Properties

Label 4001.2.a.b.1.16
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.43211 q^{2} +0.645473 q^{3} +3.91518 q^{4} -1.15456 q^{5} -1.56986 q^{6} +1.52754 q^{7} -4.65795 q^{8} -2.58336 q^{9} +O(q^{10})\) \(q-2.43211 q^{2} +0.645473 q^{3} +3.91518 q^{4} -1.15456 q^{5} -1.56986 q^{6} +1.52754 q^{7} -4.65795 q^{8} -2.58336 q^{9} +2.80801 q^{10} -3.11685 q^{11} +2.52715 q^{12} +4.55740 q^{13} -3.71516 q^{14} -0.745234 q^{15} +3.49829 q^{16} -2.58969 q^{17} +6.28304 q^{18} -7.28248 q^{19} -4.52030 q^{20} +0.985988 q^{21} +7.58053 q^{22} -6.08960 q^{23} -3.00658 q^{24} -3.66700 q^{25} -11.0841 q^{26} -3.60391 q^{27} +5.98061 q^{28} -10.5062 q^{29} +1.81250 q^{30} +7.22937 q^{31} +0.807642 q^{32} -2.01184 q^{33} +6.29842 q^{34} -1.76363 q^{35} -10.1143 q^{36} +10.7652 q^{37} +17.7118 q^{38} +2.94168 q^{39} +5.37786 q^{40} +5.88882 q^{41} -2.39804 q^{42} -4.57214 q^{43} -12.2030 q^{44} +2.98264 q^{45} +14.8106 q^{46} +10.7979 q^{47} +2.25805 q^{48} -4.66661 q^{49} +8.91857 q^{50} -1.67157 q^{51} +17.8431 q^{52} -2.00845 q^{53} +8.76513 q^{54} +3.59857 q^{55} -7.11521 q^{56} -4.70065 q^{57} +25.5523 q^{58} -5.67677 q^{59} -2.91773 q^{60} -3.17694 q^{61} -17.5827 q^{62} -3.94620 q^{63} -8.96086 q^{64} -5.26177 q^{65} +4.89303 q^{66} -1.68173 q^{67} -10.1391 q^{68} -3.93067 q^{69} +4.28936 q^{70} -13.0240 q^{71} +12.0332 q^{72} +14.1461 q^{73} -26.1821 q^{74} -2.36695 q^{75} -28.5123 q^{76} -4.76112 q^{77} -7.15450 q^{78} +15.4580 q^{79} -4.03897 q^{80} +5.42387 q^{81} -14.3223 q^{82} +11.0513 q^{83} +3.86032 q^{84} +2.98994 q^{85} +11.1200 q^{86} -6.78148 q^{87} +14.5181 q^{88} +15.1818 q^{89} -7.25412 q^{90} +6.96162 q^{91} -23.8419 q^{92} +4.66637 q^{93} -26.2617 q^{94} +8.40803 q^{95} +0.521311 q^{96} +1.72861 q^{97} +11.3497 q^{98} +8.05195 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18} + 86 q^{19} + 26 q^{20} + 22 q^{21} + 54 q^{22} + 55 q^{23} + 72 q^{24} + 241 q^{25} + 32 q^{26} + 97 q^{27} + 75 q^{28} + 27 q^{29} - 10 q^{30} + 276 q^{31} + 20 q^{33} + 122 q^{34} + 30 q^{35} + 278 q^{36} + 42 q^{37} + 14 q^{38} + 113 q^{39} + 115 q^{40} + 39 q^{41} + 15 q^{42} + 65 q^{43} + 32 q^{44} + 54 q^{45} + 65 q^{46} + 82 q^{47} + 117 q^{48} + 297 q^{49} + 4 q^{50} + 45 q^{51} + 136 q^{52} + 21 q^{53} + 93 q^{54} + 252 q^{55} + 74 q^{56} + 14 q^{57} + 54 q^{58} + 95 q^{59} + 58 q^{60} + 131 q^{61} + 14 q^{62} + 88 q^{63} + 368 q^{64} - 9 q^{65} + 52 q^{66} + 90 q^{67} + 27 q^{68} + 101 q^{69} + 18 q^{70} + 117 q^{71} - 15 q^{72} + 72 q^{73} + 7 q^{74} + 150 q^{75} + 148 q^{76} + 7 q^{77} + 22 q^{78} + 287 q^{79} + 43 q^{80} + 244 q^{81} + 86 q^{82} + 25 q^{83} + 14 q^{84} + 41 q^{85} + 25 q^{86} + 82 q^{87} + 115 q^{88} + 48 q^{89} + 78 q^{90} + 272 q^{91} + 69 q^{92} + 44 q^{93} + 161 q^{94} + 37 q^{95} + 129 q^{96} + 106 q^{97} - 46 q^{98} + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.43211 −1.71976 −0.859882 0.510492i \(-0.829463\pi\)
−0.859882 + 0.510492i \(0.829463\pi\)
\(3\) 0.645473 0.372664 0.186332 0.982487i \(-0.440340\pi\)
0.186332 + 0.982487i \(0.440340\pi\)
\(4\) 3.91518 1.95759
\(5\) −1.15456 −0.516333 −0.258166 0.966100i \(-0.583118\pi\)
−0.258166 + 0.966100i \(0.583118\pi\)
\(6\) −1.56986 −0.640895
\(7\) 1.52754 0.577357 0.288679 0.957426i \(-0.406784\pi\)
0.288679 + 0.957426i \(0.406784\pi\)
\(8\) −4.65795 −1.64683
\(9\) −2.58336 −0.861121
\(10\) 2.80801 0.887971
\(11\) −3.11685 −0.939764 −0.469882 0.882729i \(-0.655704\pi\)
−0.469882 + 0.882729i \(0.655704\pi\)
\(12\) 2.52715 0.729524
\(13\) 4.55740 1.26400 0.631998 0.774970i \(-0.282235\pi\)
0.631998 + 0.774970i \(0.282235\pi\)
\(14\) −3.71516 −0.992918
\(15\) −0.745234 −0.192419
\(16\) 3.49829 0.874573
\(17\) −2.58969 −0.628092 −0.314046 0.949408i \(-0.601685\pi\)
−0.314046 + 0.949408i \(0.601685\pi\)
\(18\) 6.28304 1.48093
\(19\) −7.28248 −1.67072 −0.835358 0.549706i \(-0.814740\pi\)
−0.835358 + 0.549706i \(0.814740\pi\)
\(20\) −4.52030 −1.01077
\(21\) 0.985988 0.215160
\(22\) 7.58053 1.61617
\(23\) −6.08960 −1.26977 −0.634885 0.772607i \(-0.718952\pi\)
−0.634885 + 0.772607i \(0.718952\pi\)
\(24\) −3.00658 −0.613715
\(25\) −3.66700 −0.733400
\(26\) −11.0841 −2.17377
\(27\) −3.60391 −0.693573
\(28\) 5.98061 1.13023
\(29\) −10.5062 −1.95096 −0.975478 0.220097i \(-0.929362\pi\)
−0.975478 + 0.220097i \(0.929362\pi\)
\(30\) 1.81250 0.330915
\(31\) 7.22937 1.29843 0.649217 0.760603i \(-0.275097\pi\)
0.649217 + 0.760603i \(0.275097\pi\)
\(32\) 0.807642 0.142772
\(33\) −2.01184 −0.350216
\(34\) 6.29842 1.08017
\(35\) −1.76363 −0.298108
\(36\) −10.1143 −1.68572
\(37\) 10.7652 1.76978 0.884890 0.465800i \(-0.154233\pi\)
0.884890 + 0.465800i \(0.154233\pi\)
\(38\) 17.7118 2.87324
\(39\) 2.94168 0.471046
\(40\) 5.37786 0.850314
\(41\) 5.88882 0.919679 0.459839 0.888002i \(-0.347907\pi\)
0.459839 + 0.888002i \(0.347907\pi\)
\(42\) −2.39804 −0.370025
\(43\) −4.57214 −0.697245 −0.348622 0.937263i \(-0.613350\pi\)
−0.348622 + 0.937263i \(0.613350\pi\)
\(44\) −12.2030 −1.83967
\(45\) 2.98264 0.444625
\(46\) 14.8106 2.18371
\(47\) 10.7979 1.57503 0.787516 0.616294i \(-0.211367\pi\)
0.787516 + 0.616294i \(0.211367\pi\)
\(48\) 2.25805 0.325922
\(49\) −4.66661 −0.666659
\(50\) 8.91857 1.26128
\(51\) −1.67157 −0.234067
\(52\) 17.8431 2.47439
\(53\) −2.00845 −0.275882 −0.137941 0.990440i \(-0.544048\pi\)
−0.137941 + 0.990440i \(0.544048\pi\)
\(54\) 8.76513 1.19278
\(55\) 3.59857 0.485231
\(56\) −7.11521 −0.950810
\(57\) −4.70065 −0.622616
\(58\) 25.5523 3.35519
\(59\) −5.67677 −0.739053 −0.369526 0.929220i \(-0.620480\pi\)
−0.369526 + 0.929220i \(0.620480\pi\)
\(60\) −2.91773 −0.376677
\(61\) −3.17694 −0.406766 −0.203383 0.979099i \(-0.565194\pi\)
−0.203383 + 0.979099i \(0.565194\pi\)
\(62\) −17.5827 −2.23300
\(63\) −3.94620 −0.497175
\(64\) −8.96086 −1.12011
\(65\) −5.26177 −0.652642
\(66\) 4.89303 0.602290
\(67\) −1.68173 −0.205456 −0.102728 0.994709i \(-0.532757\pi\)
−0.102728 + 0.994709i \(0.532757\pi\)
\(68\) −10.1391 −1.22955
\(69\) −3.93067 −0.473198
\(70\) 4.28936 0.512676
\(71\) −13.0240 −1.54566 −0.772830 0.634613i \(-0.781159\pi\)
−0.772830 + 0.634613i \(0.781159\pi\)
\(72\) 12.0332 1.41812
\(73\) 14.1461 1.65567 0.827836 0.560969i \(-0.189572\pi\)
0.827836 + 0.560969i \(0.189572\pi\)
\(74\) −26.1821 −3.04361
\(75\) −2.36695 −0.273312
\(76\) −28.5123 −3.27058
\(77\) −4.76112 −0.542580
\(78\) −7.15450 −0.810088
\(79\) 15.4580 1.73916 0.869579 0.493793i \(-0.164390\pi\)
0.869579 + 0.493793i \(0.164390\pi\)
\(80\) −4.03897 −0.451571
\(81\) 5.42387 0.602652
\(82\) −14.3223 −1.58163
\(83\) 11.0513 1.21304 0.606520 0.795068i \(-0.292565\pi\)
0.606520 + 0.795068i \(0.292565\pi\)
\(84\) 3.86032 0.421196
\(85\) 2.98994 0.324305
\(86\) 11.1200 1.19910
\(87\) −6.78148 −0.727051
\(88\) 14.5181 1.54763
\(89\) 15.1818 1.60927 0.804634 0.593771i \(-0.202362\pi\)
0.804634 + 0.593771i \(0.202362\pi\)
\(90\) −7.25412 −0.764651
\(91\) 6.96162 0.729776
\(92\) −23.8419 −2.48569
\(93\) 4.66637 0.483880
\(94\) −26.2617 −2.70869
\(95\) 8.40803 0.862646
\(96\) 0.521311 0.0532061
\(97\) 1.72861 0.175513 0.0877567 0.996142i \(-0.472030\pi\)
0.0877567 + 0.996142i \(0.472030\pi\)
\(98\) 11.3497 1.14650
\(99\) 8.05195 0.809251
\(100\) −14.3570 −1.43570
\(101\) −7.28648 −0.725031 −0.362516 0.931978i \(-0.618082\pi\)
−0.362516 + 0.931978i \(0.618082\pi\)
\(102\) 4.06546 0.402541
\(103\) 10.3976 1.02451 0.512255 0.858833i \(-0.328810\pi\)
0.512255 + 0.858833i \(0.328810\pi\)
\(104\) −21.2281 −2.08159
\(105\) −1.13838 −0.111094
\(106\) 4.88478 0.474452
\(107\) 17.3744 1.67965 0.839825 0.542857i \(-0.182657\pi\)
0.839825 + 0.542857i \(0.182657\pi\)
\(108\) −14.1100 −1.35773
\(109\) −13.3440 −1.27812 −0.639062 0.769155i \(-0.720677\pi\)
−0.639062 + 0.769155i \(0.720677\pi\)
\(110\) −8.75214 −0.834484
\(111\) 6.94862 0.659534
\(112\) 5.34379 0.504941
\(113\) 8.23117 0.774323 0.387162 0.922012i \(-0.373456\pi\)
0.387162 + 0.922012i \(0.373456\pi\)
\(114\) 11.4325 1.07075
\(115\) 7.03078 0.655624
\(116\) −41.1338 −3.81917
\(117\) −11.7734 −1.08845
\(118\) 13.8066 1.27100
\(119\) −3.95586 −0.362633
\(120\) 3.47126 0.316881
\(121\) −1.28527 −0.116843
\(122\) 7.72669 0.699541
\(123\) 3.80107 0.342731
\(124\) 28.3043 2.54180
\(125\) 10.0065 0.895012
\(126\) 9.59761 0.855023
\(127\) 10.7225 0.951467 0.475733 0.879590i \(-0.342183\pi\)
0.475733 + 0.879590i \(0.342183\pi\)
\(128\) 20.1786 1.78355
\(129\) −2.95119 −0.259838
\(130\) 12.7972 1.12239
\(131\) 14.2495 1.24499 0.622494 0.782624i \(-0.286119\pi\)
0.622494 + 0.782624i \(0.286119\pi\)
\(132\) −7.87672 −0.685581
\(133\) −11.1243 −0.964600
\(134\) 4.09016 0.353336
\(135\) 4.16092 0.358115
\(136\) 12.0626 1.03436
\(137\) 5.55305 0.474429 0.237215 0.971457i \(-0.423766\pi\)
0.237215 + 0.971457i \(0.423766\pi\)
\(138\) 9.55985 0.813789
\(139\) −14.4613 −1.22659 −0.613295 0.789854i \(-0.710156\pi\)
−0.613295 + 0.789854i \(0.710156\pi\)
\(140\) −6.90495 −0.583575
\(141\) 6.96974 0.586958
\(142\) 31.6758 2.65817
\(143\) −14.2047 −1.18786
\(144\) −9.03736 −0.753114
\(145\) 12.1300 1.00734
\(146\) −34.4049 −2.84737
\(147\) −3.01217 −0.248440
\(148\) 42.1476 3.46451
\(149\) 15.3515 1.25765 0.628824 0.777548i \(-0.283537\pi\)
0.628824 + 0.777548i \(0.283537\pi\)
\(150\) 5.75670 0.470032
\(151\) −7.56074 −0.615284 −0.307642 0.951502i \(-0.599540\pi\)
−0.307642 + 0.951502i \(0.599540\pi\)
\(152\) 33.9214 2.75139
\(153\) 6.69011 0.540863
\(154\) 11.5796 0.933109
\(155\) −8.34671 −0.670424
\(156\) 11.5172 0.922115
\(157\) −7.90927 −0.631228 −0.315614 0.948888i \(-0.602211\pi\)
−0.315614 + 0.948888i \(0.602211\pi\)
\(158\) −37.5956 −2.99094
\(159\) −1.29640 −0.102811
\(160\) −0.932467 −0.0737180
\(161\) −9.30213 −0.733110
\(162\) −13.1915 −1.03642
\(163\) 1.26126 0.0987894 0.0493947 0.998779i \(-0.484271\pi\)
0.0493947 + 0.998779i \(0.484271\pi\)
\(164\) 23.0558 1.80036
\(165\) 2.32278 0.180828
\(166\) −26.8781 −2.08614
\(167\) −19.5673 −1.51416 −0.757081 0.653321i \(-0.773375\pi\)
−0.757081 + 0.653321i \(0.773375\pi\)
\(168\) −4.59268 −0.354333
\(169\) 7.76989 0.597684
\(170\) −7.27188 −0.557728
\(171\) 18.8133 1.43869
\(172\) −17.9008 −1.36492
\(173\) −9.55639 −0.726559 −0.363280 0.931680i \(-0.618343\pi\)
−0.363280 + 0.931680i \(0.618343\pi\)
\(174\) 16.4933 1.25036
\(175\) −5.60150 −0.423434
\(176\) −10.9036 −0.821893
\(177\) −3.66420 −0.275418
\(178\) −36.9239 −2.76756
\(179\) −17.9694 −1.34309 −0.671547 0.740962i \(-0.734370\pi\)
−0.671547 + 0.740962i \(0.734370\pi\)
\(180\) 11.6776 0.870395
\(181\) 17.0818 1.26968 0.634840 0.772644i \(-0.281066\pi\)
0.634840 + 0.772644i \(0.281066\pi\)
\(182\) −16.9315 −1.25504
\(183\) −2.05063 −0.151587
\(184\) 28.3650 2.09110
\(185\) −12.4290 −0.913796
\(186\) −11.3491 −0.832159
\(187\) 8.07166 0.590258
\(188\) 42.2757 3.08327
\(189\) −5.50513 −0.400439
\(190\) −20.4493 −1.48355
\(191\) 18.1692 1.31468 0.657338 0.753596i \(-0.271682\pi\)
0.657338 + 0.753596i \(0.271682\pi\)
\(192\) −5.78400 −0.417424
\(193\) −15.3613 −1.10573 −0.552866 0.833270i \(-0.686466\pi\)
−0.552866 + 0.833270i \(0.686466\pi\)
\(194\) −4.20417 −0.301842
\(195\) −3.39633 −0.243216
\(196\) −18.2706 −1.30505
\(197\) −23.1797 −1.65149 −0.825743 0.564047i \(-0.809244\pi\)
−0.825743 + 0.564047i \(0.809244\pi\)
\(198\) −19.5833 −1.39172
\(199\) 0.480964 0.0340947 0.0170473 0.999855i \(-0.494573\pi\)
0.0170473 + 0.999855i \(0.494573\pi\)
\(200\) 17.0807 1.20779
\(201\) −1.08551 −0.0765661
\(202\) 17.7215 1.24688
\(203\) −16.0487 −1.12640
\(204\) −6.54452 −0.458208
\(205\) −6.79897 −0.474860
\(206\) −25.2883 −1.76192
\(207\) 15.7317 1.09343
\(208\) 15.9431 1.10546
\(209\) 22.6984 1.57008
\(210\) 2.76867 0.191056
\(211\) 17.8074 1.22591 0.612957 0.790116i \(-0.289980\pi\)
0.612957 + 0.790116i \(0.289980\pi\)
\(212\) −7.86345 −0.540064
\(213\) −8.40661 −0.576012
\(214\) −42.2566 −2.88860
\(215\) 5.27879 0.360010
\(216\) 16.7868 1.14220
\(217\) 11.0432 0.749660
\(218\) 32.4542 2.19807
\(219\) 9.13091 0.617010
\(220\) 14.0891 0.949885
\(221\) −11.8022 −0.793905
\(222\) −16.8998 −1.13424
\(223\) 16.8863 1.13079 0.565397 0.824819i \(-0.308723\pi\)
0.565397 + 0.824819i \(0.308723\pi\)
\(224\) 1.23371 0.0824306
\(225\) 9.47320 0.631547
\(226\) −20.0192 −1.33165
\(227\) −0.761850 −0.0505657 −0.0252829 0.999680i \(-0.508049\pi\)
−0.0252829 + 0.999680i \(0.508049\pi\)
\(228\) −18.4039 −1.21883
\(229\) −16.2642 −1.07477 −0.537383 0.843338i \(-0.680587\pi\)
−0.537383 + 0.843338i \(0.680587\pi\)
\(230\) −17.0997 −1.12752
\(231\) −3.07317 −0.202200
\(232\) 48.9374 3.21290
\(233\) −16.2417 −1.06403 −0.532016 0.846734i \(-0.678565\pi\)
−0.532016 + 0.846734i \(0.678565\pi\)
\(234\) 28.6343 1.87188
\(235\) −12.4667 −0.813241
\(236\) −22.2256 −1.44676
\(237\) 9.97771 0.648122
\(238\) 9.62111 0.623644
\(239\) 22.3547 1.44601 0.723003 0.690845i \(-0.242761\pi\)
0.723003 + 0.690845i \(0.242761\pi\)
\(240\) −2.60705 −0.168284
\(241\) 8.80312 0.567059 0.283529 0.958964i \(-0.408495\pi\)
0.283529 + 0.958964i \(0.408495\pi\)
\(242\) 3.12592 0.200942
\(243\) 14.3127 0.918160
\(244\) −12.4383 −0.796281
\(245\) 5.38786 0.344218
\(246\) −9.24465 −0.589417
\(247\) −33.1892 −2.11178
\(248\) −33.6740 −2.13830
\(249\) 7.13333 0.452057
\(250\) −24.3370 −1.53921
\(251\) −9.80716 −0.619022 −0.309511 0.950896i \(-0.600165\pi\)
−0.309511 + 0.950896i \(0.600165\pi\)
\(252\) −15.4501 −0.973265
\(253\) 18.9804 1.19328
\(254\) −26.0783 −1.63630
\(255\) 1.92993 0.120857
\(256\) −31.1549 −1.94718
\(257\) 10.5111 0.655666 0.327833 0.944736i \(-0.393682\pi\)
0.327833 + 0.944736i \(0.393682\pi\)
\(258\) 7.17764 0.446860
\(259\) 16.4442 1.02180
\(260\) −20.6008 −1.27761
\(261\) 27.1414 1.68001
\(262\) −34.6565 −2.14109
\(263\) 18.1048 1.11639 0.558194 0.829710i \(-0.311494\pi\)
0.558194 + 0.829710i \(0.311494\pi\)
\(264\) 9.37104 0.576748
\(265\) 2.31887 0.142447
\(266\) 27.0556 1.65889
\(267\) 9.79945 0.599716
\(268\) −6.58428 −0.402199
\(269\) −27.4809 −1.67554 −0.837769 0.546025i \(-0.816141\pi\)
−0.837769 + 0.546025i \(0.816141\pi\)
\(270\) −10.1198 −0.615873
\(271\) 1.10081 0.0668695 0.0334348 0.999441i \(-0.489355\pi\)
0.0334348 + 0.999441i \(0.489355\pi\)
\(272\) −9.05949 −0.549312
\(273\) 4.49354 0.271961
\(274\) −13.5057 −0.815907
\(275\) 11.4295 0.689224
\(276\) −15.3893 −0.926327
\(277\) 12.0008 0.721059 0.360529 0.932748i \(-0.382596\pi\)
0.360529 + 0.932748i \(0.382596\pi\)
\(278\) 35.1715 2.10945
\(279\) −18.6761 −1.11811
\(280\) 8.21491 0.490935
\(281\) −0.656951 −0.0391904 −0.0195952 0.999808i \(-0.506238\pi\)
−0.0195952 + 0.999808i \(0.506238\pi\)
\(282\) −16.9512 −1.00943
\(283\) −11.2492 −0.668698 −0.334349 0.942449i \(-0.608516\pi\)
−0.334349 + 0.942449i \(0.608516\pi\)
\(284\) −50.9912 −3.02577
\(285\) 5.42716 0.321477
\(286\) 34.5475 2.04284
\(287\) 8.99542 0.530983
\(288\) −2.08643 −0.122944
\(289\) −10.2935 −0.605501
\(290\) −29.5016 −1.73239
\(291\) 1.11577 0.0654075
\(292\) 55.3845 3.24113
\(293\) 0.841654 0.0491700 0.0245850 0.999698i \(-0.492174\pi\)
0.0245850 + 0.999698i \(0.492174\pi\)
\(294\) 7.32595 0.427258
\(295\) 6.55415 0.381597
\(296\) −50.1435 −2.91453
\(297\) 11.2328 0.651795
\(298\) −37.3367 −2.16286
\(299\) −27.7527 −1.60498
\(300\) −9.26705 −0.535033
\(301\) −6.98414 −0.402559
\(302\) 18.3886 1.05814
\(303\) −4.70322 −0.270193
\(304\) −25.4763 −1.46116
\(305\) 3.66796 0.210026
\(306\) −16.2711 −0.930158
\(307\) −8.74998 −0.499388 −0.249694 0.968325i \(-0.580330\pi\)
−0.249694 + 0.968325i \(0.580330\pi\)
\(308\) −18.6406 −1.06215
\(309\) 6.71140 0.381798
\(310\) 20.3002 1.15297
\(311\) −19.6026 −1.11156 −0.555780 0.831330i \(-0.687580\pi\)
−0.555780 + 0.831330i \(0.687580\pi\)
\(312\) −13.7022 −0.775733
\(313\) 23.3542 1.32006 0.660028 0.751241i \(-0.270545\pi\)
0.660028 + 0.751241i \(0.270545\pi\)
\(314\) 19.2362 1.08556
\(315\) 4.55611 0.256708
\(316\) 60.5208 3.40456
\(317\) 28.1719 1.58229 0.791147 0.611626i \(-0.209484\pi\)
0.791147 + 0.611626i \(0.209484\pi\)
\(318\) 3.15300 0.176811
\(319\) 32.7463 1.83344
\(320\) 10.3458 0.578348
\(321\) 11.2147 0.625945
\(322\) 22.6238 1.26078
\(323\) 18.8594 1.04936
\(324\) 21.2354 1.17975
\(325\) −16.7120 −0.927015
\(326\) −3.06752 −0.169894
\(327\) −8.61320 −0.476311
\(328\) −27.4298 −1.51456
\(329\) 16.4942 0.909356
\(330\) −5.64927 −0.310982
\(331\) 4.91670 0.270246 0.135123 0.990829i \(-0.456857\pi\)
0.135123 + 0.990829i \(0.456857\pi\)
\(332\) 43.2680 2.37464
\(333\) −27.8103 −1.52400
\(334\) 47.5899 2.60400
\(335\) 1.94165 0.106084
\(336\) 3.44927 0.188173
\(337\) −10.2561 −0.558685 −0.279342 0.960192i \(-0.590116\pi\)
−0.279342 + 0.960192i \(0.590116\pi\)
\(338\) −18.8973 −1.02788
\(339\) 5.31300 0.288563
\(340\) 11.7062 0.634856
\(341\) −22.5328 −1.22022
\(342\) −45.7561 −2.47421
\(343\) −17.8213 −0.962257
\(344\) 21.2968 1.14825
\(345\) 4.53818 0.244327
\(346\) 23.2422 1.24951
\(347\) 27.1915 1.45972 0.729858 0.683598i \(-0.239586\pi\)
0.729858 + 0.683598i \(0.239586\pi\)
\(348\) −26.5507 −1.42327
\(349\) 28.0209 1.49993 0.749963 0.661480i \(-0.230071\pi\)
0.749963 + 0.661480i \(0.230071\pi\)
\(350\) 13.6235 0.728207
\(351\) −16.4245 −0.876673
\(352\) −2.51730 −0.134172
\(353\) −5.62984 −0.299646 −0.149823 0.988713i \(-0.547870\pi\)
−0.149823 + 0.988713i \(0.547870\pi\)
\(354\) 8.91176 0.473655
\(355\) 15.0369 0.798075
\(356\) 59.4395 3.15029
\(357\) −2.55340 −0.135140
\(358\) 43.7036 2.30981
\(359\) 14.4913 0.764821 0.382411 0.923993i \(-0.375094\pi\)
0.382411 + 0.923993i \(0.375094\pi\)
\(360\) −13.8930 −0.732223
\(361\) 34.0346 1.79129
\(362\) −41.5449 −2.18355
\(363\) −0.829607 −0.0435431
\(364\) 27.2560 1.42860
\(365\) −16.3324 −0.854878
\(366\) 4.98737 0.260694
\(367\) −1.35810 −0.0708920 −0.0354460 0.999372i \(-0.511285\pi\)
−0.0354460 + 0.999372i \(0.511285\pi\)
\(368\) −21.3032 −1.11051
\(369\) −15.2130 −0.791955
\(370\) 30.2287 1.57151
\(371\) −3.06799 −0.159282
\(372\) 18.2697 0.947239
\(373\) −15.7366 −0.814812 −0.407406 0.913247i \(-0.633567\pi\)
−0.407406 + 0.913247i \(0.633567\pi\)
\(374\) −19.6312 −1.01511
\(375\) 6.45895 0.333539
\(376\) −50.2959 −2.59381
\(377\) −47.8810 −2.46600
\(378\) 13.3891 0.688661
\(379\) −13.0196 −0.668769 −0.334385 0.942437i \(-0.608528\pi\)
−0.334385 + 0.942437i \(0.608528\pi\)
\(380\) 32.9190 1.68871
\(381\) 6.92108 0.354577
\(382\) −44.1895 −2.26093
\(383\) −36.4198 −1.86096 −0.930481 0.366339i \(-0.880611\pi\)
−0.930481 + 0.366339i \(0.880611\pi\)
\(384\) 13.0247 0.664665
\(385\) 5.49697 0.280152
\(386\) 37.3605 1.90160
\(387\) 11.8115 0.600412
\(388\) 6.76781 0.343583
\(389\) 19.1461 0.970748 0.485374 0.874307i \(-0.338683\pi\)
0.485374 + 0.874307i \(0.338683\pi\)
\(390\) 8.26027 0.418275
\(391\) 15.7702 0.797532
\(392\) 21.7368 1.09788
\(393\) 9.19770 0.463962
\(394\) 56.3757 2.84017
\(395\) −17.8471 −0.897985
\(396\) 31.5249 1.58418
\(397\) 24.7506 1.24220 0.621098 0.783733i \(-0.286687\pi\)
0.621098 + 0.783733i \(0.286687\pi\)
\(398\) −1.16976 −0.0586348
\(399\) −7.18044 −0.359472
\(400\) −12.8282 −0.641412
\(401\) 14.7769 0.737925 0.368962 0.929444i \(-0.379713\pi\)
0.368962 + 0.929444i \(0.379713\pi\)
\(402\) 2.64009 0.131676
\(403\) 32.9471 1.64121
\(404\) −28.5279 −1.41932
\(405\) −6.26215 −0.311169
\(406\) 39.0323 1.93714
\(407\) −33.5533 −1.66318
\(408\) 7.78610 0.385470
\(409\) 13.0927 0.647395 0.323697 0.946161i \(-0.395074\pi\)
0.323697 + 0.946161i \(0.395074\pi\)
\(410\) 16.5359 0.816648
\(411\) 3.58435 0.176803
\(412\) 40.7087 2.00557
\(413\) −8.67151 −0.426697
\(414\) −38.2612 −1.88044
\(415\) −12.7594 −0.626333
\(416\) 3.68075 0.180463
\(417\) −9.33437 −0.457106
\(418\) −55.2051 −2.70017
\(419\) −12.8884 −0.629641 −0.314820 0.949151i \(-0.601944\pi\)
−0.314820 + 0.949151i \(0.601944\pi\)
\(420\) −4.45696 −0.217477
\(421\) −19.7637 −0.963224 −0.481612 0.876385i \(-0.659949\pi\)
−0.481612 + 0.876385i \(0.659949\pi\)
\(422\) −43.3097 −2.10828
\(423\) −27.8949 −1.35629
\(424\) 9.35525 0.454331
\(425\) 9.49640 0.460643
\(426\) 20.4459 0.990605
\(427\) −4.85291 −0.234849
\(428\) 68.0241 3.28807
\(429\) −9.16876 −0.442672
\(430\) −12.8386 −0.619133
\(431\) 13.9622 0.672534 0.336267 0.941767i \(-0.390836\pi\)
0.336267 + 0.941767i \(0.390836\pi\)
\(432\) −12.6075 −0.606580
\(433\) −20.0748 −0.964732 −0.482366 0.875970i \(-0.660222\pi\)
−0.482366 + 0.875970i \(0.660222\pi\)
\(434\) −26.8583 −1.28924
\(435\) 7.82960 0.375400
\(436\) −52.2442 −2.50205
\(437\) 44.3474 2.12143
\(438\) −22.2074 −1.06111
\(439\) 1.24281 0.0593161 0.0296581 0.999560i \(-0.490558\pi\)
0.0296581 + 0.999560i \(0.490558\pi\)
\(440\) −16.7619 −0.799095
\(441\) 12.0556 0.574074
\(442\) 28.7044 1.36533
\(443\) 32.2202 1.53083 0.765414 0.643538i \(-0.222534\pi\)
0.765414 + 0.643538i \(0.222534\pi\)
\(444\) 27.2051 1.29110
\(445\) −17.5282 −0.830918
\(446\) −41.0695 −1.94470
\(447\) 9.90901 0.468680
\(448\) −13.6881 −0.646702
\(449\) 34.5170 1.62896 0.814480 0.580192i \(-0.197023\pi\)
0.814480 + 0.580192i \(0.197023\pi\)
\(450\) −23.0399 −1.08611
\(451\) −18.3545 −0.864281
\(452\) 32.2265 1.51581
\(453\) −4.88025 −0.229294
\(454\) 1.85291 0.0869612
\(455\) −8.03758 −0.376808
\(456\) 21.8954 1.02534
\(457\) 17.1639 0.802895 0.401447 0.915882i \(-0.368507\pi\)
0.401447 + 0.915882i \(0.368507\pi\)
\(458\) 39.5563 1.84834
\(459\) 9.33301 0.435628
\(460\) 27.5268 1.28344
\(461\) −26.4631 −1.23251 −0.616255 0.787547i \(-0.711351\pi\)
−0.616255 + 0.787547i \(0.711351\pi\)
\(462\) 7.47431 0.347736
\(463\) 18.7911 0.873295 0.436647 0.899633i \(-0.356166\pi\)
0.436647 + 0.899633i \(0.356166\pi\)
\(464\) −36.7538 −1.70625
\(465\) −5.38758 −0.249843
\(466\) 39.5018 1.82989
\(467\) 9.56827 0.442767 0.221383 0.975187i \(-0.428943\pi\)
0.221383 + 0.975187i \(0.428943\pi\)
\(468\) −46.0951 −2.13075
\(469\) −2.56891 −0.118621
\(470\) 30.3206 1.39858
\(471\) −5.10522 −0.235236
\(472\) 26.4421 1.21710
\(473\) 14.2507 0.655246
\(474\) −24.2669 −1.11462
\(475\) 26.7049 1.22530
\(476\) −15.4879 −0.709888
\(477\) 5.18856 0.237568
\(478\) −54.3692 −2.48679
\(479\) −1.62505 −0.0742503 −0.0371252 0.999311i \(-0.511820\pi\)
−0.0371252 + 0.999311i \(0.511820\pi\)
\(480\) −0.601883 −0.0274721
\(481\) 49.0611 2.23699
\(482\) −21.4102 −0.975207
\(483\) −6.00427 −0.273204
\(484\) −5.03207 −0.228730
\(485\) −1.99577 −0.0906233
\(486\) −34.8101 −1.57902
\(487\) −4.76734 −0.216029 −0.108014 0.994149i \(-0.534449\pi\)
−0.108014 + 0.994149i \(0.534449\pi\)
\(488\) 14.7980 0.669875
\(489\) 0.814108 0.0368152
\(490\) −13.1039 −0.591974
\(491\) 17.6701 0.797439 0.398719 0.917073i \(-0.369455\pi\)
0.398719 + 0.917073i \(0.369455\pi\)
\(492\) 14.8819 0.670928
\(493\) 27.2078 1.22538
\(494\) 80.7199 3.63176
\(495\) −9.29642 −0.417843
\(496\) 25.2905 1.13558
\(497\) −19.8947 −0.892397
\(498\) −17.3491 −0.777431
\(499\) 15.2443 0.682430 0.341215 0.939985i \(-0.389162\pi\)
0.341215 + 0.939985i \(0.389162\pi\)
\(500\) 39.1774 1.75207
\(501\) −12.6302 −0.564274
\(502\) 23.8521 1.06457
\(503\) −10.7891 −0.481062 −0.240531 0.970641i \(-0.577322\pi\)
−0.240531 + 0.970641i \(0.577322\pi\)
\(504\) 18.3812 0.818763
\(505\) 8.41264 0.374358
\(506\) −46.1624 −2.05217
\(507\) 5.01525 0.222735
\(508\) 41.9805 1.86258
\(509\) −17.6960 −0.784361 −0.392181 0.919888i \(-0.628279\pi\)
−0.392181 + 0.919888i \(0.628279\pi\)
\(510\) −4.69380 −0.207845
\(511\) 21.6087 0.955914
\(512\) 35.4151 1.56514
\(513\) 26.2454 1.15876
\(514\) −25.5643 −1.12759
\(515\) −12.0047 −0.528988
\(516\) −11.5545 −0.508657
\(517\) −33.6553 −1.48016
\(518\) −39.9943 −1.75725
\(519\) −6.16840 −0.270763
\(520\) 24.5090 1.07479
\(521\) 20.1694 0.883638 0.441819 0.897104i \(-0.354333\pi\)
0.441819 + 0.897104i \(0.354333\pi\)
\(522\) −66.0110 −2.88922
\(523\) 0.427646 0.0186997 0.00934983 0.999956i \(-0.497024\pi\)
0.00934983 + 0.999956i \(0.497024\pi\)
\(524\) 55.7896 2.43718
\(525\) −3.61562 −0.157799
\(526\) −44.0329 −1.91993
\(527\) −18.7218 −0.815536
\(528\) −7.03801 −0.306290
\(529\) 14.0832 0.612315
\(530\) −5.63975 −0.244975
\(531\) 14.6652 0.636414
\(532\) −43.5537 −1.88829
\(533\) 26.8377 1.16247
\(534\) −23.8334 −1.03137
\(535\) −20.0598 −0.867259
\(536\) 7.83340 0.338352
\(537\) −11.5988 −0.500523
\(538\) 66.8366 2.88153
\(539\) 14.5451 0.626502
\(540\) 16.2907 0.701042
\(541\) −4.42440 −0.190220 −0.0951099 0.995467i \(-0.530320\pi\)
−0.0951099 + 0.995467i \(0.530320\pi\)
\(542\) −2.67730 −0.115000
\(543\) 11.0258 0.473164
\(544\) −2.09154 −0.0896741
\(545\) 15.4064 0.659938
\(546\) −10.9288 −0.467710
\(547\) −4.91191 −0.210018 −0.105009 0.994471i \(-0.533487\pi\)
−0.105009 + 0.994471i \(0.533487\pi\)
\(548\) 21.7412 0.928739
\(549\) 8.20720 0.350275
\(550\) −27.7978 −1.18530
\(551\) 76.5114 3.25949
\(552\) 18.3089 0.779277
\(553\) 23.6127 1.00412
\(554\) −29.1873 −1.24005
\(555\) −8.02256 −0.340539
\(556\) −56.6186 −2.40116
\(557\) 34.3666 1.45616 0.728080 0.685492i \(-0.240413\pi\)
0.728080 + 0.685492i \(0.240413\pi\)
\(558\) 45.4224 1.92289
\(559\) −20.8371 −0.881314
\(560\) −6.16970 −0.260718
\(561\) 5.21004 0.219968
\(562\) 1.59778 0.0673983
\(563\) 19.1235 0.805959 0.402979 0.915209i \(-0.367975\pi\)
0.402979 + 0.915209i \(0.367975\pi\)
\(564\) 27.2878 1.14902
\(565\) −9.50334 −0.399809
\(566\) 27.3595 1.15000
\(567\) 8.28519 0.347945
\(568\) 60.6649 2.54544
\(569\) 2.32776 0.0975846 0.0487923 0.998809i \(-0.484463\pi\)
0.0487923 + 0.998809i \(0.484463\pi\)
\(570\) −13.1995 −0.552865
\(571\) 13.9983 0.585813 0.292906 0.956141i \(-0.405378\pi\)
0.292906 + 0.956141i \(0.405378\pi\)
\(572\) −55.6141 −2.32534
\(573\) 11.7277 0.489932
\(574\) −21.8779 −0.913166
\(575\) 22.3306 0.931250
\(576\) 23.1492 0.964549
\(577\) 6.89108 0.286879 0.143440 0.989659i \(-0.454184\pi\)
0.143440 + 0.989659i \(0.454184\pi\)
\(578\) 25.0350 1.04132
\(579\) −9.91532 −0.412067
\(580\) 47.4912 1.97197
\(581\) 16.8814 0.700358
\(582\) −2.71368 −0.112486
\(583\) 6.26003 0.259264
\(584\) −65.8916 −2.72662
\(585\) 13.5931 0.562004
\(586\) −2.04700 −0.0845608
\(587\) −20.4979 −0.846040 −0.423020 0.906120i \(-0.639030\pi\)
−0.423020 + 0.906120i \(0.639030\pi\)
\(588\) −11.7932 −0.486344
\(589\) −52.6478 −2.16932
\(590\) −15.9404 −0.656257
\(591\) −14.9619 −0.615449
\(592\) 37.6597 1.54780
\(593\) −7.52526 −0.309025 −0.154513 0.987991i \(-0.549381\pi\)
−0.154513 + 0.987991i \(0.549381\pi\)
\(594\) −27.3196 −1.12093
\(595\) 4.56726 0.187239
\(596\) 60.1041 2.46196
\(597\) 0.310450 0.0127059
\(598\) 67.4979 2.76019
\(599\) −19.9136 −0.813648 −0.406824 0.913507i \(-0.633364\pi\)
−0.406824 + 0.913507i \(0.633364\pi\)
\(600\) 11.0251 0.450099
\(601\) −9.38960 −0.383010 −0.191505 0.981492i \(-0.561337\pi\)
−0.191505 + 0.981492i \(0.561337\pi\)
\(602\) 16.9862 0.692307
\(603\) 4.34452 0.176923
\(604\) −29.6017 −1.20448
\(605\) 1.48392 0.0603297
\(606\) 11.4388 0.464669
\(607\) 18.3155 0.743403 0.371702 0.928352i \(-0.378774\pi\)
0.371702 + 0.928352i \(0.378774\pi\)
\(608\) −5.88164 −0.238532
\(609\) −10.3590 −0.419768
\(610\) −8.92089 −0.361196
\(611\) 49.2102 1.99083
\(612\) 26.1930 1.05879
\(613\) −35.2297 −1.42292 −0.711458 0.702729i \(-0.751965\pi\)
−0.711458 + 0.702729i \(0.751965\pi\)
\(614\) 21.2810 0.858830
\(615\) −4.38855 −0.176963
\(616\) 22.1770 0.893538
\(617\) 42.0795 1.69406 0.847028 0.531548i \(-0.178390\pi\)
0.847028 + 0.531548i \(0.178390\pi\)
\(618\) −16.3229 −0.656603
\(619\) −17.4446 −0.701156 −0.350578 0.936534i \(-0.614015\pi\)
−0.350578 + 0.936534i \(0.614015\pi\)
\(620\) −32.6789 −1.31242
\(621\) 21.9464 0.880678
\(622\) 47.6757 1.91162
\(623\) 23.1909 0.929122
\(624\) 10.2909 0.411964
\(625\) 6.78191 0.271276
\(626\) −56.8000 −2.27018
\(627\) 14.6512 0.585112
\(628\) −30.9662 −1.23569
\(629\) −27.8784 −1.11158
\(630\) −11.0810 −0.441477
\(631\) 22.2204 0.884582 0.442291 0.896872i \(-0.354166\pi\)
0.442291 + 0.896872i \(0.354166\pi\)
\(632\) −72.0024 −2.86410
\(633\) 11.4942 0.456854
\(634\) −68.5174 −2.72117
\(635\) −12.3797 −0.491274
\(636\) −5.07565 −0.201262
\(637\) −21.2676 −0.842654
\(638\) −79.6427 −3.15308
\(639\) 33.6456 1.33100
\(640\) −23.2973 −0.920905
\(641\) −15.3088 −0.604661 −0.302330 0.953203i \(-0.597765\pi\)
−0.302330 + 0.953203i \(0.597765\pi\)
\(642\) −27.2755 −1.07648
\(643\) 48.0449 1.89470 0.947352 0.320193i \(-0.103748\pi\)
0.947352 + 0.320193i \(0.103748\pi\)
\(644\) −36.4195 −1.43513
\(645\) 3.40732 0.134163
\(646\) −45.8682 −1.80466
\(647\) −16.5753 −0.651642 −0.325821 0.945431i \(-0.605641\pi\)
−0.325821 + 0.945431i \(0.605641\pi\)
\(648\) −25.2641 −0.992466
\(649\) 17.6936 0.694535
\(650\) 40.6455 1.59425
\(651\) 7.12808 0.279371
\(652\) 4.93806 0.193389
\(653\) −27.4086 −1.07258 −0.536290 0.844034i \(-0.680175\pi\)
−0.536290 + 0.844034i \(0.680175\pi\)
\(654\) 20.9483 0.819143
\(655\) −16.4519 −0.642828
\(656\) 20.6008 0.804326
\(657\) −36.5445 −1.42574
\(658\) −40.1158 −1.56388
\(659\) 15.2920 0.595691 0.297845 0.954614i \(-0.403732\pi\)
0.297845 + 0.954614i \(0.403732\pi\)
\(660\) 9.09411 0.353988
\(661\) −19.0840 −0.742283 −0.371142 0.928576i \(-0.621034\pi\)
−0.371142 + 0.928576i \(0.621034\pi\)
\(662\) −11.9580 −0.464760
\(663\) −7.61803 −0.295860
\(664\) −51.4765 −1.99767
\(665\) 12.8436 0.498055
\(666\) 67.6379 2.62092
\(667\) 63.9787 2.47726
\(668\) −76.6095 −2.96411
\(669\) 10.8997 0.421406
\(670\) −4.72232 −0.182439
\(671\) 9.90204 0.382264
\(672\) 0.796325 0.0307189
\(673\) 24.1822 0.932157 0.466078 0.884743i \(-0.345666\pi\)
0.466078 + 0.884743i \(0.345666\pi\)
\(674\) 24.9440 0.960806
\(675\) 13.2155 0.508667
\(676\) 30.4205 1.17002
\(677\) 45.2097 1.73755 0.868775 0.495207i \(-0.164908\pi\)
0.868775 + 0.495207i \(0.164908\pi\)
\(678\) −12.9218 −0.496260
\(679\) 2.64052 0.101334
\(680\) −13.9270 −0.534075
\(681\) −0.491753 −0.0188440
\(682\) 54.8025 2.09850
\(683\) −18.2710 −0.699121 −0.349561 0.936914i \(-0.613669\pi\)
−0.349561 + 0.936914i \(0.613669\pi\)
\(684\) 73.6576 2.81637
\(685\) −6.41131 −0.244964
\(686\) 43.3433 1.65486
\(687\) −10.4981 −0.400527
\(688\) −15.9947 −0.609791
\(689\) −9.15331 −0.348713
\(690\) −11.0374 −0.420186
\(691\) −20.2785 −0.771430 −0.385715 0.922618i \(-0.626045\pi\)
−0.385715 + 0.922618i \(0.626045\pi\)
\(692\) −37.4150 −1.42231
\(693\) 12.2997 0.467227
\(694\) −66.1329 −2.51037
\(695\) 16.6963 0.633329
\(696\) 31.5878 1.19733
\(697\) −15.2502 −0.577643
\(698\) −68.1501 −2.57952
\(699\) −10.4836 −0.396527
\(700\) −21.9309 −0.828910
\(701\) −1.81957 −0.0687242 −0.0343621 0.999409i \(-0.510940\pi\)
−0.0343621 + 0.999409i \(0.510940\pi\)
\(702\) 39.9462 1.50767
\(703\) −78.3971 −2.95680
\(704\) 27.9296 1.05264
\(705\) −8.04695 −0.303066
\(706\) 13.6924 0.515321
\(707\) −11.1304 −0.418602
\(708\) −14.3460 −0.539157
\(709\) 0.972273 0.0365145 0.0182572 0.999833i \(-0.494188\pi\)
0.0182572 + 0.999833i \(0.494188\pi\)
\(710\) −36.5714 −1.37250
\(711\) −39.9336 −1.49763
\(712\) −70.7160 −2.65019
\(713\) −44.0240 −1.64871
\(714\) 6.21017 0.232410
\(715\) 16.4001 0.613330
\(716\) −70.3534 −2.62923
\(717\) 14.4294 0.538874
\(718\) −35.2445 −1.31531
\(719\) −11.6015 −0.432664 −0.216332 0.976320i \(-0.569409\pi\)
−0.216332 + 0.976320i \(0.569409\pi\)
\(720\) 10.4341 0.388857
\(721\) 15.8828 0.591508
\(722\) −82.7760 −3.08060
\(723\) 5.68217 0.211322
\(724\) 66.8783 2.48551
\(725\) 38.5263 1.43083
\(726\) 2.01770 0.0748839
\(727\) 27.8767 1.03389 0.516946 0.856018i \(-0.327069\pi\)
0.516946 + 0.856018i \(0.327069\pi\)
\(728\) −32.4269 −1.20182
\(729\) −7.03314 −0.260487
\(730\) 39.7223 1.47019
\(731\) 11.8404 0.437934
\(732\) −8.02859 −0.296745
\(733\) 13.6023 0.502414 0.251207 0.967933i \(-0.419173\pi\)
0.251207 + 0.967933i \(0.419173\pi\)
\(734\) 3.30304 0.121918
\(735\) 3.47772 0.128278
\(736\) −4.91822 −0.181288
\(737\) 5.24169 0.193080
\(738\) 36.9997 1.36198
\(739\) −12.6441 −0.465120 −0.232560 0.972582i \(-0.574710\pi\)
−0.232560 + 0.972582i \(0.574710\pi\)
\(740\) −48.6617 −1.78884
\(741\) −21.4227 −0.786984
\(742\) 7.46172 0.273928
\(743\) −0.383303 −0.0140620 −0.00703102 0.999975i \(-0.502238\pi\)
−0.00703102 + 0.999975i \(0.502238\pi\)
\(744\) −21.7357 −0.796869
\(745\) −17.7242 −0.649365
\(746\) 38.2733 1.40128
\(747\) −28.5496 −1.04458
\(748\) 31.6020 1.15549
\(749\) 26.5402 0.969758
\(750\) −15.7089 −0.573608
\(751\) −26.4984 −0.966939 −0.483469 0.875361i \(-0.660624\pi\)
−0.483469 + 0.875361i \(0.660624\pi\)
\(752\) 37.7741 1.37748
\(753\) −6.33026 −0.230687
\(754\) 116.452 4.24094
\(755\) 8.72929 0.317691
\(756\) −21.5536 −0.783897
\(757\) −14.0794 −0.511724 −0.255862 0.966713i \(-0.582359\pi\)
−0.255862 + 0.966713i \(0.582359\pi\)
\(758\) 31.6650 1.15013
\(759\) 12.2513 0.444694
\(760\) −39.1642 −1.42063
\(761\) −28.0204 −1.01574 −0.507869 0.861435i \(-0.669566\pi\)
−0.507869 + 0.861435i \(0.669566\pi\)
\(762\) −16.8329 −0.609790
\(763\) −20.3835 −0.737934
\(764\) 71.1357 2.57360
\(765\) −7.72410 −0.279266
\(766\) 88.5770 3.20042
\(767\) −25.8713 −0.934159
\(768\) −20.1096 −0.725644
\(769\) 26.1648 0.943527 0.471764 0.881725i \(-0.343618\pi\)
0.471764 + 0.881725i \(0.343618\pi\)
\(770\) −13.3693 −0.481795
\(771\) 6.78465 0.244343
\(772\) −60.1424 −2.16457
\(773\) −12.6876 −0.456343 −0.228171 0.973621i \(-0.573275\pi\)
−0.228171 + 0.973621i \(0.573275\pi\)
\(774\) −28.7269 −1.03257
\(775\) −26.5101 −0.952272
\(776\) −8.05175 −0.289041
\(777\) 10.6143 0.380786
\(778\) −46.5656 −1.66946
\(779\) −42.8852 −1.53652
\(780\) −13.2973 −0.476118
\(781\) 40.5937 1.45256
\(782\) −38.3549 −1.37157
\(783\) 37.8635 1.35313
\(784\) −16.3252 −0.583042
\(785\) 9.13169 0.325924
\(786\) −22.3699 −0.797906
\(787\) 8.78531 0.313162 0.156581 0.987665i \(-0.449953\pi\)
0.156581 + 0.987665i \(0.449953\pi\)
\(788\) −90.7528 −3.23293
\(789\) 11.6861 0.416038
\(790\) 43.4062 1.54432
\(791\) 12.5735 0.447061
\(792\) −37.5055 −1.33270
\(793\) −14.4786 −0.514150
\(794\) −60.1962 −2.13628
\(795\) 1.49677 0.0530848
\(796\) 1.88306 0.0667434
\(797\) −9.63111 −0.341151 −0.170576 0.985345i \(-0.554563\pi\)
−0.170576 + 0.985345i \(0.554563\pi\)
\(798\) 17.4637 0.618207
\(799\) −27.9631 −0.989265
\(800\) −2.96162 −0.104709
\(801\) −39.2201 −1.38578
\(802\) −35.9392 −1.26906
\(803\) −44.0911 −1.55594
\(804\) −4.24997 −0.149885
\(805\) 10.7398 0.378529
\(806\) −80.1313 −2.82250
\(807\) −17.7382 −0.624413
\(808\) 33.9400 1.19401
\(809\) 34.4424 1.21093 0.605465 0.795872i \(-0.292987\pi\)
0.605465 + 0.795872i \(0.292987\pi\)
\(810\) 15.2303 0.535137
\(811\) 0.359968 0.0126402 0.00632008 0.999980i \(-0.497988\pi\)
0.00632008 + 0.999980i \(0.497988\pi\)
\(812\) −62.8336 −2.20503
\(813\) 0.710544 0.0249199
\(814\) 81.6056 2.86027
\(815\) −1.45619 −0.0510082
\(816\) −5.84766 −0.204709
\(817\) 33.2965 1.16490
\(818\) −31.8431 −1.11337
\(819\) −17.9844 −0.628426
\(820\) −26.6192 −0.929583
\(821\) 13.8438 0.483150 0.241575 0.970382i \(-0.422336\pi\)
0.241575 + 0.970382i \(0.422336\pi\)
\(822\) −8.71754 −0.304059
\(823\) −1.09143 −0.0380448 −0.0190224 0.999819i \(-0.506055\pi\)
−0.0190224 + 0.999819i \(0.506055\pi\)
\(824\) −48.4316 −1.68720
\(825\) 7.37742 0.256849
\(826\) 21.0901 0.733819
\(827\) −31.4499 −1.09362 −0.546810 0.837257i \(-0.684158\pi\)
−0.546810 + 0.837257i \(0.684158\pi\)
\(828\) 61.5923 2.14048
\(829\) −0.0453522 −0.00157515 −0.000787574 1.00000i \(-0.500251\pi\)
−0.000787574 1.00000i \(0.500251\pi\)
\(830\) 31.0323 1.07715
\(831\) 7.74620 0.268713
\(832\) −40.8382 −1.41581
\(833\) 12.0851 0.418723
\(834\) 22.7023 0.786115
\(835\) 22.5915 0.781812
\(836\) 88.8683 3.07358
\(837\) −26.0540 −0.900559
\(838\) 31.3461 1.08283
\(839\) 29.2535 1.00994 0.504971 0.863136i \(-0.331503\pi\)
0.504971 + 0.863136i \(0.331503\pi\)
\(840\) 5.30250 0.182954
\(841\) 81.3806 2.80623
\(842\) 48.0676 1.65652
\(843\) −0.424045 −0.0146049
\(844\) 69.7193 2.39984
\(845\) −8.97077 −0.308604
\(846\) 67.8435 2.33251
\(847\) −1.96331 −0.0674600
\(848\) −7.02615 −0.241279
\(849\) −7.26108 −0.249200
\(850\) −23.0963 −0.792197
\(851\) −65.5555 −2.24721
\(852\) −32.9134 −1.12760
\(853\) −9.13158 −0.312659 −0.156330 0.987705i \(-0.549966\pi\)
−0.156330 + 0.987705i \(0.549966\pi\)
\(854\) 11.8028 0.403885
\(855\) −21.7210 −0.742843
\(856\) −80.9292 −2.76610
\(857\) 20.4151 0.697366 0.348683 0.937241i \(-0.386629\pi\)
0.348683 + 0.937241i \(0.386629\pi\)
\(858\) 22.2995 0.761292
\(859\) 42.3734 1.44576 0.722880 0.690973i \(-0.242818\pi\)
0.722880 + 0.690973i \(0.242818\pi\)
\(860\) 20.6674 0.704753
\(861\) 5.80630 0.197878
\(862\) −33.9576 −1.15660
\(863\) −23.4335 −0.797687 −0.398843 0.917019i \(-0.630588\pi\)
−0.398843 + 0.917019i \(0.630588\pi\)
\(864\) −2.91067 −0.0990230
\(865\) 11.0334 0.375146
\(866\) 48.8241 1.65911
\(867\) −6.64418 −0.225648
\(868\) 43.2361 1.46753
\(869\) −48.1801 −1.63440
\(870\) −19.0425 −0.645600
\(871\) −7.66431 −0.259695
\(872\) 62.1557 2.10486
\(873\) −4.46562 −0.151138
\(874\) −107.858 −3.64835
\(875\) 15.2854 0.516741
\(876\) 35.7492 1.20785
\(877\) 24.9935 0.843971 0.421985 0.906603i \(-0.361333\pi\)
0.421985 + 0.906603i \(0.361333\pi\)
\(878\) −3.02266 −0.102010
\(879\) 0.543265 0.0183239
\(880\) 12.5889 0.424370
\(881\) −6.27974 −0.211570 −0.105785 0.994389i \(-0.533736\pi\)
−0.105785 + 0.994389i \(0.533736\pi\)
\(882\) −29.3205 −0.987273
\(883\) 20.2342 0.680936 0.340468 0.940256i \(-0.389414\pi\)
0.340468 + 0.940256i \(0.389414\pi\)
\(884\) −46.2080 −1.55414
\(885\) 4.23053 0.142208
\(886\) −78.3633 −2.63267
\(887\) 9.55250 0.320741 0.160371 0.987057i \(-0.448731\pi\)
0.160371 + 0.987057i \(0.448731\pi\)
\(888\) −32.3663 −1.08614
\(889\) 16.3791 0.549336
\(890\) 42.6307 1.42898
\(891\) −16.9054 −0.566351
\(892\) 66.1131 2.21363
\(893\) −78.6354 −2.63143
\(894\) −24.0999 −0.806020
\(895\) 20.7466 0.693484
\(896\) 30.8236 1.02975
\(897\) −17.9137 −0.598119
\(898\) −83.9494 −2.80143
\(899\) −75.9534 −2.53319
\(900\) 37.0893 1.23631
\(901\) 5.20126 0.173279
\(902\) 44.6403 1.48636
\(903\) −4.50807 −0.150019
\(904\) −38.3403 −1.27518
\(905\) −19.7219 −0.655577
\(906\) 11.8693 0.394332
\(907\) −32.5589 −1.08110 −0.540550 0.841312i \(-0.681784\pi\)
−0.540550 + 0.841312i \(0.681784\pi\)
\(908\) −2.98278 −0.0989871
\(909\) 18.8236 0.624340
\(910\) 19.5483 0.648021
\(911\) −31.8059 −1.05378 −0.526888 0.849935i \(-0.676641\pi\)
−0.526888 + 0.849935i \(0.676641\pi\)
\(912\) −16.4442 −0.544523
\(913\) −34.4453 −1.13997
\(914\) −41.7447 −1.38079
\(915\) 2.36757 0.0782693
\(916\) −63.6771 −2.10395
\(917\) 21.7668 0.718803
\(918\) −22.6990 −0.749177
\(919\) −41.9102 −1.38249 −0.691245 0.722620i \(-0.742938\pi\)
−0.691245 + 0.722620i \(0.742938\pi\)
\(920\) −32.7490 −1.07970
\(921\) −5.64788 −0.186104
\(922\) 64.3613 2.11963
\(923\) −59.3554 −1.95371
\(924\) −12.0320 −0.395825
\(925\) −39.4758 −1.29796
\(926\) −45.7020 −1.50186
\(927\) −26.8609 −0.882228
\(928\) −8.48526 −0.278542
\(929\) 0.330378 0.0108394 0.00541968 0.999985i \(-0.498275\pi\)
0.00541968 + 0.999985i \(0.498275\pi\)
\(930\) 13.1032 0.429671
\(931\) 33.9845 1.11380
\(932\) −63.5894 −2.08294
\(933\) −12.6529 −0.414238
\(934\) −23.2711 −0.761455
\(935\) −9.31918 −0.304770
\(936\) 54.8400 1.79250
\(937\) −29.4541 −0.962224 −0.481112 0.876659i \(-0.659767\pi\)
−0.481112 + 0.876659i \(0.659767\pi\)
\(938\) 6.24789 0.204001
\(939\) 15.0745 0.491937
\(940\) −48.8096 −1.59199
\(941\) 58.4243 1.90458 0.952289 0.305199i \(-0.0987230\pi\)
0.952289 + 0.305199i \(0.0987230\pi\)
\(942\) 12.4165 0.404551
\(943\) −35.8606 −1.16778
\(944\) −19.8590 −0.646356
\(945\) 6.35598 0.206760
\(946\) −34.6592 −1.12687
\(947\) −15.6187 −0.507540 −0.253770 0.967265i \(-0.581671\pi\)
−0.253770 + 0.967265i \(0.581671\pi\)
\(948\) 39.0646 1.26876
\(949\) 64.4693 2.09276
\(950\) −64.9493 −2.10724
\(951\) 18.1842 0.589664
\(952\) 18.4262 0.597196
\(953\) −47.4160 −1.53595 −0.767977 0.640478i \(-0.778736\pi\)
−0.767977 + 0.640478i \(0.778736\pi\)
\(954\) −12.6192 −0.408561
\(955\) −20.9773 −0.678810
\(956\) 87.5227 2.83069
\(957\) 21.1368 0.683257
\(958\) 3.95230 0.127693
\(959\) 8.48253 0.273915
\(960\) 6.67794 0.215530
\(961\) 21.2639 0.685931
\(962\) −119.322 −3.84710
\(963\) −44.8845 −1.44638
\(964\) 34.4658 1.11007
\(965\) 17.7355 0.570926
\(966\) 14.6031 0.469847
\(967\) −22.9487 −0.737979 −0.368989 0.929434i \(-0.620296\pi\)
−0.368989 + 0.929434i \(0.620296\pi\)
\(968\) 5.98672 0.192420
\(969\) 12.1732 0.391060
\(970\) 4.85395 0.155851
\(971\) 37.5179 1.20401 0.602003 0.798494i \(-0.294370\pi\)
0.602003 + 0.798494i \(0.294370\pi\)
\(972\) 56.0368 1.79738
\(973\) −22.0902 −0.708180
\(974\) 11.5947 0.371519
\(975\) −10.7871 −0.345465
\(976\) −11.1139 −0.355746
\(977\) 42.0988 1.34686 0.673430 0.739251i \(-0.264820\pi\)
0.673430 + 0.739251i \(0.264820\pi\)
\(978\) −1.98000 −0.0633136
\(979\) −47.3193 −1.51233
\(980\) 21.0945 0.673838
\(981\) 34.4724 1.10062
\(982\) −42.9756 −1.37141
\(983\) −35.1126 −1.11992 −0.559959 0.828520i \(-0.689183\pi\)
−0.559959 + 0.828520i \(0.689183\pi\)
\(984\) −17.7052 −0.564421
\(985\) 26.7623 0.852716
\(986\) −66.1726 −2.10736
\(987\) 10.6466 0.338884
\(988\) −129.942 −4.13400
\(989\) 27.8425 0.885340
\(990\) 22.6100 0.718592
\(991\) 43.7046 1.38832 0.694161 0.719819i \(-0.255775\pi\)
0.694161 + 0.719819i \(0.255775\pi\)
\(992\) 5.83875 0.185380
\(993\) 3.17359 0.100711
\(994\) 48.3861 1.53471
\(995\) −0.555300 −0.0176042
\(996\) 27.9283 0.884942
\(997\) 20.3466 0.644383 0.322192 0.946674i \(-0.395580\pi\)
0.322192 + 0.946674i \(0.395580\pi\)
\(998\) −37.0760 −1.17362
\(999\) −38.7967 −1.22747
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.16 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.16 184 1.1 even 1 trivial