Properties

Label 4001.2.a.b.1.13
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.13
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.61467 q^{2} +2.84813 q^{3} +4.83651 q^{4} +0.542328 q^{5} -7.44692 q^{6} +4.00529 q^{7} -7.41654 q^{8} +5.11183 q^{9} +O(q^{10})\) \(q-2.61467 q^{2} +2.84813 q^{3} +4.83651 q^{4} +0.542328 q^{5} -7.44692 q^{6} +4.00529 q^{7} -7.41654 q^{8} +5.11183 q^{9} -1.41801 q^{10} +4.26836 q^{11} +13.7750 q^{12} +5.82628 q^{13} -10.4725 q^{14} +1.54462 q^{15} +9.71880 q^{16} -4.23240 q^{17} -13.3658 q^{18} +6.94781 q^{19} +2.62298 q^{20} +11.4076 q^{21} -11.1604 q^{22} -5.99682 q^{23} -21.1232 q^{24} -4.70588 q^{25} -15.2338 q^{26} +6.01477 q^{27} +19.3716 q^{28} -3.54923 q^{29} -4.03868 q^{30} +9.01083 q^{31} -10.5784 q^{32} +12.1568 q^{33} +11.0663 q^{34} +2.17218 q^{35} +24.7234 q^{36} -5.38722 q^{37} -18.1663 q^{38} +16.5940 q^{39} -4.02220 q^{40} +5.31155 q^{41} -29.8271 q^{42} +2.25132 q^{43} +20.6440 q^{44} +2.77229 q^{45} +15.6797 q^{46} +3.58041 q^{47} +27.6804 q^{48} +9.04234 q^{49} +12.3043 q^{50} -12.0544 q^{51} +28.1789 q^{52} -13.1494 q^{53} -15.7266 q^{54} +2.31485 q^{55} -29.7054 q^{56} +19.7883 q^{57} +9.28008 q^{58} -7.82877 q^{59} +7.47057 q^{60} +1.46293 q^{61} -23.5604 q^{62} +20.4744 q^{63} +8.22141 q^{64} +3.15976 q^{65} -31.7861 q^{66} -4.09795 q^{67} -20.4700 q^{68} -17.0797 q^{69} -5.67954 q^{70} +13.6342 q^{71} -37.9121 q^{72} -9.91788 q^{73} +14.0858 q^{74} -13.4029 q^{75} +33.6032 q^{76} +17.0960 q^{77} -43.3879 q^{78} -4.77574 q^{79} +5.27078 q^{80} +1.79533 q^{81} -13.8880 q^{82} -12.5684 q^{83} +55.1728 q^{84} -2.29535 q^{85} -5.88647 q^{86} -10.1087 q^{87} -31.6565 q^{88} +17.5147 q^{89} -7.24863 q^{90} +23.3359 q^{91} -29.0037 q^{92} +25.6640 q^{93} -9.36159 q^{94} +3.76800 q^{95} -30.1286 q^{96} -11.9961 q^{97} -23.6428 q^{98} +21.8191 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18} + 86 q^{19} + 26 q^{20} + 22 q^{21} + 54 q^{22} + 55 q^{23} + 72 q^{24} + 241 q^{25} + 32 q^{26} + 97 q^{27} + 75 q^{28} + 27 q^{29} - 10 q^{30} + 276 q^{31} + 20 q^{33} + 122 q^{34} + 30 q^{35} + 278 q^{36} + 42 q^{37} + 14 q^{38} + 113 q^{39} + 115 q^{40} + 39 q^{41} + 15 q^{42} + 65 q^{43} + 32 q^{44} + 54 q^{45} + 65 q^{46} + 82 q^{47} + 117 q^{48} + 297 q^{49} + 4 q^{50} + 45 q^{51} + 136 q^{52} + 21 q^{53} + 93 q^{54} + 252 q^{55} + 74 q^{56} + 14 q^{57} + 54 q^{58} + 95 q^{59} + 58 q^{60} + 131 q^{61} + 14 q^{62} + 88 q^{63} + 368 q^{64} - 9 q^{65} + 52 q^{66} + 90 q^{67} + 27 q^{68} + 101 q^{69} + 18 q^{70} + 117 q^{71} - 15 q^{72} + 72 q^{73} + 7 q^{74} + 150 q^{75} + 148 q^{76} + 7 q^{77} + 22 q^{78} + 287 q^{79} + 43 q^{80} + 244 q^{81} + 86 q^{82} + 25 q^{83} + 14 q^{84} + 41 q^{85} + 25 q^{86} + 82 q^{87} + 115 q^{88} + 48 q^{89} + 78 q^{90} + 272 q^{91} + 69 q^{92} + 44 q^{93} + 161 q^{94} + 37 q^{95} + 129 q^{96} + 106 q^{97} - 46 q^{98} + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.61467 −1.84885 −0.924426 0.381361i \(-0.875455\pi\)
−0.924426 + 0.381361i \(0.875455\pi\)
\(3\) 2.84813 1.64437 0.822184 0.569222i \(-0.192756\pi\)
0.822184 + 0.569222i \(0.192756\pi\)
\(4\) 4.83651 2.41825
\(5\) 0.542328 0.242537 0.121268 0.992620i \(-0.461304\pi\)
0.121268 + 0.992620i \(0.461304\pi\)
\(6\) −7.44692 −3.04019
\(7\) 4.00529 1.51386 0.756929 0.653498i \(-0.226699\pi\)
0.756929 + 0.653498i \(0.226699\pi\)
\(8\) −7.41654 −2.62214
\(9\) 5.11183 1.70394
\(10\) −1.41801 −0.448414
\(11\) 4.26836 1.28696 0.643479 0.765463i \(-0.277490\pi\)
0.643479 + 0.765463i \(0.277490\pi\)
\(12\) 13.7750 3.97650
\(13\) 5.82628 1.61592 0.807960 0.589237i \(-0.200572\pi\)
0.807960 + 0.589237i \(0.200572\pi\)
\(14\) −10.4725 −2.79890
\(15\) 1.54462 0.398819
\(16\) 9.71880 2.42970
\(17\) −4.23240 −1.02651 −0.513253 0.858237i \(-0.671560\pi\)
−0.513253 + 0.858237i \(0.671560\pi\)
\(18\) −13.3658 −3.15034
\(19\) 6.94781 1.59394 0.796969 0.604020i \(-0.206435\pi\)
0.796969 + 0.604020i \(0.206435\pi\)
\(20\) 2.62298 0.586515
\(21\) 11.4076 2.48934
\(22\) −11.1604 −2.37940
\(23\) −5.99682 −1.25042 −0.625212 0.780455i \(-0.714987\pi\)
−0.625212 + 0.780455i \(0.714987\pi\)
\(24\) −21.1232 −4.31177
\(25\) −4.70588 −0.941176
\(26\) −15.2338 −2.98760
\(27\) 6.01477 1.15754
\(28\) 19.3716 3.66089
\(29\) −3.54923 −0.659076 −0.329538 0.944142i \(-0.606893\pi\)
−0.329538 + 0.944142i \(0.606893\pi\)
\(30\) −4.03868 −0.737358
\(31\) 9.01083 1.61839 0.809197 0.587538i \(-0.199903\pi\)
0.809197 + 0.587538i \(0.199903\pi\)
\(32\) −10.5784 −1.87001
\(33\) 12.1568 2.11623
\(34\) 11.0663 1.89786
\(35\) 2.17218 0.367166
\(36\) 24.7234 4.12057
\(37\) −5.38722 −0.885654 −0.442827 0.896607i \(-0.646024\pi\)
−0.442827 + 0.896607i \(0.646024\pi\)
\(38\) −18.1663 −2.94696
\(39\) 16.5940 2.65717
\(40\) −4.02220 −0.635966
\(41\) 5.31155 0.829525 0.414763 0.909930i \(-0.363865\pi\)
0.414763 + 0.909930i \(0.363865\pi\)
\(42\) −29.8271 −4.60242
\(43\) 2.25132 0.343323 0.171662 0.985156i \(-0.445086\pi\)
0.171662 + 0.985156i \(0.445086\pi\)
\(44\) 20.6440 3.11219
\(45\) 2.77229 0.413269
\(46\) 15.6797 2.31185
\(47\) 3.58041 0.522256 0.261128 0.965304i \(-0.415905\pi\)
0.261128 + 0.965304i \(0.415905\pi\)
\(48\) 27.6804 3.99532
\(49\) 9.04234 1.29176
\(50\) 12.3043 1.74010
\(51\) −12.0544 −1.68795
\(52\) 28.1789 3.90771
\(53\) −13.1494 −1.80621 −0.903103 0.429424i \(-0.858716\pi\)
−0.903103 + 0.429424i \(0.858716\pi\)
\(54\) −15.7266 −2.14013
\(55\) 2.31485 0.312135
\(56\) −29.7054 −3.96955
\(57\) 19.7883 2.62102
\(58\) 9.28008 1.21853
\(59\) −7.82877 −1.01922 −0.509609 0.860406i \(-0.670210\pi\)
−0.509609 + 0.860406i \(0.670210\pi\)
\(60\) 7.47057 0.964447
\(61\) 1.46293 0.187309 0.0936547 0.995605i \(-0.470145\pi\)
0.0936547 + 0.995605i \(0.470145\pi\)
\(62\) −23.5604 −2.99217
\(63\) 20.4744 2.57953
\(64\) 8.22141 1.02768
\(65\) 3.15976 0.391920
\(66\) −31.7861 −3.91260
\(67\) −4.09795 −0.500644 −0.250322 0.968163i \(-0.580536\pi\)
−0.250322 + 0.968163i \(0.580536\pi\)
\(68\) −20.4700 −2.48235
\(69\) −17.0797 −2.05616
\(70\) −5.67954 −0.678835
\(71\) 13.6342 1.61809 0.809043 0.587749i \(-0.199986\pi\)
0.809043 + 0.587749i \(0.199986\pi\)
\(72\) −37.9121 −4.46798
\(73\) −9.91788 −1.16080 −0.580400 0.814332i \(-0.697104\pi\)
−0.580400 + 0.814332i \(0.697104\pi\)
\(74\) 14.0858 1.63744
\(75\) −13.4029 −1.54764
\(76\) 33.6032 3.85455
\(77\) 17.0960 1.94827
\(78\) −43.3879 −4.91271
\(79\) −4.77574 −0.537312 −0.268656 0.963236i \(-0.586580\pi\)
−0.268656 + 0.963236i \(0.586580\pi\)
\(80\) 5.27078 0.589291
\(81\) 1.79533 0.199481
\(82\) −13.8880 −1.53367
\(83\) −12.5684 −1.37956 −0.689781 0.724018i \(-0.742293\pi\)
−0.689781 + 0.724018i \(0.742293\pi\)
\(84\) 55.1728 6.01985
\(85\) −2.29535 −0.248966
\(86\) −5.88647 −0.634754
\(87\) −10.1087 −1.08376
\(88\) −31.6565 −3.37459
\(89\) 17.5147 1.85656 0.928278 0.371888i \(-0.121289\pi\)
0.928278 + 0.371888i \(0.121289\pi\)
\(90\) −7.24863 −0.764073
\(91\) 23.3359 2.44627
\(92\) −29.0037 −3.02384
\(93\) 25.6640 2.66123
\(94\) −9.36159 −0.965575
\(95\) 3.76800 0.386588
\(96\) −30.1286 −3.07499
\(97\) −11.9961 −1.21802 −0.609011 0.793161i \(-0.708434\pi\)
−0.609011 + 0.793161i \(0.708434\pi\)
\(98\) −23.6428 −2.38828
\(99\) 21.8191 2.19291
\(100\) −22.7600 −2.27600
\(101\) 10.4377 1.03859 0.519295 0.854595i \(-0.326194\pi\)
0.519295 + 0.854595i \(0.326194\pi\)
\(102\) 31.5183 3.12078
\(103\) −13.2358 −1.30417 −0.652083 0.758148i \(-0.726105\pi\)
−0.652083 + 0.758148i \(0.726105\pi\)
\(104\) −43.2108 −4.23717
\(105\) 6.18665 0.603755
\(106\) 34.3813 3.33941
\(107\) −8.43017 −0.814975 −0.407488 0.913211i \(-0.633595\pi\)
−0.407488 + 0.913211i \(0.633595\pi\)
\(108\) 29.0905 2.79923
\(109\) −11.7541 −1.12584 −0.562921 0.826511i \(-0.690322\pi\)
−0.562921 + 0.826511i \(0.690322\pi\)
\(110\) −6.05258 −0.577091
\(111\) −15.3435 −1.45634
\(112\) 38.9266 3.67822
\(113\) 8.22147 0.773411 0.386705 0.922203i \(-0.373613\pi\)
0.386705 + 0.922203i \(0.373613\pi\)
\(114\) −51.7398 −4.84588
\(115\) −3.25225 −0.303274
\(116\) −17.1659 −1.59381
\(117\) 29.7830 2.75344
\(118\) 20.4697 1.88438
\(119\) −16.9520 −1.55398
\(120\) −11.4557 −1.04576
\(121\) 7.21890 0.656263
\(122\) −3.82509 −0.346307
\(123\) 15.1280 1.36404
\(124\) 43.5810 3.91369
\(125\) −5.26377 −0.470806
\(126\) −53.5338 −4.76917
\(127\) −6.36973 −0.565222 −0.282611 0.959235i \(-0.591201\pi\)
−0.282611 + 0.959235i \(0.591201\pi\)
\(128\) −0.339528 −0.0300103
\(129\) 6.41205 0.564550
\(130\) −8.26173 −0.724602
\(131\) −6.54581 −0.571910 −0.285955 0.958243i \(-0.592311\pi\)
−0.285955 + 0.958243i \(0.592311\pi\)
\(132\) 58.7966 5.11759
\(133\) 27.8280 2.41299
\(134\) 10.7148 0.925617
\(135\) 3.26198 0.280747
\(136\) 31.3897 2.69165
\(137\) 12.3365 1.05398 0.526990 0.849871i \(-0.323320\pi\)
0.526990 + 0.849871i \(0.323320\pi\)
\(138\) 44.6578 3.80153
\(139\) −13.9825 −1.18598 −0.592989 0.805210i \(-0.702052\pi\)
−0.592989 + 0.805210i \(0.702052\pi\)
\(140\) 10.5058 0.887900
\(141\) 10.1975 0.858781
\(142\) −35.6491 −2.99160
\(143\) 24.8687 2.07962
\(144\) 49.6809 4.14007
\(145\) −1.92485 −0.159850
\(146\) 25.9320 2.14615
\(147\) 25.7538 2.12413
\(148\) −26.0553 −2.14174
\(149\) −11.7810 −0.965133 −0.482567 0.875859i \(-0.660295\pi\)
−0.482567 + 0.875859i \(0.660295\pi\)
\(150\) 35.0443 2.86136
\(151\) −8.93697 −0.727280 −0.363640 0.931539i \(-0.618466\pi\)
−0.363640 + 0.931539i \(0.618466\pi\)
\(152\) −51.5287 −4.17953
\(153\) −21.6353 −1.74911
\(154\) −44.7005 −3.60207
\(155\) 4.88683 0.392520
\(156\) 80.2570 6.42570
\(157\) −10.6270 −0.848126 −0.424063 0.905633i \(-0.639397\pi\)
−0.424063 + 0.905633i \(0.639397\pi\)
\(158\) 12.4870 0.993411
\(159\) −37.4511 −2.97007
\(160\) −5.73696 −0.453546
\(161\) −24.0190 −1.89296
\(162\) −4.69420 −0.368812
\(163\) 10.6263 0.832315 0.416158 0.909292i \(-0.363376\pi\)
0.416158 + 0.909292i \(0.363376\pi\)
\(164\) 25.6894 2.00600
\(165\) 6.59300 0.513264
\(166\) 32.8623 2.55061
\(167\) 15.6588 1.21171 0.605856 0.795574i \(-0.292831\pi\)
0.605856 + 0.795574i \(0.292831\pi\)
\(168\) −84.6047 −6.52740
\(169\) 20.9456 1.61120
\(170\) 6.00158 0.460300
\(171\) 35.5161 2.71598
\(172\) 10.8885 0.830243
\(173\) −10.5339 −0.800878 −0.400439 0.916323i \(-0.631142\pi\)
−0.400439 + 0.916323i \(0.631142\pi\)
\(174\) 26.4309 2.00372
\(175\) −18.8484 −1.42481
\(176\) 41.4833 3.12692
\(177\) −22.2973 −1.67597
\(178\) −45.7952 −3.43250
\(179\) −1.41524 −0.105780 −0.0528899 0.998600i \(-0.516843\pi\)
−0.0528899 + 0.998600i \(0.516843\pi\)
\(180\) 13.4082 0.999389
\(181\) −8.79067 −0.653406 −0.326703 0.945127i \(-0.605938\pi\)
−0.326703 + 0.945127i \(0.605938\pi\)
\(182\) −61.0158 −4.52280
\(183\) 4.16662 0.308005
\(184\) 44.4757 3.27879
\(185\) −2.92164 −0.214803
\(186\) −67.1029 −4.92023
\(187\) −18.0654 −1.32107
\(188\) 17.3167 1.26295
\(189\) 24.0909 1.75235
\(190\) −9.85207 −0.714745
\(191\) −4.51368 −0.326599 −0.163299 0.986577i \(-0.552214\pi\)
−0.163299 + 0.986577i \(0.552214\pi\)
\(192\) 23.4156 1.68988
\(193\) 5.40613 0.389142 0.194571 0.980888i \(-0.437669\pi\)
0.194571 + 0.980888i \(0.437669\pi\)
\(194\) 31.3660 2.25194
\(195\) 8.99940 0.644460
\(196\) 43.7334 3.12381
\(197\) −4.95467 −0.353005 −0.176503 0.984300i \(-0.556478\pi\)
−0.176503 + 0.984300i \(0.556478\pi\)
\(198\) −57.0499 −4.05436
\(199\) 11.8654 0.841116 0.420558 0.907266i \(-0.361834\pi\)
0.420558 + 0.907266i \(0.361834\pi\)
\(200\) 34.9013 2.46790
\(201\) −11.6715 −0.823243
\(202\) −27.2912 −1.92020
\(203\) −14.2157 −0.997747
\(204\) −58.3012 −4.08190
\(205\) 2.88061 0.201190
\(206\) 34.6074 2.41121
\(207\) −30.6547 −2.13065
\(208\) 56.6245 3.92620
\(209\) 29.6558 2.05133
\(210\) −16.1761 −1.11625
\(211\) −7.51728 −0.517511 −0.258756 0.965943i \(-0.583312\pi\)
−0.258756 + 0.965943i \(0.583312\pi\)
\(212\) −63.5971 −4.36786
\(213\) 38.8320 2.66073
\(214\) 22.0421 1.50677
\(215\) 1.22096 0.0832685
\(216\) −44.6088 −3.03524
\(217\) 36.0910 2.45002
\(218\) 30.7332 2.08151
\(219\) −28.2474 −1.90878
\(220\) 11.1958 0.754821
\(221\) −24.6591 −1.65875
\(222\) 40.1182 2.69256
\(223\) −20.8419 −1.39568 −0.697840 0.716254i \(-0.745855\pi\)
−0.697840 + 0.716254i \(0.745855\pi\)
\(224\) −42.3695 −2.83093
\(225\) −24.0557 −1.60371
\(226\) −21.4964 −1.42992
\(227\) 13.2383 0.878659 0.439330 0.898326i \(-0.355216\pi\)
0.439330 + 0.898326i \(0.355216\pi\)
\(228\) 95.7061 6.33829
\(229\) 15.3539 1.01461 0.507307 0.861766i \(-0.330641\pi\)
0.507307 + 0.861766i \(0.330641\pi\)
\(230\) 8.50356 0.560708
\(231\) 48.6916 3.20367
\(232\) 26.3230 1.72819
\(233\) −26.4713 −1.73419 −0.867097 0.498139i \(-0.834017\pi\)
−0.867097 + 0.498139i \(0.834017\pi\)
\(234\) −77.8727 −5.09070
\(235\) 1.94176 0.126666
\(236\) −37.8639 −2.46473
\(237\) −13.6019 −0.883539
\(238\) 44.3238 2.87309
\(239\) −0.152615 −0.00987184 −0.00493592 0.999988i \(-0.501571\pi\)
−0.00493592 + 0.999988i \(0.501571\pi\)
\(240\) 15.0119 0.969011
\(241\) −9.85704 −0.634948 −0.317474 0.948267i \(-0.602835\pi\)
−0.317474 + 0.948267i \(0.602835\pi\)
\(242\) −18.8750 −1.21333
\(243\) −12.9310 −0.829522
\(244\) 7.07549 0.452962
\(245\) 4.90392 0.313300
\(246\) −39.5547 −2.52192
\(247\) 40.4799 2.57568
\(248\) −66.8292 −4.24366
\(249\) −35.7964 −2.26851
\(250\) 13.7630 0.870451
\(251\) −13.4971 −0.851929 −0.425964 0.904740i \(-0.640065\pi\)
−0.425964 + 0.904740i \(0.640065\pi\)
\(252\) 99.0245 6.23795
\(253\) −25.5966 −1.60924
\(254\) 16.6547 1.04501
\(255\) −6.53745 −0.409391
\(256\) −15.5551 −0.972192
\(257\) 9.73490 0.607246 0.303623 0.952792i \(-0.401804\pi\)
0.303623 + 0.952792i \(0.401804\pi\)
\(258\) −16.7654 −1.04377
\(259\) −21.5774 −1.34075
\(260\) 15.2822 0.947762
\(261\) −18.1431 −1.12303
\(262\) 17.1152 1.05738
\(263\) −13.7807 −0.849754 −0.424877 0.905251i \(-0.639683\pi\)
−0.424877 + 0.905251i \(0.639683\pi\)
\(264\) −90.1616 −5.54906
\(265\) −7.13128 −0.438071
\(266\) −72.7611 −4.46127
\(267\) 49.8841 3.05286
\(268\) −19.8198 −1.21068
\(269\) 4.10945 0.250558 0.125279 0.992122i \(-0.460017\pi\)
0.125279 + 0.992122i \(0.460017\pi\)
\(270\) −8.52901 −0.519059
\(271\) −2.64167 −0.160470 −0.0802349 0.996776i \(-0.525567\pi\)
−0.0802349 + 0.996776i \(0.525567\pi\)
\(272\) −41.1338 −2.49410
\(273\) 66.4638 4.02257
\(274\) −32.2560 −1.94865
\(275\) −20.0864 −1.21125
\(276\) −82.6062 −4.97231
\(277\) 14.3608 0.862855 0.431428 0.902148i \(-0.358010\pi\)
0.431428 + 0.902148i \(0.358010\pi\)
\(278\) 36.5596 2.19270
\(279\) 46.0619 2.75765
\(280\) −16.1101 −0.962761
\(281\) −22.5221 −1.34356 −0.671778 0.740753i \(-0.734469\pi\)
−0.671778 + 0.740753i \(0.734469\pi\)
\(282\) −26.6630 −1.58776
\(283\) −3.53773 −0.210296 −0.105148 0.994457i \(-0.533532\pi\)
−0.105148 + 0.994457i \(0.533532\pi\)
\(284\) 65.9421 3.91294
\(285\) 10.7317 0.635693
\(286\) −65.0234 −3.84491
\(287\) 21.2743 1.25578
\(288\) −54.0749 −3.18640
\(289\) 0.913182 0.0537166
\(290\) 5.03285 0.295539
\(291\) −34.1665 −2.00288
\(292\) −47.9679 −2.80711
\(293\) 0.539130 0.0314963 0.0157482 0.999876i \(-0.494987\pi\)
0.0157482 + 0.999876i \(0.494987\pi\)
\(294\) −67.3376 −3.92721
\(295\) −4.24576 −0.247198
\(296\) 39.9545 2.32231
\(297\) 25.6732 1.48971
\(298\) 30.8033 1.78439
\(299\) −34.9392 −2.02058
\(300\) −64.8235 −3.74258
\(301\) 9.01719 0.519742
\(302\) 23.3672 1.34463
\(303\) 29.7279 1.70782
\(304\) 67.5244 3.87279
\(305\) 0.793390 0.0454294
\(306\) 56.5692 3.23385
\(307\) −26.5372 −1.51456 −0.757279 0.653091i \(-0.773472\pi\)
−0.757279 + 0.653091i \(0.773472\pi\)
\(308\) 82.6850 4.71142
\(309\) −37.6974 −2.14453
\(310\) −12.7775 −0.725711
\(311\) 32.5889 1.84795 0.923973 0.382457i \(-0.124922\pi\)
0.923973 + 0.382457i \(0.124922\pi\)
\(312\) −123.070 −6.96747
\(313\) 0.462968 0.0261685 0.0130843 0.999914i \(-0.495835\pi\)
0.0130843 + 0.999914i \(0.495835\pi\)
\(314\) 27.7861 1.56806
\(315\) 11.1038 0.625630
\(316\) −23.0979 −1.29936
\(317\) −20.6826 −1.16165 −0.580824 0.814029i \(-0.697270\pi\)
−0.580824 + 0.814029i \(0.697270\pi\)
\(318\) 97.9223 5.49121
\(319\) −15.1494 −0.848204
\(320\) 4.45871 0.249249
\(321\) −24.0102 −1.34012
\(322\) 62.8018 3.49981
\(323\) −29.4059 −1.63619
\(324\) 8.68314 0.482397
\(325\) −27.4178 −1.52087
\(326\) −27.7843 −1.53883
\(327\) −33.4773 −1.85130
\(328\) −39.3933 −2.17513
\(329\) 14.3406 0.790621
\(330\) −17.2385 −0.948949
\(331\) −29.5928 −1.62657 −0.813283 0.581868i \(-0.802322\pi\)
−0.813283 + 0.581868i \(0.802322\pi\)
\(332\) −60.7872 −3.33613
\(333\) −27.5386 −1.50910
\(334\) −40.9426 −2.24028
\(335\) −2.22243 −0.121425
\(336\) 110.868 6.04834
\(337\) 16.4939 0.898479 0.449239 0.893411i \(-0.351695\pi\)
0.449239 + 0.893411i \(0.351695\pi\)
\(338\) −54.7658 −2.97887
\(339\) 23.4158 1.27177
\(340\) −11.1015 −0.602062
\(341\) 38.4615 2.08281
\(342\) −92.8628 −5.02145
\(343\) 8.18018 0.441688
\(344\) −16.6970 −0.900242
\(345\) −9.26281 −0.498693
\(346\) 27.5427 1.48070
\(347\) 22.6691 1.21694 0.608471 0.793576i \(-0.291783\pi\)
0.608471 + 0.793576i \(0.291783\pi\)
\(348\) −48.8907 −2.62082
\(349\) 6.37177 0.341073 0.170536 0.985351i \(-0.445450\pi\)
0.170536 + 0.985351i \(0.445450\pi\)
\(350\) 49.2824 2.63426
\(351\) 35.0437 1.87050
\(352\) −45.1524 −2.40663
\(353\) 14.5419 0.773986 0.386993 0.922083i \(-0.373514\pi\)
0.386993 + 0.922083i \(0.373514\pi\)
\(354\) 58.3002 3.09862
\(355\) 7.39423 0.392445
\(356\) 84.7100 4.48962
\(357\) −48.2814 −2.55532
\(358\) 3.70038 0.195571
\(359\) 16.9338 0.893731 0.446865 0.894601i \(-0.352540\pi\)
0.446865 + 0.894601i \(0.352540\pi\)
\(360\) −20.5608 −1.08365
\(361\) 29.2721 1.54064
\(362\) 22.9847 1.20805
\(363\) 20.5603 1.07914
\(364\) 112.865 5.91571
\(365\) −5.37875 −0.281536
\(366\) −10.8943 −0.569457
\(367\) 28.7192 1.49913 0.749564 0.661932i \(-0.230263\pi\)
0.749564 + 0.661932i \(0.230263\pi\)
\(368\) −58.2819 −3.03815
\(369\) 27.1518 1.41346
\(370\) 7.63914 0.397140
\(371\) −52.6671 −2.73434
\(372\) 124.124 6.43554
\(373\) −0.0494638 −0.00256114 −0.00128057 0.999999i \(-0.500408\pi\)
−0.00128057 + 0.999999i \(0.500408\pi\)
\(374\) 47.2351 2.44247
\(375\) −14.9919 −0.774178
\(376\) −26.5542 −1.36943
\(377\) −20.6788 −1.06501
\(378\) −62.9898 −3.23984
\(379\) −6.63209 −0.340667 −0.170334 0.985386i \(-0.554485\pi\)
−0.170334 + 0.985386i \(0.554485\pi\)
\(380\) 18.2239 0.934869
\(381\) −18.1418 −0.929432
\(382\) 11.8018 0.603832
\(383\) 22.3632 1.14271 0.571353 0.820704i \(-0.306419\pi\)
0.571353 + 0.820704i \(0.306419\pi\)
\(384\) −0.967020 −0.0493480
\(385\) 9.27166 0.472527
\(386\) −14.1352 −0.719465
\(387\) 11.5084 0.585004
\(388\) −58.0194 −2.94549
\(389\) −23.4494 −1.18893 −0.594466 0.804121i \(-0.702636\pi\)
−0.594466 + 0.804121i \(0.702636\pi\)
\(390\) −23.5305 −1.19151
\(391\) 25.3809 1.28357
\(392\) −67.0629 −3.38719
\(393\) −18.6433 −0.940431
\(394\) 12.9548 0.652655
\(395\) −2.59002 −0.130318
\(396\) 105.528 5.30300
\(397\) 26.9076 1.35045 0.675227 0.737610i \(-0.264046\pi\)
0.675227 + 0.737610i \(0.264046\pi\)
\(398\) −31.0241 −1.55510
\(399\) 79.2577 3.96785
\(400\) −45.7355 −2.28677
\(401\) 6.93141 0.346138 0.173069 0.984910i \(-0.444632\pi\)
0.173069 + 0.984910i \(0.444632\pi\)
\(402\) 30.5171 1.52205
\(403\) 52.4996 2.61519
\(404\) 50.4821 2.51158
\(405\) 0.973660 0.0483815
\(406\) 37.1694 1.84469
\(407\) −22.9946 −1.13980
\(408\) 89.4020 4.42606
\(409\) 17.9931 0.889702 0.444851 0.895605i \(-0.353257\pi\)
0.444851 + 0.895605i \(0.353257\pi\)
\(410\) −7.53184 −0.371971
\(411\) 35.1360 1.73313
\(412\) −64.0152 −3.15380
\(413\) −31.3565 −1.54295
\(414\) 80.1521 3.93926
\(415\) −6.81620 −0.334594
\(416\) −61.6327 −3.02179
\(417\) −39.8239 −1.95018
\(418\) −77.5401 −3.79261
\(419\) 14.0505 0.686414 0.343207 0.939260i \(-0.388487\pi\)
0.343207 + 0.939260i \(0.388487\pi\)
\(420\) 29.9218 1.46003
\(421\) 12.2106 0.595106 0.297553 0.954705i \(-0.403830\pi\)
0.297553 + 0.954705i \(0.403830\pi\)
\(422\) 19.6552 0.956802
\(423\) 18.3024 0.889895
\(424\) 97.5228 4.73613
\(425\) 19.9172 0.966124
\(426\) −101.533 −4.91929
\(427\) 5.85947 0.283560
\(428\) −40.7726 −1.97082
\(429\) 70.8292 3.41966
\(430\) −3.19240 −0.153951
\(431\) −27.7443 −1.33639 −0.668197 0.743985i \(-0.732934\pi\)
−0.668197 + 0.743985i \(0.732934\pi\)
\(432\) 58.4563 2.81248
\(433\) −5.90175 −0.283620 −0.141810 0.989894i \(-0.545292\pi\)
−0.141810 + 0.989894i \(0.545292\pi\)
\(434\) −94.3661 −4.52972
\(435\) −5.48222 −0.262852
\(436\) −56.8490 −2.72257
\(437\) −41.6648 −1.99310
\(438\) 73.8576 3.52905
\(439\) 15.6517 0.747016 0.373508 0.927627i \(-0.378155\pi\)
0.373508 + 0.927627i \(0.378155\pi\)
\(440\) −17.1682 −0.818462
\(441\) 46.2229 2.20109
\(442\) 64.4756 3.06679
\(443\) 5.46485 0.259643 0.129822 0.991537i \(-0.458560\pi\)
0.129822 + 0.991537i \(0.458560\pi\)
\(444\) −74.2089 −3.52180
\(445\) 9.49872 0.450283
\(446\) 54.4948 2.58040
\(447\) −33.5537 −1.58703
\(448\) 32.9291 1.55576
\(449\) 25.2078 1.18963 0.594815 0.803863i \(-0.297225\pi\)
0.594815 + 0.803863i \(0.297225\pi\)
\(450\) 62.8977 2.96502
\(451\) 22.6716 1.06757
\(452\) 39.7632 1.87030
\(453\) −25.4536 −1.19592
\(454\) −34.6139 −1.62451
\(455\) 12.6557 0.593311
\(456\) −146.760 −6.87269
\(457\) 10.8555 0.507797 0.253899 0.967231i \(-0.418287\pi\)
0.253899 + 0.967231i \(0.418287\pi\)
\(458\) −40.1454 −1.87587
\(459\) −25.4569 −1.18823
\(460\) −15.7295 −0.733393
\(461\) −4.91271 −0.228808 −0.114404 0.993434i \(-0.536496\pi\)
−0.114404 + 0.993434i \(0.536496\pi\)
\(462\) −127.313 −5.92312
\(463\) −24.2465 −1.12683 −0.563416 0.826174i \(-0.690513\pi\)
−0.563416 + 0.826174i \(0.690513\pi\)
\(464\) −34.4943 −1.60136
\(465\) 13.9183 0.645446
\(466\) 69.2139 3.20627
\(467\) −16.5552 −0.766082 −0.383041 0.923731i \(-0.625123\pi\)
−0.383041 + 0.923731i \(0.625123\pi\)
\(468\) 144.046 6.65851
\(469\) −16.4135 −0.757904
\(470\) −5.07706 −0.234187
\(471\) −30.2670 −1.39463
\(472\) 58.0624 2.67254
\(473\) 9.60945 0.441843
\(474\) 35.5645 1.63353
\(475\) −32.6956 −1.50018
\(476\) −81.9884 −3.75793
\(477\) −67.2174 −3.07767
\(478\) 0.399038 0.0182516
\(479\) −27.3320 −1.24883 −0.624415 0.781093i \(-0.714663\pi\)
−0.624415 + 0.781093i \(0.714663\pi\)
\(480\) −16.3396 −0.745797
\(481\) −31.3875 −1.43115
\(482\) 25.7729 1.17392
\(483\) −68.4092 −3.11273
\(484\) 34.9143 1.58701
\(485\) −6.50584 −0.295415
\(486\) 33.8102 1.53366
\(487\) 39.1599 1.77451 0.887253 0.461284i \(-0.152611\pi\)
0.887253 + 0.461284i \(0.152611\pi\)
\(488\) −10.8499 −0.491152
\(489\) 30.2650 1.36863
\(490\) −12.8221 −0.579245
\(491\) 23.8327 1.07555 0.537777 0.843087i \(-0.319264\pi\)
0.537777 + 0.843087i \(0.319264\pi\)
\(492\) 73.1666 3.29861
\(493\) 15.0218 0.676546
\(494\) −105.842 −4.76204
\(495\) 11.8331 0.531860
\(496\) 87.5744 3.93221
\(497\) 54.6091 2.44955
\(498\) 93.5959 4.19413
\(499\) 24.0920 1.07850 0.539252 0.842144i \(-0.318707\pi\)
0.539252 + 0.842144i \(0.318707\pi\)
\(500\) −25.4583 −1.13853
\(501\) 44.5982 1.99250
\(502\) 35.2905 1.57509
\(503\) −26.2144 −1.16884 −0.584420 0.811451i \(-0.698678\pi\)
−0.584420 + 0.811451i \(0.698678\pi\)
\(504\) −151.849 −6.76389
\(505\) 5.66066 0.251896
\(506\) 66.9267 2.97525
\(507\) 59.6557 2.64940
\(508\) −30.8072 −1.36685
\(509\) 20.4537 0.906594 0.453297 0.891360i \(-0.350248\pi\)
0.453297 + 0.891360i \(0.350248\pi\)
\(510\) 17.0933 0.756903
\(511\) −39.7240 −1.75729
\(512\) 41.3505 1.82745
\(513\) 41.7895 1.84505
\(514\) −25.4536 −1.12271
\(515\) −7.17817 −0.316308
\(516\) 31.0119 1.36522
\(517\) 15.2825 0.672122
\(518\) 56.4178 2.47885
\(519\) −30.0019 −1.31694
\(520\) −23.4345 −1.02767
\(521\) −10.9743 −0.480791 −0.240396 0.970675i \(-0.577277\pi\)
−0.240396 + 0.970675i \(0.577277\pi\)
\(522\) 47.4382 2.07631
\(523\) −0.449791 −0.0196680 −0.00983399 0.999952i \(-0.503130\pi\)
−0.00983399 + 0.999952i \(0.503130\pi\)
\(524\) −31.6589 −1.38302
\(525\) −53.6827 −2.34290
\(526\) 36.0320 1.57107
\(527\) −38.1374 −1.66129
\(528\) 118.150 5.14181
\(529\) 12.9619 0.563560
\(530\) 18.6460 0.809929
\(531\) −40.0193 −1.73669
\(532\) 134.590 5.83523
\(533\) 30.9466 1.34045
\(534\) −130.431 −5.64429
\(535\) −4.57192 −0.197661
\(536\) 30.3926 1.31276
\(537\) −4.03077 −0.173941
\(538\) −10.7449 −0.463244
\(539\) 38.5960 1.66245
\(540\) 15.7766 0.678916
\(541\) 10.3137 0.443422 0.221711 0.975112i \(-0.428836\pi\)
0.221711 + 0.975112i \(0.428836\pi\)
\(542\) 6.90709 0.296685
\(543\) −25.0370 −1.07444
\(544\) 44.7719 1.91958
\(545\) −6.37460 −0.273058
\(546\) −173.781 −7.43714
\(547\) 26.5023 1.13316 0.566578 0.824008i \(-0.308267\pi\)
0.566578 + 0.824008i \(0.308267\pi\)
\(548\) 59.6657 2.54879
\(549\) 7.47827 0.319165
\(550\) 52.5193 2.23943
\(551\) −24.6594 −1.05053
\(552\) 126.672 5.39153
\(553\) −19.1282 −0.813414
\(554\) −37.5487 −1.59529
\(555\) −8.32121 −0.353216
\(556\) −67.6264 −2.86800
\(557\) −0.506713 −0.0214701 −0.0107351 0.999942i \(-0.503417\pi\)
−0.0107351 + 0.999942i \(0.503417\pi\)
\(558\) −120.437 −5.09849
\(559\) 13.1168 0.554783
\(560\) 21.1110 0.892102
\(561\) −51.4525 −2.17233
\(562\) 58.8879 2.48404
\(563\) 33.3229 1.40439 0.702197 0.711982i \(-0.252202\pi\)
0.702197 + 0.711982i \(0.252202\pi\)
\(564\) 49.3201 2.07675
\(565\) 4.45874 0.187580
\(566\) 9.25001 0.388807
\(567\) 7.19083 0.301986
\(568\) −101.119 −4.24285
\(569\) 4.56793 0.191498 0.0957488 0.995406i \(-0.469475\pi\)
0.0957488 + 0.995406i \(0.469475\pi\)
\(570\) −28.0600 −1.17530
\(571\) −35.9343 −1.50380 −0.751901 0.659276i \(-0.770863\pi\)
−0.751901 + 0.659276i \(0.770863\pi\)
\(572\) 120.278 5.02906
\(573\) −12.8555 −0.537048
\(574\) −55.6253 −2.32176
\(575\) 28.2203 1.17687
\(576\) 42.0265 1.75110
\(577\) 37.7682 1.57231 0.786156 0.618028i \(-0.212068\pi\)
0.786156 + 0.618028i \(0.212068\pi\)
\(578\) −2.38767 −0.0993141
\(579\) 15.3973 0.639892
\(580\) −9.30955 −0.386558
\(581\) −50.3401 −2.08846
\(582\) 89.3342 3.70302
\(583\) −56.1263 −2.32451
\(584\) 73.5563 3.04378
\(585\) 16.1522 0.667809
\(586\) −1.40965 −0.0582321
\(587\) 18.3586 0.757739 0.378869 0.925450i \(-0.376313\pi\)
0.378869 + 0.925450i \(0.376313\pi\)
\(588\) 124.558 5.13670
\(589\) 62.6056 2.57962
\(590\) 11.1013 0.457032
\(591\) −14.1115 −0.580471
\(592\) −52.3573 −2.15187
\(593\) 26.7101 1.09685 0.548426 0.836199i \(-0.315227\pi\)
0.548426 + 0.836199i \(0.315227\pi\)
\(594\) −67.1270 −2.75425
\(595\) −9.19354 −0.376898
\(596\) −56.9787 −2.33394
\(597\) 33.7942 1.38310
\(598\) 91.3545 3.73576
\(599\) 30.8037 1.25860 0.629302 0.777161i \(-0.283341\pi\)
0.629302 + 0.777161i \(0.283341\pi\)
\(600\) 99.4035 4.05813
\(601\) 37.4560 1.52786 0.763930 0.645299i \(-0.223267\pi\)
0.763930 + 0.645299i \(0.223267\pi\)
\(602\) −23.5770 −0.960927
\(603\) −20.9480 −0.853070
\(604\) −43.2237 −1.75875
\(605\) 3.91501 0.159168
\(606\) −77.7288 −3.15752
\(607\) 40.6594 1.65031 0.825157 0.564903i \(-0.191086\pi\)
0.825157 + 0.564903i \(0.191086\pi\)
\(608\) −73.4967 −2.98068
\(609\) −40.4882 −1.64066
\(610\) −2.07445 −0.0839922
\(611\) 20.8605 0.843924
\(612\) −104.639 −4.22979
\(613\) 4.41352 0.178260 0.0891302 0.996020i \(-0.471591\pi\)
0.0891302 + 0.996020i \(0.471591\pi\)
\(614\) 69.3861 2.80019
\(615\) 8.20434 0.330831
\(616\) −126.793 −5.10865
\(617\) 33.9212 1.36562 0.682808 0.730598i \(-0.260759\pi\)
0.682808 + 0.730598i \(0.260759\pi\)
\(618\) 98.5662 3.96492
\(619\) 1.57393 0.0632614 0.0316307 0.999500i \(-0.489930\pi\)
0.0316307 + 0.999500i \(0.489930\pi\)
\(620\) 23.6352 0.949212
\(621\) −36.0695 −1.44742
\(622\) −85.2093 −3.41658
\(623\) 70.1515 2.81056
\(624\) 161.274 6.45611
\(625\) 20.6747 0.826988
\(626\) −1.21051 −0.0483817
\(627\) 84.4634 3.37314
\(628\) −51.3975 −2.05099
\(629\) 22.8009 0.909130
\(630\) −29.0329 −1.15670
\(631\) 0.354094 0.0140962 0.00704812 0.999975i \(-0.497756\pi\)
0.00704812 + 0.999975i \(0.497756\pi\)
\(632\) 35.4194 1.40891
\(633\) −21.4102 −0.850978
\(634\) 54.0781 2.14771
\(635\) −3.45448 −0.137087
\(636\) −181.133 −7.18237
\(637\) 52.6833 2.08739
\(638\) 39.6107 1.56820
\(639\) 69.6959 2.75713
\(640\) −0.184136 −0.00727860
\(641\) −17.1152 −0.676009 −0.338004 0.941145i \(-0.609752\pi\)
−0.338004 + 0.941145i \(0.609752\pi\)
\(642\) 62.7788 2.47768
\(643\) −40.6890 −1.60462 −0.802308 0.596910i \(-0.796395\pi\)
−0.802308 + 0.596910i \(0.796395\pi\)
\(644\) −116.168 −4.57767
\(645\) 3.47744 0.136924
\(646\) 76.8868 3.02507
\(647\) −44.8977 −1.76511 −0.882555 0.470209i \(-0.844178\pi\)
−0.882555 + 0.470209i \(0.844178\pi\)
\(648\) −13.3152 −0.523069
\(649\) −33.4160 −1.31169
\(650\) 71.6885 2.81185
\(651\) 102.792 4.02873
\(652\) 51.3942 2.01275
\(653\) 24.5648 0.961295 0.480648 0.876914i \(-0.340402\pi\)
0.480648 + 0.876914i \(0.340402\pi\)
\(654\) 87.5321 3.42278
\(655\) −3.54998 −0.138709
\(656\) 51.6219 2.01550
\(657\) −50.6985 −1.97794
\(658\) −37.4959 −1.46174
\(659\) 28.6528 1.11615 0.558076 0.829790i \(-0.311540\pi\)
0.558076 + 0.829790i \(0.311540\pi\)
\(660\) 31.8871 1.24120
\(661\) 42.4063 1.64942 0.824708 0.565559i \(-0.191340\pi\)
0.824708 + 0.565559i \(0.191340\pi\)
\(662\) 77.3754 3.00728
\(663\) −70.2324 −2.72760
\(664\) 93.2141 3.61741
\(665\) 15.0919 0.585239
\(666\) 72.0043 2.79011
\(667\) 21.2841 0.824125
\(668\) 75.7338 2.93023
\(669\) −59.3605 −2.29501
\(670\) 5.81093 0.224496
\(671\) 6.24432 0.241059
\(672\) −120.674 −4.65509
\(673\) −30.6046 −1.17972 −0.589861 0.807505i \(-0.700817\pi\)
−0.589861 + 0.807505i \(0.700817\pi\)
\(674\) −43.1261 −1.66115
\(675\) −28.3048 −1.08945
\(676\) 101.303 3.89629
\(677\) 37.1259 1.42687 0.713433 0.700724i \(-0.247140\pi\)
0.713433 + 0.700724i \(0.247140\pi\)
\(678\) −61.2246 −2.35132
\(679\) −48.0480 −1.84391
\(680\) 17.0235 0.652823
\(681\) 37.7045 1.44484
\(682\) −100.564 −3.85080
\(683\) −13.3506 −0.510846 −0.255423 0.966829i \(-0.582215\pi\)
−0.255423 + 0.966829i \(0.582215\pi\)
\(684\) 171.774 6.56793
\(685\) 6.69045 0.255629
\(686\) −21.3885 −0.816616
\(687\) 43.7298 1.66840
\(688\) 21.8801 0.834172
\(689\) −76.6120 −2.91868
\(690\) 24.2192 0.922010
\(691\) 23.7035 0.901725 0.450863 0.892593i \(-0.351116\pi\)
0.450863 + 0.892593i \(0.351116\pi\)
\(692\) −50.9473 −1.93673
\(693\) 87.3920 3.31975
\(694\) −59.2723 −2.24994
\(695\) −7.58309 −0.287643
\(696\) 74.9714 2.84178
\(697\) −22.4806 −0.851514
\(698\) −16.6601 −0.630593
\(699\) −75.3937 −2.85165
\(700\) −91.1605 −3.44554
\(701\) −35.9658 −1.35841 −0.679204 0.733949i \(-0.737675\pi\)
−0.679204 + 0.733949i \(0.737675\pi\)
\(702\) −91.6279 −3.45827
\(703\) −37.4294 −1.41168
\(704\) 35.0920 1.32258
\(705\) 5.53037 0.208286
\(706\) −38.0223 −1.43099
\(707\) 41.8060 1.57228
\(708\) −107.841 −4.05292
\(709\) 43.4966 1.63355 0.816774 0.576957i \(-0.195760\pi\)
0.816774 + 0.576957i \(0.195760\pi\)
\(710\) −19.3335 −0.725573
\(711\) −24.4128 −0.915550
\(712\) −129.899 −4.86815
\(713\) −54.0363 −2.02368
\(714\) 126.240 4.72441
\(715\) 13.4870 0.504385
\(716\) −6.84480 −0.255802
\(717\) −0.434667 −0.0162329
\(718\) −44.2763 −1.65238
\(719\) −20.3475 −0.758832 −0.379416 0.925226i \(-0.623875\pi\)
−0.379416 + 0.925226i \(0.623875\pi\)
\(720\) 26.9433 1.00412
\(721\) −53.0134 −1.97432
\(722\) −76.5370 −2.84841
\(723\) −28.0741 −1.04409
\(724\) −42.5162 −1.58010
\(725\) 16.7023 0.620307
\(726\) −53.7585 −1.99517
\(727\) −6.12057 −0.227000 −0.113500 0.993538i \(-0.536206\pi\)
−0.113500 + 0.993538i \(0.536206\pi\)
\(728\) −173.072 −6.41447
\(729\) −42.2150 −1.56352
\(730\) 14.0637 0.520519
\(731\) −9.52848 −0.352424
\(732\) 20.1519 0.744835
\(733\) 3.12572 0.115451 0.0577255 0.998332i \(-0.481615\pi\)
0.0577255 + 0.998332i \(0.481615\pi\)
\(734\) −75.0912 −2.77167
\(735\) 13.9670 0.515180
\(736\) 63.4367 2.33831
\(737\) −17.4915 −0.644308
\(738\) −70.9930 −2.61329
\(739\) −41.2416 −1.51710 −0.758548 0.651617i \(-0.774091\pi\)
−0.758548 + 0.651617i \(0.774091\pi\)
\(740\) −14.1306 −0.519449
\(741\) 115.292 4.23536
\(742\) 137.707 5.05539
\(743\) −29.3865 −1.07809 −0.539043 0.842278i \(-0.681214\pi\)
−0.539043 + 0.842278i \(0.681214\pi\)
\(744\) −190.338 −6.97813
\(745\) −6.38915 −0.234080
\(746\) 0.129332 0.00473516
\(747\) −64.2476 −2.35070
\(748\) −87.3734 −3.19469
\(749\) −33.7653 −1.23376
\(750\) 39.1989 1.43134
\(751\) 2.83523 0.103459 0.0517296 0.998661i \(-0.483527\pi\)
0.0517296 + 0.998661i \(0.483527\pi\)
\(752\) 34.7973 1.26893
\(753\) −38.4414 −1.40088
\(754\) 54.0684 1.96905
\(755\) −4.84677 −0.176392
\(756\) 116.516 4.23764
\(757\) 7.75085 0.281709 0.140855 0.990030i \(-0.455015\pi\)
0.140855 + 0.990030i \(0.455015\pi\)
\(758\) 17.3407 0.629844
\(759\) −72.9024 −2.64619
\(760\) −27.9455 −1.01369
\(761\) −8.86280 −0.321276 −0.160638 0.987013i \(-0.551355\pi\)
−0.160638 + 0.987013i \(0.551355\pi\)
\(762\) 47.4348 1.71838
\(763\) −47.0787 −1.70436
\(764\) −21.8305 −0.789798
\(765\) −11.7334 −0.424223
\(766\) −58.4725 −2.11270
\(767\) −45.6126 −1.64698
\(768\) −44.3028 −1.59864
\(769\) 6.98504 0.251887 0.125944 0.992037i \(-0.459804\pi\)
0.125944 + 0.992037i \(0.459804\pi\)
\(770\) −24.2423 −0.873633
\(771\) 27.7262 0.998536
\(772\) 26.1468 0.941043
\(773\) 12.3434 0.443962 0.221981 0.975051i \(-0.428748\pi\)
0.221981 + 0.975051i \(0.428748\pi\)
\(774\) −30.0906 −1.08159
\(775\) −42.4039 −1.52319
\(776\) 88.9698 3.19383
\(777\) −61.4551 −2.20469
\(778\) 61.3125 2.19816
\(779\) 36.9037 1.32221
\(780\) 43.5257 1.55847
\(781\) 58.1958 2.08241
\(782\) −66.3628 −2.37313
\(783\) −21.3478 −0.762909
\(784\) 87.8807 3.13860
\(785\) −5.76332 −0.205702
\(786\) 48.7461 1.73872
\(787\) 9.81160 0.349746 0.174873 0.984591i \(-0.444049\pi\)
0.174873 + 0.984591i \(0.444049\pi\)
\(788\) −23.9633 −0.853657
\(789\) −39.2492 −1.39731
\(790\) 6.77205 0.240939
\(791\) 32.9294 1.17083
\(792\) −161.822 −5.75011
\(793\) 8.52346 0.302677
\(794\) −70.3546 −2.49679
\(795\) −20.3108 −0.720350
\(796\) 57.3871 2.03403
\(797\) 53.6826 1.90153 0.950767 0.309906i \(-0.100298\pi\)
0.950767 + 0.309906i \(0.100298\pi\)
\(798\) −207.233 −7.33597
\(799\) −15.1537 −0.536100
\(800\) 49.7806 1.76001
\(801\) 89.5323 3.16347
\(802\) −18.1234 −0.639959
\(803\) −42.3331 −1.49390
\(804\) −56.4492 −1.99081
\(805\) −13.0262 −0.459113
\(806\) −137.269 −4.83511
\(807\) 11.7042 0.412009
\(808\) −77.4117 −2.72333
\(809\) 47.1234 1.65677 0.828385 0.560159i \(-0.189260\pi\)
0.828385 + 0.560159i \(0.189260\pi\)
\(810\) −2.54580 −0.0894503
\(811\) −39.1308 −1.37407 −0.687034 0.726626i \(-0.741088\pi\)
−0.687034 + 0.726626i \(0.741088\pi\)
\(812\) −68.7544 −2.41281
\(813\) −7.52380 −0.263871
\(814\) 60.1233 2.10732
\(815\) 5.76294 0.201867
\(816\) −117.154 −4.10122
\(817\) 15.6418 0.547236
\(818\) −47.0461 −1.64493
\(819\) 119.289 4.16831
\(820\) 13.9321 0.486529
\(821\) −10.5481 −0.368130 −0.184065 0.982914i \(-0.558926\pi\)
−0.184065 + 0.982914i \(0.558926\pi\)
\(822\) −91.8691 −3.20430
\(823\) 28.4328 0.991104 0.495552 0.868578i \(-0.334966\pi\)
0.495552 + 0.868578i \(0.334966\pi\)
\(824\) 98.1641 3.41971
\(825\) −57.2086 −1.99175
\(826\) 81.9869 2.85269
\(827\) 22.9908 0.799467 0.399733 0.916631i \(-0.369103\pi\)
0.399733 + 0.916631i \(0.369103\pi\)
\(828\) −148.262 −5.15246
\(829\) −48.9838 −1.70128 −0.850638 0.525751i \(-0.823784\pi\)
−0.850638 + 0.525751i \(0.823784\pi\)
\(830\) 17.8221 0.618615
\(831\) 40.9013 1.41885
\(832\) 47.9003 1.66064
\(833\) −38.2708 −1.32600
\(834\) 104.126 3.60560
\(835\) 8.49220 0.293885
\(836\) 143.430 4.96064
\(837\) 54.1981 1.87336
\(838\) −36.7376 −1.26908
\(839\) 9.31047 0.321433 0.160717 0.987001i \(-0.448620\pi\)
0.160717 + 0.987001i \(0.448620\pi\)
\(840\) −45.8835 −1.58313
\(841\) −16.4029 −0.565619
\(842\) −31.9266 −1.10026
\(843\) −64.1458 −2.20930
\(844\) −36.3574 −1.25147
\(845\) 11.3594 0.390774
\(846\) −47.8549 −1.64529
\(847\) 28.9138 0.993489
\(848\) −127.796 −4.38854
\(849\) −10.0759 −0.345805
\(850\) −52.0768 −1.78622
\(851\) 32.3062 1.10744
\(852\) 187.812 6.43432
\(853\) −18.5047 −0.633588 −0.316794 0.948494i \(-0.602606\pi\)
−0.316794 + 0.948494i \(0.602606\pi\)
\(854\) −15.3206 −0.524260
\(855\) 19.2614 0.658725
\(856\) 62.5227 2.13698
\(857\) −48.7635 −1.66573 −0.832865 0.553475i \(-0.813301\pi\)
−0.832865 + 0.553475i \(0.813301\pi\)
\(858\) −185.195 −6.32245
\(859\) −5.64541 −0.192619 −0.0963094 0.995351i \(-0.530704\pi\)
−0.0963094 + 0.995351i \(0.530704\pi\)
\(860\) 5.90516 0.201364
\(861\) 60.5920 2.06497
\(862\) 72.5421 2.47079
\(863\) 55.7674 1.89834 0.949172 0.314757i \(-0.101923\pi\)
0.949172 + 0.314757i \(0.101923\pi\)
\(864\) −63.6265 −2.16462
\(865\) −5.71284 −0.194242
\(866\) 15.4311 0.524372
\(867\) 2.60086 0.0883298
\(868\) 174.554 5.92476
\(869\) −20.3846 −0.691499
\(870\) 14.3342 0.485975
\(871\) −23.8758 −0.809001
\(872\) 87.1750 2.95212
\(873\) −61.3222 −2.07544
\(874\) 108.940 3.68494
\(875\) −21.0829 −0.712733
\(876\) −136.619 −4.61592
\(877\) 35.9469 1.21384 0.606921 0.794762i \(-0.292404\pi\)
0.606921 + 0.794762i \(0.292404\pi\)
\(878\) −40.9241 −1.38112
\(879\) 1.53551 0.0517915
\(880\) 22.4976 0.758393
\(881\) 20.6552 0.695890 0.347945 0.937515i \(-0.386880\pi\)
0.347945 + 0.937515i \(0.386880\pi\)
\(882\) −120.858 −4.06949
\(883\) −4.10460 −0.138131 −0.0690655 0.997612i \(-0.522002\pi\)
−0.0690655 + 0.997612i \(0.522002\pi\)
\(884\) −119.264 −4.01129
\(885\) −12.0925 −0.406484
\(886\) −14.2888 −0.480042
\(887\) 40.1728 1.34887 0.674435 0.738334i \(-0.264387\pi\)
0.674435 + 0.738334i \(0.264387\pi\)
\(888\) 113.796 3.81873
\(889\) −25.5126 −0.855665
\(890\) −24.8360 −0.832506
\(891\) 7.66312 0.256724
\(892\) −100.802 −3.37511
\(893\) 24.8760 0.832444
\(894\) 87.7318 2.93419
\(895\) −0.767523 −0.0256555
\(896\) −1.35991 −0.0454314
\(897\) −99.5112 −3.32258
\(898\) −65.9102 −2.19945
\(899\) −31.9815 −1.06664
\(900\) −116.345 −3.87818
\(901\) 55.6534 1.85408
\(902\) −59.2789 −1.97377
\(903\) 25.6821 0.854647
\(904\) −60.9748 −2.02799
\(905\) −4.76743 −0.158475
\(906\) 66.5529 2.21107
\(907\) −24.7404 −0.821491 −0.410746 0.911750i \(-0.634732\pi\)
−0.410746 + 0.911750i \(0.634732\pi\)
\(908\) 64.0273 2.12482
\(909\) 53.3558 1.76970
\(910\) −33.0906 −1.09694
\(911\) −57.3142 −1.89890 −0.949451 0.313914i \(-0.898360\pi\)
−0.949451 + 0.313914i \(0.898360\pi\)
\(912\) 192.318 6.36829
\(913\) −53.6465 −1.77544
\(914\) −28.3835 −0.938842
\(915\) 2.25968 0.0747026
\(916\) 74.2592 2.45359
\(917\) −26.2179 −0.865791
\(918\) 66.5614 2.19685
\(919\) 0.727751 0.0240063 0.0120032 0.999928i \(-0.496179\pi\)
0.0120032 + 0.999928i \(0.496179\pi\)
\(920\) 24.1204 0.795226
\(921\) −75.5814 −2.49049
\(922\) 12.8451 0.423032
\(923\) 79.4369 2.61470
\(924\) 235.498 7.74730
\(925\) 25.3516 0.833556
\(926\) 63.3967 2.08334
\(927\) −67.6594 −2.22223
\(928\) 37.5452 1.23248
\(929\) 13.5069 0.443146 0.221573 0.975144i \(-0.428881\pi\)
0.221573 + 0.975144i \(0.428881\pi\)
\(930\) −36.3918 −1.19334
\(931\) 62.8245 2.05899
\(932\) −128.029 −4.19372
\(933\) 92.8173 3.03870
\(934\) 43.2863 1.41637
\(935\) −9.79738 −0.320408
\(936\) −220.887 −7.21990
\(937\) 15.7011 0.512934 0.256467 0.966553i \(-0.417442\pi\)
0.256467 + 0.966553i \(0.417442\pi\)
\(938\) 42.9158 1.40125
\(939\) 1.31859 0.0430306
\(940\) 9.39132 0.306311
\(941\) −59.3929 −1.93615 −0.968076 0.250657i \(-0.919353\pi\)
−0.968076 + 0.250657i \(0.919353\pi\)
\(942\) 79.1384 2.57847
\(943\) −31.8524 −1.03726
\(944\) −76.0862 −2.47639
\(945\) 13.0652 0.425010
\(946\) −25.1256 −0.816902
\(947\) 26.8911 0.873843 0.436921 0.899500i \(-0.356069\pi\)
0.436921 + 0.899500i \(0.356069\pi\)
\(948\) −65.7857 −2.13662
\(949\) −57.7844 −1.87576
\(950\) 85.4882 2.77360
\(951\) −58.9065 −1.91018
\(952\) 125.725 4.07477
\(953\) 3.70183 0.119914 0.0599569 0.998201i \(-0.480904\pi\)
0.0599569 + 0.998201i \(0.480904\pi\)
\(954\) 175.751 5.69016
\(955\) −2.44790 −0.0792121
\(956\) −0.738124 −0.0238726
\(957\) −43.1474 −1.39476
\(958\) 71.4641 2.30890
\(959\) 49.4113 1.59558
\(960\) 12.6990 0.409857
\(961\) 50.1951 1.61920
\(962\) 82.0679 2.64598
\(963\) −43.0936 −1.38867
\(964\) −47.6737 −1.53547
\(965\) 2.93190 0.0943811
\(966\) 178.868 5.75497
\(967\) −34.5614 −1.11142 −0.555710 0.831376i \(-0.687554\pi\)
−0.555710 + 0.831376i \(0.687554\pi\)
\(968\) −53.5392 −1.72082
\(969\) −83.7518 −2.69049
\(970\) 17.0106 0.546179
\(971\) −41.1825 −1.32161 −0.660805 0.750558i \(-0.729785\pi\)
−0.660805 + 0.750558i \(0.729785\pi\)
\(972\) −62.5407 −2.00600
\(973\) −56.0039 −1.79540
\(974\) −102.390 −3.28080
\(975\) −78.0894 −2.50086
\(976\) 14.2179 0.455105
\(977\) −0.278734 −0.00891748 −0.00445874 0.999990i \(-0.501419\pi\)
−0.00445874 + 0.999990i \(0.501419\pi\)
\(978\) −79.1331 −2.53040
\(979\) 74.7591 2.38931
\(980\) 23.7178 0.757639
\(981\) −60.0852 −1.91837
\(982\) −62.3147 −1.98854
\(983\) 21.2937 0.679162 0.339581 0.940577i \(-0.389715\pi\)
0.339581 + 0.940577i \(0.389715\pi\)
\(984\) −112.197 −3.57672
\(985\) −2.68706 −0.0856167
\(986\) −39.2770 −1.25083
\(987\) 40.8438 1.30007
\(988\) 195.782 6.22864
\(989\) −13.5008 −0.429300
\(990\) −30.9398 −0.983331
\(991\) 54.9212 1.74463 0.872314 0.488946i \(-0.162618\pi\)
0.872314 + 0.488946i \(0.162618\pi\)
\(992\) −95.3201 −3.02641
\(993\) −84.2841 −2.67467
\(994\) −142.785 −4.52886
\(995\) 6.43494 0.204001
\(996\) −173.130 −5.48583
\(997\) −20.6319 −0.653418 −0.326709 0.945125i \(-0.605940\pi\)
−0.326709 + 0.945125i \(0.605940\pi\)
\(998\) −62.9926 −1.99399
\(999\) −32.4029 −1.02518
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.13 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.13 184 1.1 even 1 trivial