Properties

Label 4001.2.a.b.1.3
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.77961 q^{2} -0.970175 q^{3} +5.72623 q^{4} +0.973772 q^{5} +2.69671 q^{6} +0.392591 q^{7} -10.3575 q^{8} -2.05876 q^{9} +O(q^{10})\) \(q-2.77961 q^{2} -0.970175 q^{3} +5.72623 q^{4} +0.973772 q^{5} +2.69671 q^{6} +0.392591 q^{7} -10.3575 q^{8} -2.05876 q^{9} -2.70671 q^{10} -4.34690 q^{11} -5.55544 q^{12} +2.35614 q^{13} -1.09125 q^{14} -0.944729 q^{15} +17.3373 q^{16} +6.89369 q^{17} +5.72255 q^{18} +6.69926 q^{19} +5.57604 q^{20} -0.380881 q^{21} +12.0827 q^{22} -2.69910 q^{23} +10.0486 q^{24} -4.05177 q^{25} -6.54914 q^{26} +4.90788 q^{27} +2.24806 q^{28} +0.233462 q^{29} +2.62598 q^{30} +9.20330 q^{31} -27.4759 q^{32} +4.21725 q^{33} -19.1618 q^{34} +0.382294 q^{35} -11.7889 q^{36} -6.23130 q^{37} -18.6213 q^{38} -2.28586 q^{39} -10.0858 q^{40} +11.9724 q^{41} +1.05870 q^{42} +5.31449 q^{43} -24.8913 q^{44} -2.00476 q^{45} +7.50244 q^{46} -5.36754 q^{47} -16.8202 q^{48} -6.84587 q^{49} +11.2623 q^{50} -6.68808 q^{51} +13.4918 q^{52} -5.62281 q^{53} -13.6420 q^{54} -4.23289 q^{55} -4.06624 q^{56} -6.49946 q^{57} -0.648933 q^{58} -7.14186 q^{59} -5.40974 q^{60} +9.12946 q^{61} -25.5816 q^{62} -0.808250 q^{63} +41.6977 q^{64} +2.29434 q^{65} -11.7223 q^{66} -2.47276 q^{67} +39.4749 q^{68} +2.61860 q^{69} -1.06263 q^{70} -7.84018 q^{71} +21.3236 q^{72} -12.2002 q^{73} +17.3206 q^{74} +3.93092 q^{75} +38.3615 q^{76} -1.70655 q^{77} +6.35381 q^{78} -9.57153 q^{79} +16.8825 q^{80} +1.41478 q^{81} -33.2787 q^{82} +13.8667 q^{83} -2.18101 q^{84} +6.71288 q^{85} -14.7722 q^{86} -0.226499 q^{87} +45.0229 q^{88} -9.52619 q^{89} +5.57246 q^{90} +0.924997 q^{91} -15.4557 q^{92} -8.92880 q^{93} +14.9197 q^{94} +6.52355 q^{95} +26.6564 q^{96} +15.4817 q^{97} +19.0289 q^{98} +8.94923 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18} + 86 q^{19} + 26 q^{20} + 22 q^{21} + 54 q^{22} + 55 q^{23} + 72 q^{24} + 241 q^{25} + 32 q^{26} + 97 q^{27} + 75 q^{28} + 27 q^{29} - 10 q^{30} + 276 q^{31} + 20 q^{33} + 122 q^{34} + 30 q^{35} + 278 q^{36} + 42 q^{37} + 14 q^{38} + 113 q^{39} + 115 q^{40} + 39 q^{41} + 15 q^{42} + 65 q^{43} + 32 q^{44} + 54 q^{45} + 65 q^{46} + 82 q^{47} + 117 q^{48} + 297 q^{49} + 4 q^{50} + 45 q^{51} + 136 q^{52} + 21 q^{53} + 93 q^{54} + 252 q^{55} + 74 q^{56} + 14 q^{57} + 54 q^{58} + 95 q^{59} + 58 q^{60} + 131 q^{61} + 14 q^{62} + 88 q^{63} + 368 q^{64} - 9 q^{65} + 52 q^{66} + 90 q^{67} + 27 q^{68} + 101 q^{69} + 18 q^{70} + 117 q^{71} - 15 q^{72} + 72 q^{73} + 7 q^{74} + 150 q^{75} + 148 q^{76} + 7 q^{77} + 22 q^{78} + 287 q^{79} + 43 q^{80} + 244 q^{81} + 86 q^{82} + 25 q^{83} + 14 q^{84} + 41 q^{85} + 25 q^{86} + 82 q^{87} + 115 q^{88} + 48 q^{89} + 78 q^{90} + 272 q^{91} + 69 q^{92} + 44 q^{93} + 161 q^{94} + 37 q^{95} + 129 q^{96} + 106 q^{97} - 46 q^{98} + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.77961 −1.96548 −0.982741 0.184989i \(-0.940775\pi\)
−0.982741 + 0.184989i \(0.940775\pi\)
\(3\) −0.970175 −0.560131 −0.280065 0.959981i \(-0.590356\pi\)
−0.280065 + 0.959981i \(0.590356\pi\)
\(4\) 5.72623 2.86312
\(5\) 0.973772 0.435484 0.217742 0.976006i \(-0.430131\pi\)
0.217742 + 0.976006i \(0.430131\pi\)
\(6\) 2.69671 1.10093
\(7\) 0.392591 0.148385 0.0741926 0.997244i \(-0.476362\pi\)
0.0741926 + 0.997244i \(0.476362\pi\)
\(8\) −10.3575 −3.66192
\(9\) −2.05876 −0.686254
\(10\) −2.70671 −0.855936
\(11\) −4.34690 −1.31064 −0.655320 0.755352i \(-0.727466\pi\)
−0.655320 + 0.755352i \(0.727466\pi\)
\(12\) −5.55544 −1.60372
\(13\) 2.35614 0.653475 0.326737 0.945115i \(-0.394051\pi\)
0.326737 + 0.945115i \(0.394051\pi\)
\(14\) −1.09125 −0.291648
\(15\) −0.944729 −0.243928
\(16\) 17.3373 4.33432
\(17\) 6.89369 1.67196 0.835982 0.548756i \(-0.184898\pi\)
0.835982 + 0.548756i \(0.184898\pi\)
\(18\) 5.72255 1.34882
\(19\) 6.69926 1.53692 0.768458 0.639900i \(-0.221024\pi\)
0.768458 + 0.639900i \(0.221024\pi\)
\(20\) 5.57604 1.24684
\(21\) −0.380881 −0.0831151
\(22\) 12.0827 2.57604
\(23\) −2.69910 −0.562801 −0.281400 0.959590i \(-0.590799\pi\)
−0.281400 + 0.959590i \(0.590799\pi\)
\(24\) 10.0486 2.05115
\(25\) −4.05177 −0.810354
\(26\) −6.54914 −1.28439
\(27\) 4.90788 0.944522
\(28\) 2.24806 0.424844
\(29\) 0.233462 0.0433528 0.0216764 0.999765i \(-0.493100\pi\)
0.0216764 + 0.999765i \(0.493100\pi\)
\(30\) 2.62598 0.479436
\(31\) 9.20330 1.65296 0.826480 0.562966i \(-0.190340\pi\)
0.826480 + 0.562966i \(0.190340\pi\)
\(32\) −27.4759 −4.85710
\(33\) 4.21725 0.734129
\(34\) −19.1618 −3.28622
\(35\) 0.382294 0.0646194
\(36\) −11.7889 −1.96482
\(37\) −6.23130 −1.02442 −0.512210 0.858860i \(-0.671173\pi\)
−0.512210 + 0.858860i \(0.671173\pi\)
\(38\) −18.6213 −3.02078
\(39\) −2.28586 −0.366031
\(40\) −10.0858 −1.59471
\(41\) 11.9724 1.86978 0.934890 0.354937i \(-0.115498\pi\)
0.934890 + 0.354937i \(0.115498\pi\)
\(42\) 1.05870 0.163361
\(43\) 5.31449 0.810452 0.405226 0.914217i \(-0.367193\pi\)
0.405226 + 0.914217i \(0.367193\pi\)
\(44\) −24.8913 −3.75251
\(45\) −2.00476 −0.298852
\(46\) 7.50244 1.10617
\(47\) −5.36754 −0.782937 −0.391468 0.920192i \(-0.628033\pi\)
−0.391468 + 0.920192i \(0.628033\pi\)
\(48\) −16.8202 −2.42778
\(49\) −6.84587 −0.977982
\(50\) 11.2623 1.59273
\(51\) −6.68808 −0.936519
\(52\) 13.4918 1.87097
\(53\) −5.62281 −0.772352 −0.386176 0.922425i \(-0.626204\pi\)
−0.386176 + 0.922425i \(0.626204\pi\)
\(54\) −13.6420 −1.85644
\(55\) −4.23289 −0.570762
\(56\) −4.06624 −0.543375
\(57\) −6.49946 −0.860874
\(58\) −0.648933 −0.0852091
\(59\) −7.14186 −0.929791 −0.464896 0.885366i \(-0.653908\pi\)
−0.464896 + 0.885366i \(0.653908\pi\)
\(60\) −5.40974 −0.698394
\(61\) 9.12946 1.16891 0.584454 0.811427i \(-0.301309\pi\)
0.584454 + 0.811427i \(0.301309\pi\)
\(62\) −25.5816 −3.24886
\(63\) −0.808250 −0.101830
\(64\) 41.6977 5.21222
\(65\) 2.29434 0.284578
\(66\) −11.7223 −1.44292
\(67\) −2.47276 −0.302096 −0.151048 0.988526i \(-0.548265\pi\)
−0.151048 + 0.988526i \(0.548265\pi\)
\(68\) 39.4749 4.78703
\(69\) 2.61860 0.315242
\(70\) −1.06263 −0.127008
\(71\) −7.84018 −0.930458 −0.465229 0.885190i \(-0.654028\pi\)
−0.465229 + 0.885190i \(0.654028\pi\)
\(72\) 21.3236 2.51301
\(73\) −12.2002 −1.42792 −0.713962 0.700185i \(-0.753101\pi\)
−0.713962 + 0.700185i \(0.753101\pi\)
\(74\) 17.3206 2.01348
\(75\) 3.93092 0.453904
\(76\) 38.3615 4.40037
\(77\) −1.70655 −0.194480
\(78\) 6.35381 0.719427
\(79\) −9.57153 −1.07688 −0.538441 0.842663i \(-0.680986\pi\)
−0.538441 + 0.842663i \(0.680986\pi\)
\(80\) 16.8825 1.88753
\(81\) 1.41478 0.157198
\(82\) −33.2787 −3.67502
\(83\) 13.8667 1.52207 0.761037 0.648709i \(-0.224691\pi\)
0.761037 + 0.648709i \(0.224691\pi\)
\(84\) −2.18101 −0.237968
\(85\) 6.71288 0.728114
\(86\) −14.7722 −1.59293
\(87\) −0.226499 −0.0242832
\(88\) 45.0229 4.79945
\(89\) −9.52619 −1.00977 −0.504887 0.863185i \(-0.668466\pi\)
−0.504887 + 0.863185i \(0.668466\pi\)
\(90\) 5.57246 0.587389
\(91\) 0.924997 0.0969660
\(92\) −15.4557 −1.61136
\(93\) −8.92880 −0.925874
\(94\) 14.9197 1.53885
\(95\) 6.52355 0.669302
\(96\) 26.6564 2.72061
\(97\) 15.4817 1.57193 0.785964 0.618273i \(-0.212167\pi\)
0.785964 + 0.618273i \(0.212167\pi\)
\(98\) 19.0289 1.92220
\(99\) 8.94923 0.899431
\(100\) −23.2014 −2.32014
\(101\) 2.44716 0.243502 0.121751 0.992561i \(-0.461149\pi\)
0.121751 + 0.992561i \(0.461149\pi\)
\(102\) 18.5903 1.84071
\(103\) 17.2924 1.70387 0.851934 0.523650i \(-0.175430\pi\)
0.851934 + 0.523650i \(0.175430\pi\)
\(104\) −24.4036 −2.39297
\(105\) −0.370892 −0.0361953
\(106\) 15.6292 1.51804
\(107\) 6.25436 0.604632 0.302316 0.953208i \(-0.402240\pi\)
0.302316 + 0.953208i \(0.402240\pi\)
\(108\) 28.1037 2.70428
\(109\) −1.22278 −0.117122 −0.0585608 0.998284i \(-0.518651\pi\)
−0.0585608 + 0.998284i \(0.518651\pi\)
\(110\) 11.7658 1.12182
\(111\) 6.04545 0.573809
\(112\) 6.80645 0.643149
\(113\) −2.78485 −0.261977 −0.130988 0.991384i \(-0.541815\pi\)
−0.130988 + 0.991384i \(0.541815\pi\)
\(114\) 18.0660 1.69203
\(115\) −2.62830 −0.245091
\(116\) 1.33686 0.124124
\(117\) −4.85072 −0.448450
\(118\) 19.8516 1.82749
\(119\) 2.70640 0.248095
\(120\) 9.78500 0.893244
\(121\) 7.89552 0.717775
\(122\) −25.3764 −2.29747
\(123\) −11.6154 −1.04732
\(124\) 52.7002 4.73262
\(125\) −8.81436 −0.788380
\(126\) 2.24662 0.200145
\(127\) −7.66055 −0.679764 −0.339882 0.940468i \(-0.610387\pi\)
−0.339882 + 0.940468i \(0.610387\pi\)
\(128\) −60.9517 −5.38742
\(129\) −5.15598 −0.453959
\(130\) −6.37737 −0.559332
\(131\) 4.42940 0.386998 0.193499 0.981100i \(-0.438016\pi\)
0.193499 + 0.981100i \(0.438016\pi\)
\(132\) 24.1490 2.10190
\(133\) 2.63007 0.228056
\(134\) 6.87331 0.593763
\(135\) 4.77916 0.411324
\(136\) −71.4012 −6.12260
\(137\) −21.1506 −1.80701 −0.903507 0.428573i \(-0.859016\pi\)
−0.903507 + 0.428573i \(0.859016\pi\)
\(138\) −7.27867 −0.619602
\(139\) 10.6865 0.906416 0.453208 0.891405i \(-0.350279\pi\)
0.453208 + 0.891405i \(0.350279\pi\)
\(140\) 2.18910 0.185013
\(141\) 5.20746 0.438547
\(142\) 21.7926 1.82880
\(143\) −10.2419 −0.856470
\(144\) −35.6933 −2.97444
\(145\) 0.227339 0.0188795
\(146\) 33.9118 2.80656
\(147\) 6.64169 0.547798
\(148\) −35.6819 −2.93303
\(149\) 12.4241 1.01782 0.508911 0.860819i \(-0.330048\pi\)
0.508911 + 0.860819i \(0.330048\pi\)
\(150\) −10.9264 −0.892140
\(151\) −0.852439 −0.0693705 −0.0346853 0.999398i \(-0.511043\pi\)
−0.0346853 + 0.999398i \(0.511043\pi\)
\(152\) −69.3874 −5.62806
\(153\) −14.1925 −1.14739
\(154\) 4.74355 0.382246
\(155\) 8.96191 0.719838
\(156\) −13.0894 −1.04799
\(157\) −1.03294 −0.0824377 −0.0412188 0.999150i \(-0.513124\pi\)
−0.0412188 + 0.999150i \(0.513124\pi\)
\(158\) 26.6051 2.11659
\(159\) 5.45511 0.432618
\(160\) −26.7553 −2.11519
\(161\) −1.05964 −0.0835113
\(162\) −3.93254 −0.308969
\(163\) 2.54589 0.199410 0.0997048 0.995017i \(-0.468210\pi\)
0.0997048 + 0.995017i \(0.468210\pi\)
\(164\) 68.5569 5.35340
\(165\) 4.10664 0.319701
\(166\) −38.5441 −2.99161
\(167\) −5.05576 −0.391227 −0.195613 0.980681i \(-0.562670\pi\)
−0.195613 + 0.980681i \(0.562670\pi\)
\(168\) 3.94497 0.304361
\(169\) −7.44862 −0.572971
\(170\) −18.6592 −1.43109
\(171\) −13.7922 −1.05471
\(172\) 30.4320 2.32042
\(173\) −10.2984 −0.782974 −0.391487 0.920184i \(-0.628039\pi\)
−0.391487 + 0.920184i \(0.628039\pi\)
\(174\) 0.629579 0.0477282
\(175\) −1.59069 −0.120245
\(176\) −75.3633 −5.68072
\(177\) 6.92885 0.520804
\(178\) 26.4791 1.98469
\(179\) 4.01654 0.300210 0.150105 0.988670i \(-0.452039\pi\)
0.150105 + 0.988670i \(0.452039\pi\)
\(180\) −11.4797 −0.855649
\(181\) −8.51582 −0.632976 −0.316488 0.948597i \(-0.602504\pi\)
−0.316488 + 0.948597i \(0.602504\pi\)
\(182\) −2.57113 −0.190585
\(183\) −8.85718 −0.654741
\(184\) 27.9558 2.06093
\(185\) −6.06786 −0.446118
\(186\) 24.8186 1.81979
\(187\) −29.9662 −2.19134
\(188\) −30.7358 −2.24164
\(189\) 1.92679 0.140153
\(190\) −18.1329 −1.31550
\(191\) 25.2990 1.83057 0.915286 0.402805i \(-0.131965\pi\)
0.915286 + 0.402805i \(0.131965\pi\)
\(192\) −40.4541 −2.91952
\(193\) 0.181638 0.0130746 0.00653728 0.999979i \(-0.497919\pi\)
0.00653728 + 0.999979i \(0.497919\pi\)
\(194\) −43.0331 −3.08959
\(195\) −2.22591 −0.159401
\(196\) −39.2011 −2.80008
\(197\) 13.2097 0.941149 0.470575 0.882360i \(-0.344047\pi\)
0.470575 + 0.882360i \(0.344047\pi\)
\(198\) −24.8754 −1.76781
\(199\) 10.3487 0.733597 0.366798 0.930300i \(-0.380454\pi\)
0.366798 + 0.930300i \(0.380454\pi\)
\(200\) 41.9661 2.96745
\(201\) 2.39901 0.169213
\(202\) −6.80216 −0.478598
\(203\) 0.0916550 0.00643292
\(204\) −38.2975 −2.68136
\(205\) 11.6584 0.814259
\(206\) −48.0660 −3.34892
\(207\) 5.55680 0.386224
\(208\) 40.8490 2.83237
\(209\) −29.1210 −2.01434
\(210\) 1.03093 0.0711412
\(211\) 7.27640 0.500928 0.250464 0.968126i \(-0.419417\pi\)
0.250464 + 0.968126i \(0.419417\pi\)
\(212\) −32.1975 −2.21133
\(213\) 7.60634 0.521178
\(214\) −17.3847 −1.18839
\(215\) 5.17510 0.352939
\(216\) −50.8332 −3.45876
\(217\) 3.61313 0.245275
\(218\) 3.39886 0.230200
\(219\) 11.8363 0.799824
\(220\) −24.2385 −1.63416
\(221\) 16.2425 1.09259
\(222\) −16.8040 −1.12781
\(223\) −10.3405 −0.692450 −0.346225 0.938151i \(-0.612537\pi\)
−0.346225 + 0.938151i \(0.612537\pi\)
\(224\) −10.7868 −0.720722
\(225\) 8.34162 0.556108
\(226\) 7.74079 0.514910
\(227\) −23.6579 −1.57023 −0.785115 0.619349i \(-0.787396\pi\)
−0.785115 + 0.619349i \(0.787396\pi\)
\(228\) −37.2174 −2.46478
\(229\) 1.31477 0.0868827 0.0434414 0.999056i \(-0.486168\pi\)
0.0434414 + 0.999056i \(0.486168\pi\)
\(230\) 7.30566 0.481721
\(231\) 1.65565 0.108934
\(232\) −2.41808 −0.158754
\(233\) −10.2122 −0.669026 −0.334513 0.942391i \(-0.608572\pi\)
−0.334513 + 0.942391i \(0.608572\pi\)
\(234\) 13.4831 0.881419
\(235\) −5.22676 −0.340956
\(236\) −40.8960 −2.66210
\(237\) 9.28606 0.603194
\(238\) −7.52273 −0.487626
\(239\) 28.3329 1.83270 0.916351 0.400376i \(-0.131121\pi\)
0.916351 + 0.400376i \(0.131121\pi\)
\(240\) −16.3790 −1.05726
\(241\) 13.5986 0.875961 0.437980 0.898985i \(-0.355694\pi\)
0.437980 + 0.898985i \(0.355694\pi\)
\(242\) −21.9465 −1.41077
\(243\) −16.0962 −1.03257
\(244\) 52.2774 3.34672
\(245\) −6.66632 −0.425895
\(246\) 32.2861 2.05849
\(247\) 15.7844 1.00434
\(248\) −95.3229 −6.05301
\(249\) −13.4532 −0.852560
\(250\) 24.5005 1.54955
\(251\) 2.90600 0.183425 0.0917124 0.995786i \(-0.470766\pi\)
0.0917124 + 0.995786i \(0.470766\pi\)
\(252\) −4.62823 −0.291551
\(253\) 11.7327 0.737629
\(254\) 21.2933 1.33606
\(255\) −6.51267 −0.407839
\(256\) 86.0264 5.37665
\(257\) 26.4072 1.64724 0.823618 0.567146i \(-0.191952\pi\)
0.823618 + 0.567146i \(0.191952\pi\)
\(258\) 14.3316 0.892247
\(259\) −2.44635 −0.152009
\(260\) 13.1379 0.814779
\(261\) −0.480643 −0.0297510
\(262\) −12.3120 −0.760638
\(263\) 3.26317 0.201215 0.100608 0.994926i \(-0.467921\pi\)
0.100608 + 0.994926i \(0.467921\pi\)
\(264\) −43.6800 −2.68832
\(265\) −5.47533 −0.336347
\(266\) −7.31056 −0.448239
\(267\) 9.24207 0.565605
\(268\) −14.1596 −0.864935
\(269\) 27.2067 1.65882 0.829410 0.558640i \(-0.188677\pi\)
0.829410 + 0.558640i \(0.188677\pi\)
\(270\) −13.2842 −0.808450
\(271\) 32.4618 1.97191 0.985956 0.167005i \(-0.0534095\pi\)
0.985956 + 0.167005i \(0.0534095\pi\)
\(272\) 119.518 7.24683
\(273\) −0.897409 −0.0543136
\(274\) 58.7903 3.55165
\(275\) 17.6126 1.06208
\(276\) 14.9947 0.902574
\(277\) −30.1935 −1.81415 −0.907076 0.420967i \(-0.861691\pi\)
−0.907076 + 0.420967i \(0.861691\pi\)
\(278\) −29.7043 −1.78154
\(279\) −18.9474 −1.13435
\(280\) −3.95959 −0.236631
\(281\) 6.96537 0.415519 0.207760 0.978180i \(-0.433383\pi\)
0.207760 + 0.978180i \(0.433383\pi\)
\(282\) −14.4747 −0.861956
\(283\) 10.3628 0.616005 0.308002 0.951386i \(-0.400340\pi\)
0.308002 + 0.951386i \(0.400340\pi\)
\(284\) −44.8947 −2.66401
\(285\) −6.32899 −0.374897
\(286\) 28.4685 1.68337
\(287\) 4.70026 0.277448
\(288\) 56.5663 3.33320
\(289\) 30.5229 1.79547
\(290\) −0.631913 −0.0371072
\(291\) −15.0199 −0.880485
\(292\) −69.8611 −4.08831
\(293\) 15.7984 0.922951 0.461476 0.887153i \(-0.347320\pi\)
0.461476 + 0.887153i \(0.347320\pi\)
\(294\) −18.4613 −1.07669
\(295\) −6.95454 −0.404909
\(296\) 64.5405 3.75134
\(297\) −21.3341 −1.23793
\(298\) −34.5342 −2.00051
\(299\) −6.35944 −0.367776
\(300\) 22.5094 1.29958
\(301\) 2.08642 0.120259
\(302\) 2.36945 0.136346
\(303\) −2.37418 −0.136393
\(304\) 116.147 6.66148
\(305\) 8.89002 0.509041
\(306\) 39.4495 2.25518
\(307\) −26.7690 −1.52779 −0.763893 0.645343i \(-0.776715\pi\)
−0.763893 + 0.645343i \(0.776715\pi\)
\(308\) −9.77211 −0.556817
\(309\) −16.7766 −0.954388
\(310\) −24.9106 −1.41483
\(311\) −4.80028 −0.272199 −0.136099 0.990695i \(-0.543457\pi\)
−0.136099 + 0.990695i \(0.543457\pi\)
\(312\) 23.6758 1.34038
\(313\) −12.3026 −0.695382 −0.347691 0.937609i \(-0.613034\pi\)
−0.347691 + 0.937609i \(0.613034\pi\)
\(314\) 2.87117 0.162030
\(315\) −0.787051 −0.0443453
\(316\) −54.8088 −3.08324
\(317\) 26.2909 1.47664 0.738321 0.674450i \(-0.235619\pi\)
0.738321 + 0.674450i \(0.235619\pi\)
\(318\) −15.1631 −0.850303
\(319\) −1.01484 −0.0568199
\(320\) 40.6041 2.26984
\(321\) −6.06782 −0.338673
\(322\) 2.94539 0.164140
\(323\) 46.1826 2.56967
\(324\) 8.10136 0.450076
\(325\) −9.54652 −0.529546
\(326\) −7.07659 −0.391936
\(327\) 1.18631 0.0656034
\(328\) −124.004 −6.84698
\(329\) −2.10725 −0.116176
\(330\) −11.4149 −0.628367
\(331\) 32.6548 1.79487 0.897435 0.441147i \(-0.145428\pi\)
0.897435 + 0.441147i \(0.145428\pi\)
\(332\) 79.4042 4.35787
\(333\) 12.8288 0.703012
\(334\) 14.0530 0.768949
\(335\) −2.40790 −0.131558
\(336\) −6.60344 −0.360247
\(337\) 2.86894 0.156281 0.0781407 0.996942i \(-0.475102\pi\)
0.0781407 + 0.996942i \(0.475102\pi\)
\(338\) 20.7043 1.12616
\(339\) 2.70179 0.146741
\(340\) 38.4395 2.08467
\(341\) −40.0058 −2.16644
\(342\) 38.3369 2.07302
\(343\) −5.43576 −0.293503
\(344\) −55.0446 −2.96781
\(345\) 2.54991 0.137283
\(346\) 28.6256 1.53892
\(347\) −2.06265 −0.110729 −0.0553644 0.998466i \(-0.517632\pi\)
−0.0553644 + 0.998466i \(0.517632\pi\)
\(348\) −1.29699 −0.0695257
\(349\) −8.40748 −0.450042 −0.225021 0.974354i \(-0.572245\pi\)
−0.225021 + 0.974354i \(0.572245\pi\)
\(350\) 4.42149 0.236338
\(351\) 11.5636 0.617222
\(352\) 119.435 6.36590
\(353\) 4.46462 0.237628 0.118814 0.992917i \(-0.462091\pi\)
0.118814 + 0.992917i \(0.462091\pi\)
\(354\) −19.2595 −1.02363
\(355\) −7.63454 −0.405200
\(356\) −54.5492 −2.89110
\(357\) −2.62568 −0.138966
\(358\) −11.1644 −0.590057
\(359\) 0.452733 0.0238943 0.0119472 0.999929i \(-0.496197\pi\)
0.0119472 + 0.999929i \(0.496197\pi\)
\(360\) 20.7643 1.09437
\(361\) 25.8801 1.36211
\(362\) 23.6707 1.24410
\(363\) −7.66004 −0.402048
\(364\) 5.29675 0.277625
\(365\) −11.8802 −0.621838
\(366\) 24.6195 1.28688
\(367\) 17.8679 0.932697 0.466348 0.884601i \(-0.345569\pi\)
0.466348 + 0.884601i \(0.345569\pi\)
\(368\) −46.7950 −2.43936
\(369\) −24.6484 −1.28314
\(370\) 16.8663 0.876837
\(371\) −2.20746 −0.114606
\(372\) −51.1284 −2.65088
\(373\) −8.93177 −0.462469 −0.231235 0.972898i \(-0.574277\pi\)
−0.231235 + 0.972898i \(0.574277\pi\)
\(374\) 83.2942 4.30704
\(375\) 8.55147 0.441596
\(376\) 55.5942 2.86705
\(377\) 0.550069 0.0283300
\(378\) −5.35572 −0.275468
\(379\) −13.6225 −0.699741 −0.349870 0.936798i \(-0.613774\pi\)
−0.349870 + 0.936798i \(0.613774\pi\)
\(380\) 37.3554 1.91629
\(381\) 7.43207 0.380757
\(382\) −70.3214 −3.59795
\(383\) −12.3858 −0.632887 −0.316444 0.948611i \(-0.602489\pi\)
−0.316444 + 0.948611i \(0.602489\pi\)
\(384\) 59.1338 3.01766
\(385\) −1.66179 −0.0846927
\(386\) −0.504882 −0.0256978
\(387\) −10.9413 −0.556175
\(388\) 88.6518 4.50061
\(389\) −3.63343 −0.184222 −0.0921111 0.995749i \(-0.529362\pi\)
−0.0921111 + 0.995749i \(0.529362\pi\)
\(390\) 6.18716 0.313299
\(391\) −18.6067 −0.940983
\(392\) 70.9059 3.58129
\(393\) −4.29729 −0.216770
\(394\) −36.7177 −1.84981
\(395\) −9.32049 −0.468965
\(396\) 51.2453 2.57518
\(397\) 13.9378 0.699517 0.349758 0.936840i \(-0.386264\pi\)
0.349758 + 0.936840i \(0.386264\pi\)
\(398\) −28.7652 −1.44187
\(399\) −2.55162 −0.127741
\(400\) −70.2466 −3.51233
\(401\) 4.09635 0.204562 0.102281 0.994756i \(-0.467386\pi\)
0.102281 + 0.994756i \(0.467386\pi\)
\(402\) −6.66831 −0.332585
\(403\) 21.6842 1.08017
\(404\) 14.0130 0.697174
\(405\) 1.37767 0.0684572
\(406\) −0.254765 −0.0126438
\(407\) 27.0868 1.34264
\(408\) 69.2716 3.42946
\(409\) 39.6504 1.96059 0.980294 0.197546i \(-0.0632972\pi\)
0.980294 + 0.197546i \(0.0632972\pi\)
\(410\) −32.4059 −1.60041
\(411\) 20.5197 1.01216
\(412\) 99.0201 4.87837
\(413\) −2.80383 −0.137967
\(414\) −15.4457 −0.759116
\(415\) 13.5030 0.662839
\(416\) −64.7370 −3.17399
\(417\) −10.3678 −0.507711
\(418\) 80.9451 3.95915
\(419\) 27.1912 1.32838 0.664190 0.747564i \(-0.268777\pi\)
0.664190 + 0.747564i \(0.268777\pi\)
\(420\) −2.12381 −0.103631
\(421\) 6.93651 0.338065 0.169032 0.985611i \(-0.445936\pi\)
0.169032 + 0.985611i \(0.445936\pi\)
\(422\) −20.2256 −0.984565
\(423\) 11.0505 0.537293
\(424\) 58.2381 2.82829
\(425\) −27.9316 −1.35488
\(426\) −21.1427 −1.02437
\(427\) 3.58414 0.173449
\(428\) 35.8139 1.73113
\(429\) 9.93642 0.479735
\(430\) −14.3847 −0.693694
\(431\) 14.5160 0.699210 0.349605 0.936897i \(-0.386316\pi\)
0.349605 + 0.936897i \(0.386316\pi\)
\(432\) 85.0893 4.09386
\(433\) −14.6779 −0.705373 −0.352686 0.935742i \(-0.614732\pi\)
−0.352686 + 0.935742i \(0.614732\pi\)
\(434\) −10.0431 −0.482083
\(435\) −0.220558 −0.0105750
\(436\) −7.00195 −0.335333
\(437\) −18.0820 −0.864978
\(438\) −32.9003 −1.57204
\(439\) 30.1764 1.44024 0.720121 0.693849i \(-0.244086\pi\)
0.720121 + 0.693849i \(0.244086\pi\)
\(440\) 43.8420 2.09009
\(441\) 14.0940 0.671144
\(442\) −45.1477 −2.14746
\(443\) 26.7445 1.27067 0.635335 0.772237i \(-0.280862\pi\)
0.635335 + 0.772237i \(0.280862\pi\)
\(444\) 34.6176 1.64288
\(445\) −9.27633 −0.439740
\(446\) 28.7425 1.36100
\(447\) −12.0536 −0.570113
\(448\) 16.3701 0.773416
\(449\) −17.2811 −0.815546 −0.407773 0.913083i \(-0.633695\pi\)
−0.407773 + 0.913083i \(0.633695\pi\)
\(450\) −23.1865 −1.09302
\(451\) −52.0430 −2.45061
\(452\) −15.9467 −0.750069
\(453\) 0.827015 0.0388565
\(454\) 65.7598 3.08626
\(455\) 0.900736 0.0422272
\(456\) 67.3179 3.15245
\(457\) −14.4572 −0.676278 −0.338139 0.941096i \(-0.609797\pi\)
−0.338139 + 0.941096i \(0.609797\pi\)
\(458\) −3.65456 −0.170766
\(459\) 33.8334 1.57921
\(460\) −15.0503 −0.701723
\(461\) −38.8363 −1.80879 −0.904394 0.426698i \(-0.859677\pi\)
−0.904394 + 0.426698i \(0.859677\pi\)
\(462\) −4.60207 −0.214108
\(463\) 6.46308 0.300365 0.150182 0.988658i \(-0.452014\pi\)
0.150182 + 0.988658i \(0.452014\pi\)
\(464\) 4.04759 0.187905
\(465\) −8.69462 −0.403203
\(466\) 28.3860 1.31496
\(467\) −17.3404 −0.802420 −0.401210 0.915986i \(-0.631410\pi\)
−0.401210 + 0.915986i \(0.631410\pi\)
\(468\) −27.7764 −1.28396
\(469\) −0.970782 −0.0448265
\(470\) 14.5284 0.670143
\(471\) 1.00213 0.0461759
\(472\) 73.9716 3.40482
\(473\) −23.1015 −1.06221
\(474\) −25.8116 −1.18557
\(475\) −27.1439 −1.24545
\(476\) 15.4975 0.710325
\(477\) 11.5760 0.530029
\(478\) −78.7544 −3.60214
\(479\) 1.84876 0.0844720 0.0422360 0.999108i \(-0.486552\pi\)
0.0422360 + 0.999108i \(0.486552\pi\)
\(480\) 25.9573 1.18478
\(481\) −14.6818 −0.669432
\(482\) −37.7987 −1.72168
\(483\) 1.02804 0.0467772
\(484\) 45.2116 2.05507
\(485\) 15.0756 0.684549
\(486\) 44.7412 2.02950
\(487\) −6.00067 −0.271916 −0.135958 0.990715i \(-0.543411\pi\)
−0.135958 + 0.990715i \(0.543411\pi\)
\(488\) −94.5582 −4.28045
\(489\) −2.46996 −0.111695
\(490\) 18.5298 0.837089
\(491\) −30.6878 −1.38492 −0.692461 0.721456i \(-0.743473\pi\)
−0.692461 + 0.721456i \(0.743473\pi\)
\(492\) −66.5122 −2.99860
\(493\) 1.60941 0.0724844
\(494\) −43.8744 −1.97400
\(495\) 8.71450 0.391688
\(496\) 159.560 7.16446
\(497\) −3.07798 −0.138066
\(498\) 37.3946 1.67569
\(499\) −0.291563 −0.0130521 −0.00652607 0.999979i \(-0.502077\pi\)
−0.00652607 + 0.999979i \(0.502077\pi\)
\(500\) −50.4730 −2.25722
\(501\) 4.90497 0.219138
\(502\) −8.07754 −0.360518
\(503\) −9.25364 −0.412599 −0.206300 0.978489i \(-0.566142\pi\)
−0.206300 + 0.978489i \(0.566142\pi\)
\(504\) 8.37143 0.372893
\(505\) 2.38298 0.106041
\(506\) −32.6123 −1.44979
\(507\) 7.22646 0.320938
\(508\) −43.8661 −1.94624
\(509\) 15.4761 0.685966 0.342983 0.939342i \(-0.388563\pi\)
0.342983 + 0.939342i \(0.388563\pi\)
\(510\) 18.1027 0.801600
\(511\) −4.78968 −0.211883
\(512\) −117.216 −5.18029
\(513\) 32.8792 1.45165
\(514\) −73.4017 −3.23761
\(515\) 16.8388 0.742007
\(516\) −29.5243 −1.29974
\(517\) 23.3322 1.02615
\(518\) 6.79990 0.298770
\(519\) 9.99126 0.438568
\(520\) −23.7636 −1.04210
\(521\) −6.10225 −0.267344 −0.133672 0.991026i \(-0.542677\pi\)
−0.133672 + 0.991026i \(0.542677\pi\)
\(522\) 1.33600 0.0584751
\(523\) 17.3036 0.756633 0.378317 0.925676i \(-0.376503\pi\)
0.378317 + 0.925676i \(0.376503\pi\)
\(524\) 25.3638 1.10802
\(525\) 1.54324 0.0673526
\(526\) −9.07033 −0.395485
\(527\) 63.4447 2.76369
\(528\) 73.1156 3.18195
\(529\) −15.7149 −0.683255
\(530\) 15.2193 0.661084
\(531\) 14.7034 0.638073
\(532\) 15.0604 0.652950
\(533\) 28.2087 1.22185
\(534\) −25.6893 −1.11169
\(535\) 6.09032 0.263308
\(536\) 25.6115 1.10625
\(537\) −3.89674 −0.168157
\(538\) −75.6239 −3.26038
\(539\) 29.7583 1.28178
\(540\) 27.3666 1.17767
\(541\) 21.6632 0.931373 0.465687 0.884950i \(-0.345807\pi\)
0.465687 + 0.884950i \(0.345807\pi\)
\(542\) −90.2311 −3.87576
\(543\) 8.26183 0.354549
\(544\) −189.410 −8.12090
\(545\) −1.19071 −0.0510046
\(546\) 2.49445 0.106752
\(547\) 14.8153 0.633456 0.316728 0.948516i \(-0.397416\pi\)
0.316728 + 0.948516i \(0.397416\pi\)
\(548\) −121.113 −5.17369
\(549\) −18.7954 −0.802168
\(550\) −48.9562 −2.08750
\(551\) 1.56402 0.0666296
\(552\) −27.1220 −1.15439
\(553\) −3.75769 −0.159793
\(554\) 83.9262 3.56568
\(555\) 5.88689 0.249884
\(556\) 61.1933 2.59517
\(557\) −33.5218 −1.42036 −0.710181 0.704019i \(-0.751387\pi\)
−0.710181 + 0.704019i \(0.751387\pi\)
\(558\) 52.6663 2.22954
\(559\) 12.5217 0.529610
\(560\) 6.62793 0.280081
\(561\) 29.0724 1.22744
\(562\) −19.3610 −0.816695
\(563\) −27.3604 −1.15310 −0.576552 0.817061i \(-0.695602\pi\)
−0.576552 + 0.817061i \(0.695602\pi\)
\(564\) 29.8191 1.25561
\(565\) −2.71181 −0.114087
\(566\) −28.8045 −1.21075
\(567\) 0.555430 0.0233258
\(568\) 81.2044 3.40726
\(569\) 14.8151 0.621081 0.310541 0.950560i \(-0.399490\pi\)
0.310541 + 0.950560i \(0.399490\pi\)
\(570\) 17.5921 0.736853
\(571\) 0.893242 0.0373810 0.0186905 0.999825i \(-0.494050\pi\)
0.0186905 + 0.999825i \(0.494050\pi\)
\(572\) −58.6474 −2.45217
\(573\) −24.5445 −1.02536
\(574\) −13.0649 −0.545318
\(575\) 10.9361 0.456068
\(576\) −85.8457 −3.57690
\(577\) −29.1151 −1.21208 −0.606039 0.795435i \(-0.707243\pi\)
−0.606039 + 0.795435i \(0.707243\pi\)
\(578\) −84.8419 −3.52896
\(579\) −0.176220 −0.00732346
\(580\) 1.30179 0.0540541
\(581\) 5.44395 0.225853
\(582\) 41.7496 1.73058
\(583\) 24.4418 1.01227
\(584\) 126.363 5.22894
\(585\) −4.72350 −0.195293
\(586\) −43.9133 −1.81404
\(587\) −0.453052 −0.0186995 −0.00934974 0.999956i \(-0.502976\pi\)
−0.00934974 + 0.999956i \(0.502976\pi\)
\(588\) 38.0319 1.56841
\(589\) 61.6553 2.54046
\(590\) 19.3309 0.795841
\(591\) −12.8157 −0.527166
\(592\) −108.034 −4.44016
\(593\) 36.1971 1.48644 0.743219 0.669048i \(-0.233298\pi\)
0.743219 + 0.669048i \(0.233298\pi\)
\(594\) 59.3004 2.43312
\(595\) 2.63541 0.108041
\(596\) 71.1433 2.91414
\(597\) −10.0400 −0.410910
\(598\) 17.6768 0.722857
\(599\) 41.1469 1.68122 0.840609 0.541642i \(-0.182197\pi\)
0.840609 + 0.541642i \(0.182197\pi\)
\(600\) −40.7144 −1.66216
\(601\) −5.59294 −0.228141 −0.114070 0.993473i \(-0.536389\pi\)
−0.114070 + 0.993473i \(0.536389\pi\)
\(602\) −5.79942 −0.236367
\(603\) 5.09082 0.207314
\(604\) −4.88126 −0.198616
\(605\) 7.68844 0.312579
\(606\) 6.59928 0.268078
\(607\) 22.5401 0.914874 0.457437 0.889242i \(-0.348768\pi\)
0.457437 + 0.889242i \(0.348768\pi\)
\(608\) −184.068 −7.46495
\(609\) −0.0889213 −0.00360327
\(610\) −24.7108 −1.00051
\(611\) −12.6467 −0.511629
\(612\) −81.2693 −3.28512
\(613\) 1.19664 0.0483320 0.0241660 0.999708i \(-0.492307\pi\)
0.0241660 + 0.999708i \(0.492307\pi\)
\(614\) 74.4073 3.00283
\(615\) −11.3107 −0.456092
\(616\) 17.6756 0.712168
\(617\) −27.6002 −1.11114 −0.555571 0.831469i \(-0.687500\pi\)
−0.555571 + 0.831469i \(0.687500\pi\)
\(618\) 46.6324 1.87583
\(619\) −16.6919 −0.670905 −0.335453 0.942057i \(-0.608889\pi\)
−0.335453 + 0.942057i \(0.608889\pi\)
\(620\) 51.3180 2.06098
\(621\) −13.2468 −0.531578
\(622\) 13.3429 0.535002
\(623\) −3.73989 −0.149836
\(624\) −39.6306 −1.58650
\(625\) 11.6757 0.467027
\(626\) 34.1963 1.36676
\(627\) 28.2525 1.12830
\(628\) −5.91486 −0.236029
\(629\) −42.9566 −1.71279
\(630\) 2.18770 0.0871599
\(631\) −1.49618 −0.0595620 −0.0297810 0.999556i \(-0.509481\pi\)
−0.0297810 + 0.999556i \(0.509481\pi\)
\(632\) 99.1369 3.94345
\(633\) −7.05938 −0.280585
\(634\) −73.0783 −2.90231
\(635\) −7.45963 −0.296026
\(636\) 31.2372 1.23864
\(637\) −16.1298 −0.639086
\(638\) 2.82085 0.111678
\(639\) 16.1411 0.638530
\(640\) −59.3530 −2.34613
\(641\) 18.1503 0.716893 0.358447 0.933550i \(-0.383306\pi\)
0.358447 + 0.933550i \(0.383306\pi\)
\(642\) 16.8662 0.665655
\(643\) 49.5946 1.95582 0.977909 0.209030i \(-0.0670305\pi\)
0.977909 + 0.209030i \(0.0670305\pi\)
\(644\) −6.06774 −0.239103
\(645\) −5.02075 −0.197692
\(646\) −128.370 −5.05064
\(647\) 34.1541 1.34274 0.671368 0.741124i \(-0.265707\pi\)
0.671368 + 0.741124i \(0.265707\pi\)
\(648\) −14.6536 −0.575646
\(649\) 31.0449 1.21862
\(650\) 26.5356 1.04081
\(651\) −3.50536 −0.137386
\(652\) 14.5784 0.570933
\(653\) −35.1164 −1.37421 −0.687105 0.726558i \(-0.741119\pi\)
−0.687105 + 0.726558i \(0.741119\pi\)
\(654\) −3.29749 −0.128942
\(655\) 4.31322 0.168532
\(656\) 207.569 8.10422
\(657\) 25.1173 0.979918
\(658\) 5.85732 0.228342
\(659\) 11.6728 0.454707 0.227354 0.973812i \(-0.426993\pi\)
0.227354 + 0.973812i \(0.426993\pi\)
\(660\) 23.5156 0.915342
\(661\) −11.0462 −0.429645 −0.214823 0.976653i \(-0.568917\pi\)
−0.214823 + 0.976653i \(0.568917\pi\)
\(662\) −90.7676 −3.52778
\(663\) −15.7580 −0.611991
\(664\) −143.624 −5.57371
\(665\) 2.56109 0.0993146
\(666\) −35.6589 −1.38176
\(667\) −0.630137 −0.0243990
\(668\) −28.9505 −1.12013
\(669\) 10.0321 0.387863
\(670\) 6.69303 0.258574
\(671\) −39.6849 −1.53202
\(672\) 10.4651 0.403698
\(673\) 45.7913 1.76512 0.882562 0.470196i \(-0.155817\pi\)
0.882562 + 0.470196i \(0.155817\pi\)
\(674\) −7.97455 −0.307168
\(675\) −19.8856 −0.765397
\(676\) −42.6525 −1.64048
\(677\) −26.8492 −1.03190 −0.515949 0.856619i \(-0.672561\pi\)
−0.515949 + 0.856619i \(0.672561\pi\)
\(678\) −7.50992 −0.288417
\(679\) 6.07797 0.233251
\(680\) −69.5284 −2.66629
\(681\) 22.9523 0.879534
\(682\) 111.200 4.25809
\(683\) 38.5149 1.47373 0.736867 0.676038i \(-0.236304\pi\)
0.736867 + 0.676038i \(0.236304\pi\)
\(684\) −78.9772 −3.01977
\(685\) −20.5958 −0.786926
\(686\) 15.1093 0.576875
\(687\) −1.27556 −0.0486657
\(688\) 92.1387 3.51275
\(689\) −13.2481 −0.504713
\(690\) −7.08777 −0.269827
\(691\) 37.1327 1.41259 0.706297 0.707916i \(-0.250364\pi\)
0.706297 + 0.707916i \(0.250364\pi\)
\(692\) −58.9711 −2.24175
\(693\) 3.51338 0.133462
\(694\) 5.73336 0.217636
\(695\) 10.4062 0.394730
\(696\) 2.34596 0.0889232
\(697\) 82.5342 3.12621
\(698\) 23.3695 0.884550
\(699\) 9.90765 0.374742
\(700\) −9.10864 −0.344274
\(701\) −1.35551 −0.0511969 −0.0255984 0.999672i \(-0.508149\pi\)
−0.0255984 + 0.999672i \(0.508149\pi\)
\(702\) −32.1424 −1.21314
\(703\) −41.7451 −1.57445
\(704\) −181.256 −6.83134
\(705\) 5.07087 0.190980
\(706\) −12.4099 −0.467053
\(707\) 0.960733 0.0361321
\(708\) 39.6762 1.49112
\(709\) −47.2669 −1.77515 −0.887573 0.460667i \(-0.847610\pi\)
−0.887573 + 0.460667i \(0.847610\pi\)
\(710\) 21.2211 0.796412
\(711\) 19.7055 0.739014
\(712\) 98.6672 3.69771
\(713\) −24.8406 −0.930287
\(714\) 7.29836 0.273134
\(715\) −9.97326 −0.372979
\(716\) 22.9996 0.859536
\(717\) −27.4878 −1.02655
\(718\) −1.25842 −0.0469638
\(719\) 17.9037 0.667695 0.333847 0.942627i \(-0.391653\pi\)
0.333847 + 0.942627i \(0.391653\pi\)
\(720\) −34.7571 −1.29532
\(721\) 6.78882 0.252829
\(722\) −71.9367 −2.67721
\(723\) −13.1930 −0.490652
\(724\) −48.7636 −1.81228
\(725\) −0.945934 −0.0351311
\(726\) 21.2919 0.790217
\(727\) −22.0310 −0.817085 −0.408542 0.912739i \(-0.633963\pi\)
−0.408542 + 0.912739i \(0.633963\pi\)
\(728\) −9.58063 −0.355082
\(729\) 11.3718 0.421178
\(730\) 33.0223 1.22221
\(731\) 36.6364 1.35505
\(732\) −50.7182 −1.87460
\(733\) 40.7096 1.50364 0.751821 0.659367i \(-0.229176\pi\)
0.751821 + 0.659367i \(0.229176\pi\)
\(734\) −49.6658 −1.83320
\(735\) 6.46749 0.238557
\(736\) 74.1601 2.73358
\(737\) 10.7488 0.395938
\(738\) 68.5129 2.52199
\(739\) −0.0849355 −0.00312440 −0.00156220 0.999999i \(-0.500497\pi\)
−0.00156220 + 0.999999i \(0.500497\pi\)
\(740\) −34.7460 −1.27729
\(741\) −15.3136 −0.562559
\(742\) 6.13588 0.225255
\(743\) 16.1883 0.593891 0.296946 0.954894i \(-0.404032\pi\)
0.296946 + 0.954894i \(0.404032\pi\)
\(744\) 92.4798 3.39048
\(745\) 12.0982 0.443245
\(746\) 24.8268 0.908975
\(747\) −28.5483 −1.04453
\(748\) −171.593 −6.27407
\(749\) 2.45540 0.0897185
\(750\) −23.7697 −0.867948
\(751\) 7.48195 0.273020 0.136510 0.990639i \(-0.456411\pi\)
0.136510 + 0.990639i \(0.456411\pi\)
\(752\) −93.0585 −3.39350
\(753\) −2.81932 −0.102742
\(754\) −1.52898 −0.0556820
\(755\) −0.830081 −0.0302097
\(756\) 11.0332 0.401275
\(757\) 25.0984 0.912216 0.456108 0.889924i \(-0.349243\pi\)
0.456108 + 0.889924i \(0.349243\pi\)
\(758\) 37.8652 1.37533
\(759\) −11.3828 −0.413168
\(760\) −67.5675 −2.45093
\(761\) 12.8860 0.467117 0.233558 0.972343i \(-0.424963\pi\)
0.233558 + 0.972343i \(0.424963\pi\)
\(762\) −20.6583 −0.748370
\(763\) −0.480054 −0.0173791
\(764\) 144.868 5.24114
\(765\) −13.8202 −0.499671
\(766\) 34.4278 1.24393
\(767\) −16.8272 −0.607595
\(768\) −83.4606 −3.01163
\(769\) −7.68380 −0.277085 −0.138542 0.990357i \(-0.544242\pi\)
−0.138542 + 0.990357i \(0.544242\pi\)
\(770\) 4.61913 0.166462
\(771\) −25.6196 −0.922667
\(772\) 1.04010 0.0374340
\(773\) 9.86788 0.354923 0.177461 0.984128i \(-0.443211\pi\)
0.177461 + 0.984128i \(0.443211\pi\)
\(774\) 30.4124 1.09315
\(775\) −37.2896 −1.33948
\(776\) −160.351 −5.75627
\(777\) 2.37339 0.0851447
\(778\) 10.0995 0.362085
\(779\) 80.2065 2.87370
\(780\) −12.7461 −0.456383
\(781\) 34.0805 1.21949
\(782\) 51.7195 1.84948
\(783\) 1.14580 0.0409477
\(784\) −118.689 −4.23888
\(785\) −1.00585 −0.0359003
\(786\) 11.9448 0.426057
\(787\) 52.9736 1.88830 0.944152 0.329510i \(-0.106884\pi\)
0.944152 + 0.329510i \(0.106884\pi\)
\(788\) 75.6416 2.69462
\(789\) −3.16584 −0.112707
\(790\) 25.9073 0.921741
\(791\) −1.09331 −0.0388735
\(792\) −92.6913 −3.29364
\(793\) 21.5103 0.763852
\(794\) −38.7416 −1.37489
\(795\) 5.31203 0.188398
\(796\) 59.2588 2.10037
\(797\) 37.0332 1.31178 0.655891 0.754856i \(-0.272293\pi\)
0.655891 + 0.754856i \(0.272293\pi\)
\(798\) 7.09252 0.251073
\(799\) −37.0022 −1.30904
\(800\) 111.326 3.93597
\(801\) 19.6121 0.692961
\(802\) −11.3862 −0.402062
\(803\) 53.0330 1.87149
\(804\) 13.7373 0.484477
\(805\) −1.03185 −0.0363678
\(806\) −60.2737 −2.12305
\(807\) −26.3952 −0.929156
\(808\) −25.3464 −0.891684
\(809\) 2.80512 0.0986228 0.0493114 0.998783i \(-0.484297\pi\)
0.0493114 + 0.998783i \(0.484297\pi\)
\(810\) −3.82940 −0.134551
\(811\) 6.48967 0.227883 0.113942 0.993487i \(-0.463652\pi\)
0.113942 + 0.993487i \(0.463652\pi\)
\(812\) 0.524838 0.0184182
\(813\) −31.4936 −1.10453
\(814\) −75.2908 −2.63894
\(815\) 2.47912 0.0868397
\(816\) −115.953 −4.05917
\(817\) 35.6031 1.24560
\(818\) −110.213 −3.85350
\(819\) −1.90435 −0.0665433
\(820\) 66.7588 2.33132
\(821\) −6.85515 −0.239246 −0.119623 0.992819i \(-0.538169\pi\)
−0.119623 + 0.992819i \(0.538169\pi\)
\(822\) −57.0369 −1.98939
\(823\) −11.3055 −0.394084 −0.197042 0.980395i \(-0.563133\pi\)
−0.197042 + 0.980395i \(0.563133\pi\)
\(824\) −179.105 −6.23942
\(825\) −17.0873 −0.594904
\(826\) 7.79355 0.271172
\(827\) 30.4961 1.06045 0.530226 0.847856i \(-0.322107\pi\)
0.530226 + 0.847856i \(0.322107\pi\)
\(828\) 31.8195 1.10580
\(829\) 46.5293 1.61603 0.808015 0.589162i \(-0.200542\pi\)
0.808015 + 0.589162i \(0.200542\pi\)
\(830\) −37.5332 −1.30280
\(831\) 29.2930 1.01616
\(832\) 98.2456 3.40605
\(833\) −47.1933 −1.63515
\(834\) 28.8183 0.997897
\(835\) −4.92316 −0.170373
\(836\) −166.754 −5.76730
\(837\) 45.1687 1.56126
\(838\) −75.5811 −2.61090
\(839\) −33.6644 −1.16222 −0.581112 0.813824i \(-0.697382\pi\)
−0.581112 + 0.813824i \(0.697382\pi\)
\(840\) 3.84150 0.132544
\(841\) −28.9455 −0.998121
\(842\) −19.2808 −0.664460
\(843\) −6.75763 −0.232745
\(844\) 41.6664 1.43422
\(845\) −7.25326 −0.249520
\(846\) −30.7161 −1.05604
\(847\) 3.09971 0.106507
\(848\) −97.4841 −3.34762
\(849\) −10.0537 −0.345043
\(850\) 77.6390 2.66300
\(851\) 16.8189 0.576544
\(852\) 43.5557 1.49219
\(853\) −24.3110 −0.832393 −0.416197 0.909275i \(-0.636637\pi\)
−0.416197 + 0.909275i \(0.636637\pi\)
\(854\) −9.96251 −0.340910
\(855\) −13.4304 −0.459311
\(856\) −64.7794 −2.21411
\(857\) −6.58629 −0.224983 −0.112492 0.993653i \(-0.535883\pi\)
−0.112492 + 0.993653i \(0.535883\pi\)
\(858\) −27.6194 −0.942910
\(859\) −16.8816 −0.575994 −0.287997 0.957631i \(-0.592989\pi\)
−0.287997 + 0.957631i \(0.592989\pi\)
\(860\) 29.6338 1.01050
\(861\) −4.56008 −0.155407
\(862\) −40.3487 −1.37428
\(863\) 51.6720 1.75894 0.879468 0.475957i \(-0.157898\pi\)
0.879468 + 0.475957i \(0.157898\pi\)
\(864\) −134.848 −4.58764
\(865\) −10.0283 −0.340973
\(866\) 40.7987 1.38640
\(867\) −29.6126 −1.00570
\(868\) 20.6896 0.702251
\(869\) 41.6065 1.41140
\(870\) 0.613066 0.0207849
\(871\) −5.82616 −0.197412
\(872\) 12.6650 0.428890
\(873\) −31.8731 −1.07874
\(874\) 50.2608 1.70010
\(875\) −3.46043 −0.116984
\(876\) 67.7775 2.28999
\(877\) −3.24977 −0.109737 −0.0548685 0.998494i \(-0.517474\pi\)
−0.0548685 + 0.998494i \(0.517474\pi\)
\(878\) −83.8786 −2.83077
\(879\) −15.3272 −0.516973
\(880\) −73.3867 −2.47386
\(881\) 36.0616 1.21495 0.607473 0.794341i \(-0.292183\pi\)
0.607473 + 0.794341i \(0.292183\pi\)
\(882\) −39.1759 −1.31912
\(883\) −49.1387 −1.65365 −0.826825 0.562459i \(-0.809855\pi\)
−0.826825 + 0.562459i \(0.809855\pi\)
\(884\) 93.0082 3.12820
\(885\) 6.74712 0.226802
\(886\) −74.3393 −2.49748
\(887\) 40.7917 1.36965 0.684825 0.728707i \(-0.259878\pi\)
0.684825 + 0.728707i \(0.259878\pi\)
\(888\) −62.6156 −2.10124
\(889\) −3.00746 −0.100867
\(890\) 25.7846 0.864301
\(891\) −6.14991 −0.206030
\(892\) −59.2120 −1.98257
\(893\) −35.9586 −1.20331
\(894\) 33.5042 1.12055
\(895\) 3.91119 0.130737
\(896\) −23.9290 −0.799413
\(897\) 6.16977 0.206003
\(898\) 48.0347 1.60294
\(899\) 2.14862 0.0716605
\(900\) 47.7661 1.59220
\(901\) −38.7619 −1.29135
\(902\) 144.659 4.81662
\(903\) −2.02419 −0.0673608
\(904\) 28.8440 0.959337
\(905\) −8.29246 −0.275651
\(906\) −2.29878 −0.0763718
\(907\) −11.2754 −0.374393 −0.187196 0.982323i \(-0.559940\pi\)
−0.187196 + 0.982323i \(0.559940\pi\)
\(908\) −135.471 −4.49575
\(909\) −5.03813 −0.167104
\(910\) −2.50369 −0.0829967
\(911\) 16.8216 0.557324 0.278662 0.960389i \(-0.410109\pi\)
0.278662 + 0.960389i \(0.410109\pi\)
\(912\) −112.683 −3.73130
\(913\) −60.2773 −1.99489
\(914\) 40.1853 1.32921
\(915\) −8.62487 −0.285129
\(916\) 7.52870 0.248755
\(917\) 1.73894 0.0574248
\(918\) −94.0437 −3.10390
\(919\) 10.9219 0.360281 0.180141 0.983641i \(-0.442345\pi\)
0.180141 + 0.983641i \(0.442345\pi\)
\(920\) 27.2226 0.897502
\(921\) 25.9706 0.855760
\(922\) 107.950 3.55514
\(923\) −18.4725 −0.608031
\(924\) 9.48065 0.311890
\(925\) 25.2478 0.830142
\(926\) −17.9649 −0.590362
\(927\) −35.6008 −1.16929
\(928\) −6.41458 −0.210569
\(929\) 2.42455 0.0795468 0.0397734 0.999209i \(-0.487336\pi\)
0.0397734 + 0.999209i \(0.487336\pi\)
\(930\) 24.1676 0.792488
\(931\) −45.8623 −1.50308
\(932\) −58.4776 −1.91550
\(933\) 4.65711 0.152467
\(934\) 48.1996 1.57714
\(935\) −29.1802 −0.954295
\(936\) 50.2412 1.64219
\(937\) −20.3532 −0.664910 −0.332455 0.943119i \(-0.607877\pi\)
−0.332455 + 0.943119i \(0.607877\pi\)
\(938\) 2.69840 0.0881057
\(939\) 11.9356 0.389505
\(940\) −29.9297 −0.976198
\(941\) −43.4342 −1.41592 −0.707958 0.706255i \(-0.750383\pi\)
−0.707958 + 0.706255i \(0.750383\pi\)
\(942\) −2.78554 −0.0907578
\(943\) −32.3148 −1.05231
\(944\) −123.820 −4.03001
\(945\) 1.87625 0.0610345
\(946\) 64.2132 2.08775
\(947\) −44.1484 −1.43463 −0.717315 0.696749i \(-0.754629\pi\)
−0.717315 + 0.696749i \(0.754629\pi\)
\(948\) 53.1741 1.72701
\(949\) −28.7453 −0.933112
\(950\) 75.4494 2.44790
\(951\) −25.5067 −0.827112
\(952\) −28.0314 −0.908504
\(953\) 21.3291 0.690917 0.345458 0.938434i \(-0.387723\pi\)
0.345458 + 0.938434i \(0.387723\pi\)
\(954\) −32.1768 −1.04176
\(955\) 24.6355 0.797185
\(956\) 162.241 5.24724
\(957\) 0.984568 0.0318266
\(958\) −5.13883 −0.166028
\(959\) −8.30351 −0.268134
\(960\) −39.3931 −1.27141
\(961\) 53.7007 1.73228
\(962\) 40.8097 1.31576
\(963\) −12.8762 −0.414931
\(964\) 77.8685 2.50798
\(965\) 0.176874 0.00569376
\(966\) −2.85754 −0.0919398
\(967\) −38.9584 −1.25282 −0.626409 0.779495i \(-0.715476\pi\)
−0.626409 + 0.779495i \(0.715476\pi\)
\(968\) −81.7777 −2.62843
\(969\) −44.8052 −1.43935
\(970\) −41.9044 −1.34547
\(971\) −45.1226 −1.44805 −0.724027 0.689771i \(-0.757711\pi\)
−0.724027 + 0.689771i \(0.757711\pi\)
\(972\) −92.1707 −2.95638
\(973\) 4.19541 0.134499
\(974\) 16.6795 0.534446
\(975\) 9.26179 0.296615
\(976\) 158.280 5.06642
\(977\) −49.0844 −1.57035 −0.785174 0.619275i \(-0.787426\pi\)
−0.785174 + 0.619275i \(0.787426\pi\)
\(978\) 6.86552 0.219535
\(979\) 41.4094 1.32345
\(980\) −38.1729 −1.21939
\(981\) 2.51742 0.0803751
\(982\) 85.3001 2.72204
\(983\) 11.7156 0.373669 0.186834 0.982391i \(-0.440177\pi\)
0.186834 + 0.982391i \(0.440177\pi\)
\(984\) 120.306 3.83520
\(985\) 12.8632 0.409855
\(986\) −4.47354 −0.142467
\(987\) 2.04440 0.0650739
\(988\) 90.3850 2.87553
\(989\) −14.3443 −0.456123
\(990\) −24.2229 −0.769855
\(991\) −13.7963 −0.438253 −0.219127 0.975696i \(-0.570321\pi\)
−0.219127 + 0.975696i \(0.570321\pi\)
\(992\) −252.869 −8.02859
\(993\) −31.6809 −1.00536
\(994\) 8.55558 0.271367
\(995\) 10.0772 0.319470
\(996\) −77.0360 −2.44098
\(997\) −14.6007 −0.462409 −0.231204 0.972905i \(-0.574267\pi\)
−0.231204 + 0.972905i \(0.574267\pi\)
\(998\) 0.810431 0.0256537
\(999\) −30.5825 −0.967587
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.3 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.3 184 1.1 even 1 trivial