −0.673096 −0.336548 0.941666i \(-0.609259\pi\)
−0.336548 + 0.941666i \(0.609259\pi\)
\(594\) −1.24445 −0.0510605
\(595\) −17.2257 −0.706184
\(596\) −17.7573 −0.727366
\(597\) 6.45134 0.264036
\(598\) 6.90131 0.282215
\(599\) 3.40440 0.139100 0.0695501 0.997578i \(-0.477844\pi\)
0.0695501 + 0.997578i \(0.477844\pi\)
\(600\) −2.85158 −0.116415
\(601\) −32.9417 −1.34372 −0.671861 0.740677i \(-0.734505\pi\)
−0.671861 + 0.740677i \(0.734505\pi\)
\(602\) 12.3029 0.501430
\(603\) 12.6914 0.516834
\(604\) 7.23305 0.294309
\(605\) −13.8533 −0.563216
\(606\) −10.0000 −0.406222
\(607\) −29.0398 −1.17869 −0.589345 0.807882i \(-0.700614\pi\)
−0.589345 + 0.807882i \(0.700614\pi\)
\(608\) 3.85158 0.156202
\(609\) −2.29417 −0.0929646
\(610\) −19.3688 −0.784219
\(611\) −43.4380 −1.75731
\(612\) 5.12260 0.207069
\(613\) −8.49403 −0.343071 −0.171535 0.985178i \(-0.554873\pi\)
−0.171535 + 0.985178i \(0.554873\pi\)
\(614\) −5.86299 −0.236611
\(615\) 5.18673 0.209149
\(616\) −2.85499 −0.115031
\(617\) −7.52612 −0.302990 −0.151495 0.988458i \(-0.548409\pi\)
−0.151495 + 0.988458i \(0.548409\pi\)
\(618\) 17.6079 0.708293
\(619\) 41.1365 1.65341 0.826707 0.562632i \(-0.190211\pi\)
0.826707 + 0.562632i \(0.190211\pi\)
\(620\) 4.75555 0.190987
\(621\) −1.00000 −0.0401286
\(622\) −10.3317 −0.414265
\(623\) 36.3841 1.45770
\(624\) 6.90131 0.276273
\(625\) −2.61054 −0.104422
\(626\) −27.8833 −1.11444
\(627\) −4.79311 −0.191419
\(628\) 2.46137 0.0982195
\(629\) −51.8765 −2.06845
\(630\) 3.36268 0.133972
\(631\) 22.8221 0.908535 0.454268 0.890865i \(-0.349901\pi\)
0.454268 + 0.890865i \(0.349901\pi\)
\(632\) 6.17232 0.245522
\(633\) −10.5696 −0.420103
\(634\) 5.07588 0.201589
\(635\) 4.08318 0.162036
\(636\) 1.27102 0.0503991
\(637\) 11.9859 0.474900
\(638\) −1.24445 −0.0492683
\(639\) 10.1759 0.402554
\(640\) −1.46575 −0.0579387
\(641\) −36.1999 −1.42981 −0.714904 0.699222i \(-0.753530\pi\)
−0.714904 + 0.699222i \(0.753530\pi\)
\(642\) 14.8560 0.586318
\(643\) 49.4021 1.94823 0.974115 0.226052i \(-0.0725819\pi\)
0.974115 + 0.226052i \(0.0725819\pi\)
\(644\) −2.29417 −0.0904031
\(645\) −7.86033 −0.309500
\(646\) 19.7301 0.776272
\(647\) 27.2445 1.07109 0.535545 0.844507i \(-0.320106\pi\)
0.535545 + 0.844507i \(0.320106\pi\)
\(648\) −1.00000 −0.0392837
\(649\) 9.16251 0.359660
\(650\) −19.6797 −0.771900
\(651\) 7.44334 0.291727
\(652\) −9.68439 −0.379270
\(653\) 46.9277 1.83642 0.918211 0.396091i \(-0.129634\pi\)
0.918211 + 0.396091i \(0.129634\pi\)
\(654\) 4.38584 0.171500
\(655\) 4.32047 0.168815
\(656\) −3.53863 −0.138160
\(657\) 15.1767 0.592099
\(658\) 14.4399 0.562927
\(659\) −35.4910 −1.38253 −0.691267 0.722599i \(-0.742947\pi\)
−0.691267 + 0.722599i \(0.742947\pi\)
\(660\) 1.82405 0.0710012
\(661\) −1.84380 −0.0717157 −0.0358578 0.999357i \(-0.511416\pi\)
−0.0358578 + 0.999357i \(0.511416\pi\)
\(662\) 25.2345 0.980769
\(663\) 35.3526 1.37298
\(664\) −1.61416 −0.0626416
\(665\) 12.9516 0.502243
\(666\) 10.1270 0.392412
\(667\) −1.00000 −0.0387202
\(668\) 20.8799 0.807866
\(669\) 2.34315 0.0905912
\(670\) −18.6024 −0.718674
\(671\) −16.4445 −0.634834
\(672\) −2.29417 −0.0884997
\(673\) −46.4039 −1.78874 −0.894369 0.447330i \(-0.852375\pi\)
−0.894369 + 0.447330i \(0.852375\pi\)
\(674\) −2.99699 −0.115440
\(675\) 2.85158 0.109758
\(676\) 34.6280 1.33185
\(677\) −12.7945 −0.491732 −0.245866 0.969304i \(-0.579072\pi\)
−0.245866 + 0.969304i \(0.579072\pi\)
\(678\) 9.74852 0.374390
\(679\) 6.15451 0.236188
\(680\) −7.50844 −0.287935
\(681\) −7.77871 −0.298081
\(682\) 4.03757 0.154606
\(683\) −16.0665 −0.614766 −0.307383 0.951586i \(-0.599453\pi\)
−0.307383 + 0.951586i \(0.599453\pi\)
\(684\) −3.85158 −0.147269
\(685\) 6.62935 0.253295
\(686\) −20.0437 −0.765270
\(687\) −21.5011 −0.820317
\(688\) 5.36268 0.204450
\(689\) 8.77168 0.334174
\(690\) 1.46575 0.0558000
\(691\) −46.2841 −1.76073 −0.880366 0.474295i \(-0.842703\pi\)
−0.880366 + 0.474295i \(0.842703\pi\)
\(692\) −6.26399 −0.238121
\(693\) 2.85499 0.108452
\(694\) 29.0195 1.10157
\(695\) −24.3143 −0.922295
\(696\) −1.00000 −0.0379049
\(697\) −18.1270 −0.686608
\(698\) −17.2606 −0.653323
\(699\) −7.90056 −0.298826
\(700\) 6.54203 0.247266
\(701\) 34.0864 1.28742 0.643712 0.765268i \(-0.277394\pi\)
0.643712 + 0.765268i \(0.277394\pi\)
\(702\) −6.90131 −0.260473
\(703\) 39.0049 1.47110
\(704\) −1.24445 −0.0469021
\(705\) −9.22567 −0.347459
\(706\) −14.6259 −0.550454
\(707\) 22.9417 0.862813
\(708\) 7.36268 0.276706
\(709\) 10.0213 0.376356 0.188178 0.982135i \(-0.439742\pi\)
0.188178 + 0.982135i \(0.439742\pi\)
\(710\) −14.9154 −0.559764
\(711\) −6.17232 −0.231480
\(712\) 15.8594 0.594355
\(713\) 3.24445 0.121506
\(714\) −11.7521 −0.439813
\(715\) 12.5883 0.470778
\(716\) −5.95368 −0.222500
\(717\) −26.2452 −0.980145
\(718\) −15.6189 −0.582892
\(719\) −14.1156 −0.526422 −0.263211 0.964738i \(-0.584782\pi\)
−0.263211 + 0.964738i \(0.584782\pi\)
\(720\) 1.46575 0.0546252
\(721\) −40.3956 −1.50441
\(722\) 4.16529 0.155016
\(723\) −0.0187836 −0.000698570 0
\(724\) −7.63029 −0.283578
\(725\) 2.85158 0.105905
\(726\) −9.45134 −0.350772
\(727\) −13.2334 −0.490801 −0.245401 0.969422i \(-0.578920\pi\)
−0.245401 + 0.969422i \(0.578920\pi\)
\(728\) −15.8328 −0.586803
\(729\) 1.00000 0.0370370
\(730\) −22.2452 −0.823332
\(731\) 27.4709 1.01605
\(732\) −13.2143 −0.488413
\(733\) −23.8645 −0.881455 −0.440728 0.897641i \(-0.645279\pi\)
−0.440728 + 0.897641i \(0.645279\pi\)
\(734\) 35.0750 1.29464
\(735\) 2.54566 0.0938980
\(736\) −1.00000 −0.0368605
\(737\) −15.7939 −0.581775
\(738\) 3.53863 0.130259
\(739\) 30.3682 1.11711 0.558555 0.829467i \(-0.311356\pi\)
0.558555 + 0.829467i \(0.311356\pi\)
\(740\) −14.8436 −0.545661
\(741\) −26.5810 −0.976476
\(742\) −2.91593 −0.107047
\(743\) −44.7277 −1.64090 −0.820450 0.571718i \(-0.806277\pi\)
−0.820450 + 0.571718i \(0.806277\pi\)
\(744\) 3.24445 0.118947
\(745\) −26.0277 −0.953580
\(746\) −29.6552 −1.08575
\(747\) 1.61416 0.0590591
\(748\) −6.37483 −0.233087
\(749\) −34.0822 −1.24534
\(750\) −11.5084 −0.420229
\(751\) 6.76655 0.246915 0.123457 0.992350i \(-0.460602\pi\)
0.123457 + 0.992350i \(0.460602\pi\)
\(752\) 6.29417 0.229525
\(753\) −8.30558 −0.302672
\(754\) −6.90131 −0.251331
\(755\) 10.6018 0.385840
\(756\) 2.29417 0.0834383
\(757\) 24.1338 0.877157 0.438579 0.898693i \(-0.355482\pi\)
0.438579 + 0.898693i \(0.355482\pi\)
\(758\) 10.6259 0.385951
\(759\) 1.24445 0.0451708
\(760\) 5.64545 0.204782
\(761\) 19.1021 0.692452 0.346226 0.938151i \(-0.387463\pi\)
0.346226 + 0.938151i \(0.387463\pi\)
\(762\) 2.78574 0.100917
\(763\) −10.0619 −0.364264
\(764\) −12.2300 −0.442467
\(765\) 7.50844 0.271468
\(766\) −1.56479 −0.0565382
\(767\) 50.8121 1.83472
\(768\) −1.00000 −0.0360844
\(769\) 22.4726 0.810382 0.405191 0.914232i \(-0.367205\pi\)
0.405191 + 0.914232i \(0.367205\pi\)
\(770\) −4.18470 −0.150806
\(771\) 18.8106 0.677448
\(772\) 7.69442 0.276928
\(773\) 45.0398 1.61997 0.809985 0.586451i \(-0.199475\pi\)
0.809985 + 0.586451i \(0.199475\pi\)
\(774\) −5.36268 −0.192758
\(775\) −9.25183 −0.332336
\(776\) 2.68267 0.0963022
\(777\) −23.2330 −0.833481
\(778\) −15.9249 −0.570934
\(779\) 13.6293 0.488321
\(780\) 10.1156 0.362196
\(781\) −12.6635 −0.453135
\(782\) −5.12260 −0.183184
\(783\) 1.00000 0.0357371
\(784\) −1.73676 −0.0620273
\(785\) 3.60775 0.128766
\(786\) 2.94762 0.105138
\(787\) −33.9749 −1.21108 −0.605538 0.795817i \(-0.707042\pi\)
−0.605538 + 0.795817i \(0.707042\pi\)
\(788\) 13.0497 0.464877
\(789\) −11.2294 −0.399778
\(790\) 9.04707 0.321880
\(791\) −22.3648 −0.795201
\(792\) 1.24445 0.0442197
\(793\) −91.1957 −3.23845
\(794\) 14.8785 0.528018
\(795\) 1.86299 0.0660734
\(796\) −6.45134 −0.228662
\(797\) 17.7033 0.627083 0.313542 0.949574i \(-0.398484\pi\)
0.313542 + 0.949574i \(0.398484\pi\)
\(798\) 8.83621 0.312798
\(799\) 32.2425 1.14066
\(800\) 2.85158 0.100819
\(801\) −15.8594 −0.560363
\(802\) −26.9706 −0.952364
\(803\) −18.8867 −0.666496
\(804\) −12.6914 −0.447592
\(805\) −3.36268 −0.118519
\(806\) 22.3910 0.788688
\(807\) 5.39021 0.189744
\(808\) 10.0000 0.351799
\(809\) −39.8732 −1.40187 −0.700934 0.713226i \(-0.747233\pi\)
−0.700934 + 0.713226i \(0.747233\pi\)
\(810\) −1.46575 −0.0515011
\(811\) 35.6979 1.25352 0.626761 0.779212i \(-0.284380\pi\)
0.626761 + 0.779212i \(0.284380\pi\)
\(812\) 2.29417 0.0805097
\(813\) −31.0397 −1.08861
\(814\) −12.6025 −0.441719
\(815\) −14.1949 −0.497224
\(816\) −5.12260 −0.179327
\(817\) −20.6548 −0.722621
\(818\) 4.12088 0.144083
\(819\) 15.8328 0.553243
\(820\) −5.18673 −0.181129
\(821\) −8.89393 −0.310400 −0.155200 0.987883i \(-0.549602\pi\)
−0.155200 + 0.987883i \(0.549602\pi\)
\(822\) 4.52285 0.157752
\(823\) 3.77967 0.131751 0.0658756 0.997828i \(-0.479016\pi\)
0.0658756 + 0.997828i \(0.479016\pi\)
\(824\) −17.6079 −0.613400
\(825\) −3.54866 −0.123549
\(826\) −16.8913 −0.587723
\(827\) −39.3528 −1.36843 −0.684215 0.729280i \(-0.739855\pi\)
−0.684215 + 0.729280i \(0.739855\pi\)
\(828\) 1.00000 0.0347524
\(829\) −6.38337 −0.221704 −0.110852 0.993837i \(-0.535358\pi\)
−0.110852 + 0.993837i \(0.535358\pi\)
\(830\) −2.36595 −0.0821235
\(831\) 26.9564 0.935106
\(832\) −6.90131 −0.239260
\(833\) −8.89675 −0.308254
\(834\) −16.5883 −0.574408
\(835\) 30.6046 1.05912
\(836\) 4.79311 0.165773
\(837\) −3.24445 −0.112145
\(838\) −6.08428 −0.210178
\(839\) −11.5866 −0.400015 −0.200007 0.979794i \(-0.564097\pi\)
−0.200007 + 0.979794i \(0.564097\pi\)
\(840\) −3.36268 −0.116023
\(841\) 1.00000 0.0344828
\(842\) 2.10669 0.0726014
\(843\) −3.80261 −0.130969
\(844\) 10.5696 0.363819
\(845\) 50.7559 1.74606
\(846\) −6.29417 −0.216398
\(847\) 21.6830 0.745037
\(848\) −1.27102 −0.0436469
\(849\) −24.1348 −0.828303
\(850\) 14.6075 0.501034
\(851\) −10.1270 −0.347148
\(852\) −10.1759 −0.348622
\(853\) −41.9613 −1.43673 −0.718363 0.695668i \(-0.755108\pi\)
−0.718363 + 0.695668i \(0.755108\pi\)
\(854\) 30.3158 1.03739
\(855\) −5.64545 −0.193070
\(856\) −14.8560 −0.507766
\(857\) 19.2001 0.655862 0.327931 0.944702i \(-0.393649\pi\)
0.327931 + 0.944702i \(0.393649\pi\)
\(858\) 8.58835 0.293201
\(859\) 12.1505 0.414569 0.207285 0.978281i \(-0.433537\pi\)
0.207285 + 0.978281i \(0.433537\pi\)
\(860\) 7.86033 0.268035
\(861\) −8.11823 −0.276668
\(862\) −16.9013 −0.575661
\(863\) 9.70304 0.330295 0.165148 0.986269i \(-0.447190\pi\)
0.165148 + 0.986269i \(0.447190\pi\)
\(864\) 1.00000 0.0340207
\(865\) −9.18142 −0.312178
\(866\) −28.6700 −0.974245
\(867\) −9.24105 −0.313842
\(868\) −7.44334 −0.252643
\(869\) 7.68116 0.260566
\(870\) −1.46575 −0.0496935
\(871\) −87.5874 −2.96778
\(872\) −4.38584 −0.148523
\(873\) −2.68267 −0.0907945
\(874\) 3.85158 0.130282
\(875\) 26.4024 0.892563
\(876\) −15.1767 −0.512773
\(877\) 38.9719 1.31599 0.657994 0.753023i \(-0.271405\pi\)
0.657994 + 0.753023i \(0.271405\pi\)
\(878\) −24.1182 −0.813951
\(879\) −19.4970 −0.657619
\(880\) −1.82405 −0.0614888
\(881\) −43.2053 −1.45562 −0.727812 0.685776i \(-0.759463\pi\)
−0.727812 + 0.685776i \(0.759463\pi\)
\(882\) 1.73676 0.0584799
\(883\) 27.9941 0.942077 0.471039 0.882113i \(-0.343879\pi\)
0.471039 + 0.882113i \(0.343879\pi\)
\(884\) −35.3526 −1.18904
\(885\) 10.7918 0.362763
\(886\) −0.259263 −0.00871011
\(887\) −30.2380 −1.01529 −0.507646 0.861566i \(-0.669484\pi\)
−0.507646 + 0.861566i \(0.669484\pi\)
\(888\) −10.1270 −0.339839
\(889\) −6.39096 −0.214346
\(890\) 23.2458 0.779202
\(891\) −1.24445 −0.0416907
\(892\) −2.34315 −0.0784543
\(893\) −24.2425 −0.811246
\(894\) −17.7573 −0.593892
\(895\) −8.72660 −0.291698
\(896\) 2.29417 0.0766430
\(897\) 6.90131 0.230428
\(898\) 25.3788 0.846902
\(899\) −3.24445 −0.108209
\(900\) −2.85158 −0.0950528
\(901\) −6.51091 −0.216910
\(902\) −4.40365 −0.146626
\(903\) 12.3029 0.409416
\(904\) −9.74852 −0.324231
\(905\) −11.1841 −0.371771
\(906\) 7.23305 0.240302
\(907\) −44.4138 −1.47474 −0.737368 0.675492i \(-0.763931\pi\)
−0.737368 + 0.675492i \(0.763931\pi\)
\(908\) 7.77871 0.258145
\(909\) −10.0000 −0.331679
\(910\) −23.2069 −0.769301
\(911\) −15.8984 −0.526739 −0.263369 0.964695i \(-0.584834\pi\)
−0.263369 + 0.964695i \(0.584834\pi\)
\(912\) 3.85158 0.127539
\(913\) −2.00875 −0.0664799
\(914\) −4.72064 −0.156145
\(915\) −19.3688 −0.640312
\(916\) 21.5011 0.710415
\(917\) −6.76236 −0.223313
\(918\) 5.12260 0.169071
\(919\) −14.3640 −0.473825 −0.236912 0.971531i \(-0.576135\pi\)
−0.236912 + 0.971531i \(0.576135\pi\)
\(920\) −1.46575 −0.0483243
\(921\) −5.86299 −0.193192
\(922\) −7.48966 −0.246659
\(923\) −70.2273 −2.31156
\(924\) −2.85499 −0.0939223
\(925\) 28.8779 0.949501
\(926\) 11.1304 0.365767
\(927\) 17.6079 0.578319
\(928\) 1.00000 0.0328266
\(929\) −53.1323 −1.74321 −0.871607 0.490205i \(-0.836922\pi\)
−0.871607 + 0.490205i \(0.836922\pi\)
\(930\) 4.75555 0.155941
\(931\) 6.68929 0.219233
\(932\) 7.90056 0.258791
\(933\) −10.3317 −0.338246
\(934\) 31.2835 1.02363
\(935\) −9.34390 −0.305578
\(936\) 6.90131 0.225576
\(937\) 29.8442 0.974968 0.487484 0.873132i \(-0.337915\pi\)
0.487484 + 0.873132i \(0.337915\pi\)
\(938\) 29.1163 0.950682
\(939\) −27.8833 −0.909936
\(940\) 9.22567 0.300908
\(941\) −29.6552 −0.966731 −0.483365 0.875419i \(-0.660586\pi\)
−0.483365 + 0.875419i \(0.660586\pi\)
\(942\) 2.46137 0.0801959
\(943\) −3.53863 −0.115234
\(944\) −7.36268 −0.239635
\(945\) 3.36268 0.109388
\(946\) 6.67360 0.216977
\(947\) 17.6958 0.575036 0.287518 0.957775i \(-0.407170\pi\)
0.287518 + 0.957775i \(0.407170\pi\)
\(948\) 6.17232 0.200468
\(949\) −104.739 −3.39997
\(950\) −10.9831 −0.356340
\(951\) 5.07588 0.164597
\(952\) 11.7521 0.380889
\(953\) 34.7341 1.12515 0.562574 0.826747i \(-0.309811\pi\)
0.562574 + 0.826747i \(0.309811\pi\)
\(954\) 1.27102 0.0411507
\(955\) −17.9262 −0.580077
\(956\) 26.2452 0.848831
\(957\) −1.24445 −0.0402274
\(958\) 2.24883 0.0726563
\(959\) −10.3762 −0.335065
\(960\) −1.46575 −0.0473068
\(961\) −20.4735 −0.660436
\(962\) −69.8894 −2.25332
\(963\) 14.8560 0.478727
\(964\) 0.0187836 0.000604979 0
\(965\) 11.2781 0.363054
\(966\) −2.29417 −0.0738139
\(967\) 22.7039 0.730109 0.365054 0.930986i \(-0.381050\pi\)
0.365054 + 0.930986i \(0.381050\pi\)
\(968\) 9.45134 0.303778
\(969\) 19.7301 0.633823
\(970\) 3.93211 0.126253
\(971\) −19.7865 −0.634979 −0.317489 0.948262i \(-0.602840\pi\)
−0.317489 + 0.948262i \(0.602840\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 38.0566 1.22004
\(974\) −32.8295 −1.05193
\(975\) −19.6797 −0.630254
\(976\) 13.2143 0.422978
\(977\) 10.4212 0.333402 0.166701 0.986007i \(-0.446689\pi\)
0.166701 + 0.986007i \(0.446689\pi\)
\(978\) −9.68439 −0.309673
\(979\) 19.7362 0.630773
\(980\) −2.54566 −0.0813180
\(981\) 4.38584 0.140029
\(982\) −9.38146 −0.299375
\(983\) −34.8299 −1.11090 −0.555451 0.831549i \(-0.687454\pi\)
−0.555451 + 0.831549i \(0.687454\pi\)
\(984\) −3.53863 −0.112807
\(985\) 19.1276 0.609456
\(986\) 5.12260 0.163137
\(987\) 14.4399 0.459628
\(988\) 26.5810 0.845653
\(989\) 5.36268 0.170523
\(990\) 1.82405 0.0579722
\(991\) −4.67626 −0.148546 −0.0742731 0.997238i \(-0.523664\pi\)
−0.0742731 + 0.997238i \(0.523664\pi\)
\(992\) −3.24445 −0.103011
\(993\) 25.2345 0.800794
\(994\) 23.3454 0.740471
\(995\) −9.45603 −0.299776
\(996\) −1.61416 −0.0511467
\(997\) 5.07116 0.160605 0.0803026 0.996771i \(-0.474411\pi\)
0.0803026 + 0.996771i \(0.474411\pi\)
\(998\) −19.0008 −0.601458
\(999\) 10.1270 0.320403
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4002.2.a.ba.1.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4002.2.a.ba.1.3 4 1.1 even 1 trivial