Properties

Label 4001.2.a.b.1.11
Level $4001$
Weight $2$
Character 4001.1
Self dual yes
Analytic conductor $31.948$
Analytic rank $0$
Dimension $184$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4001,2,Mod(1,4001)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4001, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4001.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4001 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4001.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.9481458487\)
Analytic rank: \(0\)
Dimension: \(184\)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Character \(\chi\) \(=\) 4001.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.64594 q^{2} -1.99415 q^{3} +5.00101 q^{4} -3.20075 q^{5} +5.27640 q^{6} +3.40947 q^{7} -7.94051 q^{8} +0.976617 q^{9} +O(q^{10})\) \(q-2.64594 q^{2} -1.99415 q^{3} +5.00101 q^{4} -3.20075 q^{5} +5.27640 q^{6} +3.40947 q^{7} -7.94051 q^{8} +0.976617 q^{9} +8.46900 q^{10} +4.31844 q^{11} -9.97275 q^{12} -1.86918 q^{13} -9.02125 q^{14} +6.38276 q^{15} +11.0081 q^{16} -2.01826 q^{17} -2.58407 q^{18} +5.36675 q^{19} -16.0070 q^{20} -6.79897 q^{21} -11.4263 q^{22} +0.806760 q^{23} +15.8345 q^{24} +5.24480 q^{25} +4.94574 q^{26} +4.03492 q^{27} +17.0508 q^{28} -1.06073 q^{29} -16.8884 q^{30} +2.13299 q^{31} -13.2458 q^{32} -8.61160 q^{33} +5.34020 q^{34} -10.9128 q^{35} +4.88407 q^{36} +0.385677 q^{37} -14.2001 q^{38} +3.72741 q^{39} +25.4156 q^{40} +11.8883 q^{41} +17.9897 q^{42} +3.23663 q^{43} +21.5966 q^{44} -3.12591 q^{45} -2.13464 q^{46} +3.16840 q^{47} -21.9518 q^{48} +4.62446 q^{49} -13.8774 q^{50} +4.02471 q^{51} -9.34779 q^{52} +5.24253 q^{53} -10.6762 q^{54} -13.8222 q^{55} -27.0729 q^{56} -10.7021 q^{57} +2.80663 q^{58} +3.68316 q^{59} +31.9203 q^{60} +5.89671 q^{61} -5.64376 q^{62} +3.32974 q^{63} +13.0314 q^{64} +5.98278 q^{65} +22.7858 q^{66} -3.76625 q^{67} -10.0933 q^{68} -1.60880 q^{69} +28.8748 q^{70} -6.14898 q^{71} -7.75483 q^{72} +12.9440 q^{73} -1.02048 q^{74} -10.4589 q^{75} +26.8392 q^{76} +14.7236 q^{77} -9.86253 q^{78} +9.83252 q^{79} -35.2342 q^{80} -10.9761 q^{81} -31.4559 q^{82} -16.4947 q^{83} -34.0017 q^{84} +6.45995 q^{85} -8.56393 q^{86} +2.11525 q^{87} -34.2906 q^{88} +3.74435 q^{89} +8.27097 q^{90} -6.37290 q^{91} +4.03462 q^{92} -4.25349 q^{93} -8.38341 q^{94} -17.1776 q^{95} +26.4141 q^{96} +9.59660 q^{97} -12.2360 q^{98} +4.21746 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 184 q + 3 q^{2} + 28 q^{3} + 217 q^{4} + 15 q^{5} + 31 q^{6} + 49 q^{7} + 6 q^{8} + 210 q^{9} + 46 q^{10} + 25 q^{11} + 61 q^{12} + 52 q^{13} + 28 q^{14} + 59 q^{15} + 279 q^{16} + 16 q^{17} - 2 q^{18} + 86 q^{19} + 26 q^{20} + 22 q^{21} + 54 q^{22} + 55 q^{23} + 72 q^{24} + 241 q^{25} + 32 q^{26} + 97 q^{27} + 75 q^{28} + 27 q^{29} - 10 q^{30} + 276 q^{31} + 20 q^{33} + 122 q^{34} + 30 q^{35} + 278 q^{36} + 42 q^{37} + 14 q^{38} + 113 q^{39} + 115 q^{40} + 39 q^{41} + 15 q^{42} + 65 q^{43} + 32 q^{44} + 54 q^{45} + 65 q^{46} + 82 q^{47} + 117 q^{48} + 297 q^{49} + 4 q^{50} + 45 q^{51} + 136 q^{52} + 21 q^{53} + 93 q^{54} + 252 q^{55} + 74 q^{56} + 14 q^{57} + 54 q^{58} + 95 q^{59} + 58 q^{60} + 131 q^{61} + 14 q^{62} + 88 q^{63} + 368 q^{64} - 9 q^{65} + 52 q^{66} + 90 q^{67} + 27 q^{68} + 101 q^{69} + 18 q^{70} + 117 q^{71} - 15 q^{72} + 72 q^{73} + 7 q^{74} + 150 q^{75} + 148 q^{76} + 7 q^{77} + 22 q^{78} + 287 q^{79} + 43 q^{80} + 244 q^{81} + 86 q^{82} + 25 q^{83} + 14 q^{84} + 41 q^{85} + 25 q^{86} + 82 q^{87} + 115 q^{88} + 48 q^{89} + 78 q^{90} + 272 q^{91} + 69 q^{92} + 44 q^{93} + 161 q^{94} + 37 q^{95} + 129 q^{96} + 106 q^{97} - 46 q^{98} + 53 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.64594 −1.87096 −0.935482 0.353374i \(-0.885034\pi\)
−0.935482 + 0.353374i \(0.885034\pi\)
\(3\) −1.99415 −1.15132 −0.575660 0.817689i \(-0.695255\pi\)
−0.575660 + 0.817689i \(0.695255\pi\)
\(4\) 5.00101 2.50051
\(5\) −3.20075 −1.43142 −0.715710 0.698398i \(-0.753897\pi\)
−0.715710 + 0.698398i \(0.753897\pi\)
\(6\) 5.27640 2.15408
\(7\) 3.40947 1.28866 0.644328 0.764749i \(-0.277137\pi\)
0.644328 + 0.764749i \(0.277137\pi\)
\(8\) −7.94051 −2.80739
\(9\) 0.976617 0.325539
\(10\) 8.46900 2.67813
\(11\) 4.31844 1.30206 0.651029 0.759053i \(-0.274338\pi\)
0.651029 + 0.759053i \(0.274338\pi\)
\(12\) −9.97275 −2.87888
\(13\) −1.86918 −0.518417 −0.259208 0.965821i \(-0.583462\pi\)
−0.259208 + 0.965821i \(0.583462\pi\)
\(14\) −9.02125 −2.41103
\(15\) 6.38276 1.64802
\(16\) 11.0081 2.75203
\(17\) −2.01826 −0.489500 −0.244750 0.969586i \(-0.578706\pi\)
−0.244750 + 0.969586i \(0.578706\pi\)
\(18\) −2.58407 −0.609072
\(19\) 5.36675 1.23122 0.615608 0.788052i \(-0.288910\pi\)
0.615608 + 0.788052i \(0.288910\pi\)
\(20\) −16.0070 −3.57927
\(21\) −6.79897 −1.48366
\(22\) −11.4263 −2.43610
\(23\) 0.806760 0.168221 0.0841106 0.996456i \(-0.473195\pi\)
0.0841106 + 0.996456i \(0.473195\pi\)
\(24\) 15.8345 3.23221
\(25\) 5.24480 1.04896
\(26\) 4.94574 0.969939
\(27\) 4.03492 0.776521
\(28\) 17.0508 3.22229
\(29\) −1.06073 −0.196973 −0.0984863 0.995138i \(-0.531400\pi\)
−0.0984863 + 0.995138i \(0.531400\pi\)
\(30\) −16.8884 −3.08339
\(31\) 2.13299 0.383096 0.191548 0.981483i \(-0.438649\pi\)
0.191548 + 0.981483i \(0.438649\pi\)
\(32\) −13.2458 −2.34155
\(33\) −8.61160 −1.49909
\(34\) 5.34020 0.915837
\(35\) −10.9128 −1.84461
\(36\) 4.88407 0.814012
\(37\) 0.385677 0.0634049 0.0317024 0.999497i \(-0.489907\pi\)
0.0317024 + 0.999497i \(0.489907\pi\)
\(38\) −14.2001 −2.30356
\(39\) 3.72741 0.596864
\(40\) 25.4156 4.01856
\(41\) 11.8883 1.85665 0.928323 0.371775i \(-0.121251\pi\)
0.928323 + 0.371775i \(0.121251\pi\)
\(42\) 17.9897 2.77587
\(43\) 3.23663 0.493581 0.246790 0.969069i \(-0.420624\pi\)
0.246790 + 0.969069i \(0.420624\pi\)
\(44\) 21.5966 3.25581
\(45\) −3.12591 −0.465983
\(46\) −2.13464 −0.314736
\(47\) 3.16840 0.462159 0.231079 0.972935i \(-0.425774\pi\)
0.231079 + 0.972935i \(0.425774\pi\)
\(48\) −21.9518 −3.16846
\(49\) 4.62446 0.660636
\(50\) −13.8774 −1.96257
\(51\) 4.02471 0.563571
\(52\) −9.34779 −1.29630
\(53\) 5.24253 0.720117 0.360059 0.932930i \(-0.382757\pi\)
0.360059 + 0.932930i \(0.382757\pi\)
\(54\) −10.6762 −1.45284
\(55\) −13.8222 −1.86379
\(56\) −27.0729 −3.61777
\(57\) −10.7021 −1.41753
\(58\) 2.80663 0.368529
\(59\) 3.68316 0.479507 0.239753 0.970834i \(-0.422933\pi\)
0.239753 + 0.970834i \(0.422933\pi\)
\(60\) 31.9203 4.12089
\(61\) 5.89671 0.754996 0.377498 0.926010i \(-0.376784\pi\)
0.377498 + 0.926010i \(0.376784\pi\)
\(62\) −5.64376 −0.716758
\(63\) 3.32974 0.419508
\(64\) 13.0314 1.62893
\(65\) 5.98278 0.742072
\(66\) 22.7858 2.80474
\(67\) −3.76625 −0.460121 −0.230060 0.973176i \(-0.573892\pi\)
−0.230060 + 0.973176i \(0.573892\pi\)
\(68\) −10.0933 −1.22400
\(69\) −1.60880 −0.193676
\(70\) 28.8748 3.45120
\(71\) −6.14898 −0.729750 −0.364875 0.931057i \(-0.618888\pi\)
−0.364875 + 0.931057i \(0.618888\pi\)
\(72\) −7.75483 −0.913916
\(73\) 12.9440 1.51498 0.757489 0.652848i \(-0.226426\pi\)
0.757489 + 0.652848i \(0.226426\pi\)
\(74\) −1.02048 −0.118628
\(75\) −10.4589 −1.20769
\(76\) 26.8392 3.07867
\(77\) 14.7236 1.67791
\(78\) −9.86253 −1.11671
\(79\) 9.83252 1.10625 0.553123 0.833100i \(-0.313436\pi\)
0.553123 + 0.833100i \(0.313436\pi\)
\(80\) −35.2342 −3.93930
\(81\) −10.9761 −1.21956
\(82\) −31.4559 −3.47372
\(83\) −16.4947 −1.81053 −0.905266 0.424844i \(-0.860329\pi\)
−0.905266 + 0.424844i \(0.860329\pi\)
\(84\) −34.0017 −3.70989
\(85\) 6.45995 0.700680
\(86\) −8.56393 −0.923472
\(87\) 2.11525 0.226779
\(88\) −34.2906 −3.65539
\(89\) 3.74435 0.396900 0.198450 0.980111i \(-0.436409\pi\)
0.198450 + 0.980111i \(0.436409\pi\)
\(90\) 8.27097 0.871837
\(91\) −6.37290 −0.668062
\(92\) 4.03462 0.420638
\(93\) −4.25349 −0.441066
\(94\) −8.38341 −0.864683
\(95\) −17.1776 −1.76239
\(96\) 26.4141 2.69587
\(97\) 9.59660 0.974387 0.487194 0.873294i \(-0.338021\pi\)
0.487194 + 0.873294i \(0.338021\pi\)
\(98\) −12.2360 −1.23603
\(99\) 4.21746 0.423871
\(100\) 26.2293 2.62293
\(101\) −10.0822 −1.00322 −0.501609 0.865094i \(-0.667259\pi\)
−0.501609 + 0.865094i \(0.667259\pi\)
\(102\) −10.6491 −1.05442
\(103\) −6.12184 −0.603203 −0.301601 0.953434i \(-0.597521\pi\)
−0.301601 + 0.953434i \(0.597521\pi\)
\(104\) 14.8422 1.45540
\(105\) 21.7618 2.12374
\(106\) −13.8714 −1.34731
\(107\) −9.82712 −0.950024 −0.475012 0.879979i \(-0.657556\pi\)
−0.475012 + 0.879979i \(0.657556\pi\)
\(108\) 20.1787 1.94170
\(109\) 15.7209 1.50579 0.752896 0.658139i \(-0.228656\pi\)
0.752896 + 0.658139i \(0.228656\pi\)
\(110\) 36.5729 3.48709
\(111\) −0.769096 −0.0729993
\(112\) 37.5318 3.54642
\(113\) −0.110757 −0.0104191 −0.00520955 0.999986i \(-0.501658\pi\)
−0.00520955 + 0.999986i \(0.501658\pi\)
\(114\) 28.3171 2.65214
\(115\) −2.58224 −0.240795
\(116\) −5.30472 −0.492531
\(117\) −1.82547 −0.168765
\(118\) −9.74544 −0.897140
\(119\) −6.88119 −0.630798
\(120\) −50.6824 −4.62665
\(121\) 7.64891 0.695356
\(122\) −15.6024 −1.41257
\(123\) −23.7071 −2.13759
\(124\) 10.6671 0.957933
\(125\) −0.783554 −0.0700832
\(126\) −8.81030 −0.784884
\(127\) −2.27451 −0.201830 −0.100915 0.994895i \(-0.532177\pi\)
−0.100915 + 0.994895i \(0.532177\pi\)
\(128\) −7.98878 −0.706115
\(129\) −6.45430 −0.568270
\(130\) −15.8301 −1.38839
\(131\) 10.4771 0.915390 0.457695 0.889109i \(-0.348675\pi\)
0.457695 + 0.889109i \(0.348675\pi\)
\(132\) −43.0667 −3.74848
\(133\) 18.2977 1.58662
\(134\) 9.96528 0.860869
\(135\) −12.9148 −1.11153
\(136\) 16.0260 1.37422
\(137\) −14.3593 −1.22680 −0.613400 0.789772i \(-0.710199\pi\)
−0.613400 + 0.789772i \(0.710199\pi\)
\(138\) 4.25679 0.362362
\(139\) −15.1615 −1.28598 −0.642990 0.765875i \(-0.722306\pi\)
−0.642990 + 0.765875i \(0.722306\pi\)
\(140\) −54.5753 −4.61245
\(141\) −6.31826 −0.532093
\(142\) 16.2699 1.36534
\(143\) −8.07193 −0.675009
\(144\) 10.7507 0.895892
\(145\) 3.39513 0.281950
\(146\) −34.2490 −2.83447
\(147\) −9.22184 −0.760604
\(148\) 1.92877 0.158544
\(149\) −3.22192 −0.263950 −0.131975 0.991253i \(-0.542132\pi\)
−0.131975 + 0.991253i \(0.542132\pi\)
\(150\) 27.6737 2.25954
\(151\) −4.90091 −0.398830 −0.199415 0.979915i \(-0.563904\pi\)
−0.199415 + 0.979915i \(0.563904\pi\)
\(152\) −42.6147 −3.45651
\(153\) −1.97107 −0.159351
\(154\) −38.9577 −3.13930
\(155\) −6.82716 −0.548371
\(156\) 18.6409 1.49246
\(157\) −7.94891 −0.634392 −0.317196 0.948360i \(-0.602741\pi\)
−0.317196 + 0.948360i \(0.602741\pi\)
\(158\) −26.0163 −2.06975
\(159\) −10.4544 −0.829086
\(160\) 42.3965 3.35174
\(161\) 2.75062 0.216779
\(162\) 29.0421 2.28176
\(163\) 6.74197 0.528072 0.264036 0.964513i \(-0.414946\pi\)
0.264036 + 0.964513i \(0.414946\pi\)
\(164\) 59.4537 4.64256
\(165\) 27.5636 2.14582
\(166\) 43.6441 3.38744
\(167\) −16.9841 −1.31427 −0.657135 0.753773i \(-0.728232\pi\)
−0.657135 + 0.753773i \(0.728232\pi\)
\(168\) 53.9873 4.16521
\(169\) −9.50617 −0.731244
\(170\) −17.0927 −1.31095
\(171\) 5.24126 0.400809
\(172\) 16.1864 1.23420
\(173\) −2.69534 −0.204923 −0.102461 0.994737i \(-0.532672\pi\)
−0.102461 + 0.994737i \(0.532672\pi\)
\(174\) −5.59683 −0.424295
\(175\) 17.8820 1.35175
\(176\) 47.5378 3.58330
\(177\) −7.34476 −0.552066
\(178\) −9.90734 −0.742586
\(179\) −2.43214 −0.181787 −0.0908933 0.995861i \(-0.528972\pi\)
−0.0908933 + 0.995861i \(0.528972\pi\)
\(180\) −15.6327 −1.16519
\(181\) 20.0356 1.48923 0.744617 0.667492i \(-0.232632\pi\)
0.744617 + 0.667492i \(0.232632\pi\)
\(182\) 16.8623 1.24992
\(183\) −11.7589 −0.869243
\(184\) −6.40609 −0.472263
\(185\) −1.23446 −0.0907589
\(186\) 11.2545 0.825219
\(187\) −8.71573 −0.637358
\(188\) 15.8452 1.15563
\(189\) 13.7569 1.00067
\(190\) 45.4510 3.29736
\(191\) 17.3048 1.25213 0.626065 0.779771i \(-0.284665\pi\)
0.626065 + 0.779771i \(0.284665\pi\)
\(192\) −25.9865 −1.87542
\(193\) 0.996820 0.0717526 0.0358763 0.999356i \(-0.488578\pi\)
0.0358763 + 0.999356i \(0.488578\pi\)
\(194\) −25.3921 −1.82304
\(195\) −11.9305 −0.854363
\(196\) 23.1270 1.65193
\(197\) −22.3401 −1.59167 −0.795833 0.605516i \(-0.792967\pi\)
−0.795833 + 0.605516i \(0.792967\pi\)
\(198\) −11.1592 −0.793047
\(199\) −18.0552 −1.27990 −0.639950 0.768416i \(-0.721045\pi\)
−0.639950 + 0.768416i \(0.721045\pi\)
\(200\) −41.6464 −2.94485
\(201\) 7.51045 0.529746
\(202\) 26.6770 1.87699
\(203\) −3.61652 −0.253830
\(204\) 20.1276 1.40921
\(205\) −38.0516 −2.65764
\(206\) 16.1980 1.12857
\(207\) 0.787896 0.0547625
\(208\) −20.5761 −1.42670
\(209\) 23.1760 1.60312
\(210\) −57.5805 −3.97343
\(211\) −12.6680 −0.872104 −0.436052 0.899921i \(-0.643624\pi\)
−0.436052 + 0.899921i \(0.643624\pi\)
\(212\) 26.2180 1.80066
\(213\) 12.2620 0.840176
\(214\) 26.0020 1.77746
\(215\) −10.3596 −0.706521
\(216\) −32.0393 −2.18000
\(217\) 7.27235 0.493679
\(218\) −41.5967 −2.81728
\(219\) −25.8122 −1.74422
\(220\) −69.1252 −4.66042
\(221\) 3.77249 0.253765
\(222\) 2.03498 0.136579
\(223\) 7.58790 0.508123 0.254062 0.967188i \(-0.418233\pi\)
0.254062 + 0.967188i \(0.418233\pi\)
\(224\) −45.1611 −3.01745
\(225\) 5.12216 0.341477
\(226\) 0.293056 0.0194938
\(227\) 3.11318 0.206629 0.103314 0.994649i \(-0.467055\pi\)
0.103314 + 0.994649i \(0.467055\pi\)
\(228\) −53.5212 −3.54453
\(229\) −3.68371 −0.243426 −0.121713 0.992565i \(-0.538839\pi\)
−0.121713 + 0.992565i \(0.538839\pi\)
\(230\) 6.83246 0.450519
\(231\) −29.3609 −1.93181
\(232\) 8.42274 0.552980
\(233\) 23.9967 1.57208 0.786039 0.618177i \(-0.212128\pi\)
0.786039 + 0.618177i \(0.212128\pi\)
\(234\) 4.83009 0.315753
\(235\) −10.1413 −0.661543
\(236\) 18.4195 1.19901
\(237\) −19.6075 −1.27364
\(238\) 18.2072 1.18020
\(239\) 21.6496 1.40040 0.700198 0.713949i \(-0.253095\pi\)
0.700198 + 0.713949i \(0.253095\pi\)
\(240\) 70.2621 4.53540
\(241\) −22.2259 −1.43170 −0.715848 0.698257i \(-0.753959\pi\)
−0.715848 + 0.698257i \(0.753959\pi\)
\(242\) −20.2386 −1.30099
\(243\) 9.78312 0.627587
\(244\) 29.4895 1.88787
\(245\) −14.8017 −0.945648
\(246\) 62.7276 3.99936
\(247\) −10.0314 −0.638284
\(248\) −16.9370 −1.07550
\(249\) 32.8929 2.08450
\(250\) 2.07324 0.131123
\(251\) −9.69826 −0.612149 −0.306074 0.952008i \(-0.599016\pi\)
−0.306074 + 0.952008i \(0.599016\pi\)
\(252\) 16.6521 1.04898
\(253\) 3.48395 0.219034
\(254\) 6.01823 0.377617
\(255\) −12.8821 −0.806707
\(256\) −4.92497 −0.307811
\(257\) 2.23493 0.139411 0.0697055 0.997568i \(-0.477794\pi\)
0.0697055 + 0.997568i \(0.477794\pi\)
\(258\) 17.0777 1.06321
\(259\) 1.31495 0.0817071
\(260\) 29.9199 1.85556
\(261\) −1.03593 −0.0641222
\(262\) −27.7218 −1.71266
\(263\) 12.5568 0.774287 0.387143 0.922019i \(-0.373462\pi\)
0.387143 + 0.922019i \(0.373462\pi\)
\(264\) 68.3805 4.20853
\(265\) −16.7800 −1.03079
\(266\) −48.4148 −2.96850
\(267\) −7.46678 −0.456960
\(268\) −18.8351 −1.15053
\(269\) −7.24683 −0.441847 −0.220923 0.975291i \(-0.570907\pi\)
−0.220923 + 0.975291i \(0.570907\pi\)
\(270\) 34.1718 2.07963
\(271\) 16.7259 1.01603 0.508014 0.861349i \(-0.330380\pi\)
0.508014 + 0.861349i \(0.330380\pi\)
\(272\) −22.2172 −1.34712
\(273\) 12.7085 0.769153
\(274\) 37.9940 2.29530
\(275\) 22.6494 1.36581
\(276\) −8.04562 −0.484289
\(277\) −24.8169 −1.49110 −0.745551 0.666449i \(-0.767814\pi\)
−0.745551 + 0.666449i \(0.767814\pi\)
\(278\) 40.1164 2.40602
\(279\) 2.08311 0.124713
\(280\) 86.6536 5.17854
\(281\) 1.92599 0.114895 0.0574474 0.998349i \(-0.481704\pi\)
0.0574474 + 0.998349i \(0.481704\pi\)
\(282\) 16.7177 0.995527
\(283\) 15.5384 0.923663 0.461832 0.886968i \(-0.347192\pi\)
0.461832 + 0.886968i \(0.347192\pi\)
\(284\) −30.7511 −1.82474
\(285\) 34.2547 2.02907
\(286\) 21.3579 1.26292
\(287\) 40.5329 2.39258
\(288\) −12.9361 −0.762265
\(289\) −12.9266 −0.760390
\(290\) −8.98332 −0.527519
\(291\) −19.1370 −1.12183
\(292\) 64.7330 3.78821
\(293\) 25.5720 1.49393 0.746967 0.664861i \(-0.231509\pi\)
0.746967 + 0.664861i \(0.231509\pi\)
\(294\) 24.4005 1.42306
\(295\) −11.7889 −0.686375
\(296\) −3.06247 −0.178002
\(297\) 17.4246 1.01108
\(298\) 8.52502 0.493841
\(299\) −1.50798 −0.0872087
\(300\) −52.3051 −3.01984
\(301\) 11.0352 0.636056
\(302\) 12.9675 0.746197
\(303\) 20.1054 1.15503
\(304\) 59.0778 3.38834
\(305\) −18.8739 −1.08072
\(306\) 5.21533 0.298141
\(307\) 23.5501 1.34407 0.672037 0.740518i \(-0.265420\pi\)
0.672037 + 0.740518i \(0.265420\pi\)
\(308\) 73.6328 4.19562
\(309\) 12.2078 0.694480
\(310\) 18.0643 1.02598
\(311\) 9.64461 0.546896 0.273448 0.961887i \(-0.411836\pi\)
0.273448 + 0.961887i \(0.411836\pi\)
\(312\) −29.5976 −1.67563
\(313\) −34.4906 −1.94952 −0.974761 0.223252i \(-0.928333\pi\)
−0.974761 + 0.223252i \(0.928333\pi\)
\(314\) 21.0323 1.18692
\(315\) −10.6577 −0.600492
\(316\) 49.1726 2.76617
\(317\) −23.7307 −1.33285 −0.666424 0.745573i \(-0.732176\pi\)
−0.666424 + 0.745573i \(0.732176\pi\)
\(318\) 27.6617 1.55119
\(319\) −4.58070 −0.256470
\(320\) −41.7103 −2.33168
\(321\) 19.5967 1.09378
\(322\) −7.27799 −0.405586
\(323\) −10.8315 −0.602681
\(324\) −54.8915 −3.04953
\(325\) −9.80348 −0.543799
\(326\) −17.8389 −0.988003
\(327\) −31.3498 −1.73365
\(328\) −94.3994 −5.21234
\(329\) 10.8026 0.595564
\(330\) −72.9316 −4.01475
\(331\) 9.02441 0.496026 0.248013 0.968757i \(-0.420222\pi\)
0.248013 + 0.968757i \(0.420222\pi\)
\(332\) −82.4904 −4.52725
\(333\) 0.376658 0.0206407
\(334\) 44.9390 2.45895
\(335\) 12.0548 0.658625
\(336\) −74.8438 −4.08306
\(337\) 19.5411 1.06447 0.532237 0.846595i \(-0.321352\pi\)
0.532237 + 0.846595i \(0.321352\pi\)
\(338\) 25.1528 1.36813
\(339\) 0.220865 0.0119957
\(340\) 32.3063 1.75205
\(341\) 9.21117 0.498813
\(342\) −13.8681 −0.749899
\(343\) −8.09934 −0.437323
\(344\) −25.7005 −1.38568
\(345\) 5.14936 0.277232
\(346\) 7.13171 0.383403
\(347\) −30.7229 −1.64929 −0.824645 0.565650i \(-0.808625\pi\)
−0.824645 + 0.565650i \(0.808625\pi\)
\(348\) 10.5784 0.567061
\(349\) 7.43968 0.398237 0.199118 0.979975i \(-0.436192\pi\)
0.199118 + 0.979975i \(0.436192\pi\)
\(350\) −47.3147 −2.52908
\(351\) −7.54199 −0.402562
\(352\) −57.2012 −3.04883
\(353\) 4.99329 0.265766 0.132883 0.991132i \(-0.457577\pi\)
0.132883 + 0.991132i \(0.457577\pi\)
\(354\) 19.4338 1.03290
\(355\) 19.6814 1.04458
\(356\) 18.7255 0.992452
\(357\) 13.7221 0.726250
\(358\) 6.43530 0.340116
\(359\) 29.5168 1.55784 0.778918 0.627126i \(-0.215769\pi\)
0.778918 + 0.627126i \(0.215769\pi\)
\(360\) 24.8213 1.30820
\(361\) 9.80200 0.515895
\(362\) −53.0130 −2.78630
\(363\) −15.2530 −0.800577
\(364\) −31.8710 −1.67049
\(365\) −41.4304 −2.16857
\(366\) 31.1134 1.62632
\(367\) −11.5670 −0.603794 −0.301897 0.953341i \(-0.597620\pi\)
−0.301897 + 0.953341i \(0.597620\pi\)
\(368\) 8.88090 0.462949
\(369\) 11.6103 0.604410
\(370\) 3.26630 0.169807
\(371\) 17.8742 0.927984
\(372\) −21.2717 −1.10289
\(373\) 5.13829 0.266051 0.133025 0.991113i \(-0.457531\pi\)
0.133025 + 0.991113i \(0.457531\pi\)
\(374\) 23.0613 1.19247
\(375\) 1.56252 0.0806882
\(376\) −25.1587 −1.29746
\(377\) 1.98269 0.102114
\(378\) −36.4000 −1.87222
\(379\) 3.43012 0.176193 0.0880966 0.996112i \(-0.471922\pi\)
0.0880966 + 0.996112i \(0.471922\pi\)
\(380\) −85.9055 −4.40686
\(381\) 4.53571 0.232371
\(382\) −45.7874 −2.34269
\(383\) 29.4775 1.50623 0.753114 0.657890i \(-0.228551\pi\)
0.753114 + 0.657890i \(0.228551\pi\)
\(384\) 15.9308 0.812965
\(385\) −47.1265 −2.40179
\(386\) −2.63753 −0.134247
\(387\) 3.16094 0.160680
\(388\) 47.9927 2.43646
\(389\) 1.35668 0.0687865 0.0343933 0.999408i \(-0.489050\pi\)
0.0343933 + 0.999408i \(0.489050\pi\)
\(390\) 31.5675 1.59848
\(391\) −1.62825 −0.0823443
\(392\) −36.7205 −1.85467
\(393\) −20.8929 −1.05391
\(394\) 59.1106 2.97795
\(395\) −31.4715 −1.58350
\(396\) 21.0916 1.05989
\(397\) 21.3686 1.07246 0.536230 0.844072i \(-0.319848\pi\)
0.536230 + 0.844072i \(0.319848\pi\)
\(398\) 47.7731 2.39465
\(399\) −36.4884 −1.82670
\(400\) 57.7353 2.88677
\(401\) 18.8594 0.941792 0.470896 0.882189i \(-0.343931\pi\)
0.470896 + 0.882189i \(0.343931\pi\)
\(402\) −19.8722 −0.991136
\(403\) −3.98693 −0.198603
\(404\) −50.4213 −2.50856
\(405\) 35.1317 1.74571
\(406\) 9.56911 0.474907
\(407\) 1.66552 0.0825568
\(408\) −31.9582 −1.58217
\(409\) −4.69732 −0.232267 −0.116134 0.993234i \(-0.537050\pi\)
−0.116134 + 0.993234i \(0.537050\pi\)
\(410\) 100.682 4.97235
\(411\) 28.6346 1.41244
\(412\) −30.6154 −1.50831
\(413\) 12.5576 0.617920
\(414\) −2.08473 −0.102459
\(415\) 52.7955 2.59163
\(416\) 24.7588 1.21390
\(417\) 30.2342 1.48057
\(418\) −61.3223 −2.99937
\(419\) −11.4956 −0.561599 −0.280799 0.959766i \(-0.590600\pi\)
−0.280799 + 0.959766i \(0.590600\pi\)
\(420\) 108.831 5.31041
\(421\) −7.20369 −0.351086 −0.175543 0.984472i \(-0.556168\pi\)
−0.175543 + 0.984472i \(0.556168\pi\)
\(422\) 33.5189 1.63168
\(423\) 3.09431 0.150451
\(424\) −41.6284 −2.02165
\(425\) −10.5854 −0.513466
\(426\) −32.4445 −1.57194
\(427\) 20.1046 0.972931
\(428\) −49.1456 −2.37554
\(429\) 16.0966 0.777152
\(430\) 27.4110 1.32188
\(431\) 21.6986 1.04518 0.522591 0.852583i \(-0.324965\pi\)
0.522591 + 0.852583i \(0.324965\pi\)
\(432\) 44.4168 2.13701
\(433\) 9.21027 0.442617 0.221309 0.975204i \(-0.428967\pi\)
0.221309 + 0.975204i \(0.428967\pi\)
\(434\) −19.2422 −0.923656
\(435\) −6.77039 −0.324615
\(436\) 78.6206 3.76524
\(437\) 4.32968 0.207117
\(438\) 68.2975 3.26338
\(439\) 12.4852 0.595886 0.297943 0.954584i \(-0.403700\pi\)
0.297943 + 0.954584i \(0.403700\pi\)
\(440\) 109.756 5.23240
\(441\) 4.51632 0.215063
\(442\) −9.98179 −0.474785
\(443\) 7.55623 0.359007 0.179504 0.983757i \(-0.442551\pi\)
0.179504 + 0.983757i \(0.442551\pi\)
\(444\) −3.84626 −0.182535
\(445\) −11.9847 −0.568131
\(446\) −20.0771 −0.950680
\(447\) 6.42498 0.303891
\(448\) 44.4302 2.09913
\(449\) 24.0242 1.13377 0.566885 0.823797i \(-0.308148\pi\)
0.566885 + 0.823797i \(0.308148\pi\)
\(450\) −13.5529 −0.638892
\(451\) 51.3390 2.41746
\(452\) −0.553895 −0.0260530
\(453\) 9.77313 0.459182
\(454\) −8.23729 −0.386595
\(455\) 20.3981 0.956276
\(456\) 84.9800 3.97955
\(457\) −10.3946 −0.486238 −0.243119 0.969997i \(-0.578171\pi\)
−0.243119 + 0.969997i \(0.578171\pi\)
\(458\) 9.74688 0.455442
\(459\) −8.14352 −0.380107
\(460\) −12.9138 −0.602109
\(461\) 16.7445 0.779871 0.389936 0.920842i \(-0.372497\pi\)
0.389936 + 0.920842i \(0.372497\pi\)
\(462\) 77.6874 3.61434
\(463\) 14.2816 0.663722 0.331861 0.943328i \(-0.392323\pi\)
0.331861 + 0.943328i \(0.392323\pi\)
\(464\) −11.6766 −0.542074
\(465\) 13.6143 0.631350
\(466\) −63.4940 −2.94130
\(467\) −21.0998 −0.976383 −0.488191 0.872737i \(-0.662343\pi\)
−0.488191 + 0.872737i \(0.662343\pi\)
\(468\) −9.12921 −0.421998
\(469\) −12.8409 −0.592938
\(470\) 26.8332 1.23772
\(471\) 15.8513 0.730388
\(472\) −29.2462 −1.34616
\(473\) 13.9772 0.642671
\(474\) 51.8803 2.38294
\(475\) 28.1475 1.29150
\(476\) −34.4129 −1.57731
\(477\) 5.11995 0.234426
\(478\) −57.2836 −2.62009
\(479\) 26.0672 1.19104 0.595521 0.803340i \(-0.296946\pi\)
0.595521 + 0.803340i \(0.296946\pi\)
\(480\) −84.5448 −3.85892
\(481\) −0.720899 −0.0328702
\(482\) 58.8084 2.67865
\(483\) −5.48514 −0.249583
\(484\) 38.2523 1.73874
\(485\) −30.7163 −1.39476
\(486\) −25.8856 −1.17419
\(487\) 8.54562 0.387239 0.193620 0.981077i \(-0.437977\pi\)
0.193620 + 0.981077i \(0.437977\pi\)
\(488\) −46.8229 −2.11957
\(489\) −13.4445 −0.607980
\(490\) 39.1645 1.76927
\(491\) −17.2202 −0.777137 −0.388569 0.921420i \(-0.627030\pi\)
−0.388569 + 0.921420i \(0.627030\pi\)
\(492\) −118.559 −5.34507
\(493\) 2.14083 0.0964181
\(494\) 26.5426 1.19421
\(495\) −13.4990 −0.606736
\(496\) 23.4801 1.05429
\(497\) −20.9647 −0.940397
\(498\) −87.0328 −3.90003
\(499\) 6.65088 0.297734 0.148867 0.988857i \(-0.452437\pi\)
0.148867 + 0.988857i \(0.452437\pi\)
\(500\) −3.91856 −0.175244
\(501\) 33.8688 1.51315
\(502\) 25.6610 1.14531
\(503\) 33.0825 1.47507 0.737537 0.675307i \(-0.235989\pi\)
0.737537 + 0.675307i \(0.235989\pi\)
\(504\) −26.4398 −1.17772
\(505\) 32.2707 1.43603
\(506\) −9.21832 −0.409804
\(507\) 18.9567 0.841896
\(508\) −11.3749 −0.504678
\(509\) 42.7383 1.89434 0.947170 0.320731i \(-0.103929\pi\)
0.947170 + 0.320731i \(0.103929\pi\)
\(510\) 34.0852 1.50932
\(511\) 44.1320 1.95229
\(512\) 29.0088 1.28202
\(513\) 21.6544 0.956066
\(514\) −5.91350 −0.260833
\(515\) 19.5945 0.863436
\(516\) −32.2781 −1.42096
\(517\) 13.6826 0.601758
\(518\) −3.47929 −0.152871
\(519\) 5.37490 0.235932
\(520\) −47.5063 −2.08329
\(521\) 44.4193 1.94604 0.973022 0.230713i \(-0.0741057\pi\)
0.973022 + 0.230713i \(0.0741057\pi\)
\(522\) 2.74100 0.119970
\(523\) 42.8647 1.87434 0.937171 0.348869i \(-0.113434\pi\)
0.937171 + 0.348869i \(0.113434\pi\)
\(524\) 52.3962 2.28894
\(525\) −35.6593 −1.55630
\(526\) −33.2246 −1.44866
\(527\) −4.30492 −0.187525
\(528\) −94.7974 −4.12553
\(529\) −22.3491 −0.971702
\(530\) 44.3990 1.92857
\(531\) 3.59704 0.156098
\(532\) 91.5073 3.96734
\(533\) −22.2214 −0.962517
\(534\) 19.7567 0.854955
\(535\) 31.4542 1.35988
\(536\) 29.9059 1.29174
\(537\) 4.85004 0.209295
\(538\) 19.1747 0.826679
\(539\) 19.9704 0.860187
\(540\) −64.5870 −2.77938
\(541\) −42.7484 −1.83790 −0.918949 0.394376i \(-0.870961\pi\)
−0.918949 + 0.394376i \(0.870961\pi\)
\(542\) −44.2558 −1.90095
\(543\) −39.9539 −1.71458
\(544\) 26.7335 1.14619
\(545\) −50.3188 −2.15542
\(546\) −33.6259 −1.43906
\(547\) −27.3023 −1.16736 −0.583681 0.811983i \(-0.698388\pi\)
−0.583681 + 0.811983i \(0.698388\pi\)
\(548\) −71.8112 −3.06762
\(549\) 5.75883 0.245781
\(550\) −59.9289 −2.55538
\(551\) −5.69267 −0.242516
\(552\) 12.7747 0.543726
\(553\) 33.5237 1.42557
\(554\) 65.6641 2.78980
\(555\) 2.46168 0.104493
\(556\) −75.8227 −3.21560
\(557\) 17.1377 0.726147 0.363073 0.931761i \(-0.381727\pi\)
0.363073 + 0.931761i \(0.381727\pi\)
\(558\) −5.51179 −0.233333
\(559\) −6.04983 −0.255881
\(560\) −120.130 −5.07641
\(561\) 17.3804 0.733803
\(562\) −5.09606 −0.214964
\(563\) 12.6239 0.532035 0.266017 0.963968i \(-0.414292\pi\)
0.266017 + 0.963968i \(0.414292\pi\)
\(564\) −31.5977 −1.33050
\(565\) 0.354504 0.0149141
\(566\) −41.1138 −1.72814
\(567\) −37.4225 −1.57160
\(568\) 48.8261 2.04870
\(569\) 35.0313 1.46859 0.734293 0.678832i \(-0.237514\pi\)
0.734293 + 0.678832i \(0.237514\pi\)
\(570\) −90.6359 −3.79632
\(571\) −38.3818 −1.60623 −0.803114 0.595825i \(-0.796825\pi\)
−0.803114 + 0.595825i \(0.796825\pi\)
\(572\) −40.3679 −1.68786
\(573\) −34.5082 −1.44160
\(574\) −107.248 −4.47643
\(575\) 4.23130 0.176457
\(576\) 12.7267 0.530279
\(577\) 28.1142 1.17041 0.585204 0.810886i \(-0.301014\pi\)
0.585204 + 0.810886i \(0.301014\pi\)
\(578\) 34.2031 1.42266
\(579\) −1.98780 −0.0826103
\(580\) 16.9791 0.705019
\(581\) −56.2382 −2.33316
\(582\) 50.6355 2.09891
\(583\) 22.6396 0.937635
\(584\) −102.782 −4.25314
\(585\) 5.84288 0.241573
\(586\) −67.6621 −2.79510
\(587\) 0.821607 0.0339113 0.0169557 0.999856i \(-0.494603\pi\)
0.0169557 + 0.999856i \(0.494603\pi\)
\(588\) −46.1185 −1.90190
\(589\) 11.4472 0.471674
\(590\) 31.1927 1.28418
\(591\) 44.5494 1.83252
\(592\) 4.24557 0.174492
\(593\) −20.0644 −0.823945 −0.411973 0.911196i \(-0.635160\pi\)
−0.411973 + 0.911196i \(0.635160\pi\)
\(594\) −46.1044 −1.89169
\(595\) 22.0250 0.902936
\(596\) −16.1129 −0.660009
\(597\) 36.0047 1.47358
\(598\) 3.99003 0.163164
\(599\) −22.1249 −0.903998 −0.451999 0.892018i \(-0.649289\pi\)
−0.451999 + 0.892018i \(0.649289\pi\)
\(600\) 83.0490 3.39046
\(601\) −8.60938 −0.351184 −0.175592 0.984463i \(-0.556184\pi\)
−0.175592 + 0.984463i \(0.556184\pi\)
\(602\) −29.1984 −1.19004
\(603\) −3.67818 −0.149787
\(604\) −24.5095 −0.997278
\(605\) −24.4823 −0.995346
\(606\) −53.1978 −2.16101
\(607\) −41.3332 −1.67766 −0.838832 0.544390i \(-0.816761\pi\)
−0.838832 + 0.544390i \(0.816761\pi\)
\(608\) −71.0869 −2.88295
\(609\) 7.21187 0.292240
\(610\) 49.9393 2.02198
\(611\) −5.92231 −0.239591
\(612\) −9.85733 −0.398459
\(613\) 39.0196 1.57599 0.787994 0.615683i \(-0.211120\pi\)
0.787994 + 0.615683i \(0.211120\pi\)
\(614\) −62.3121 −2.51471
\(615\) 75.8804 3.05979
\(616\) −116.913 −4.71054
\(617\) 21.8297 0.878829 0.439414 0.898284i \(-0.355186\pi\)
0.439414 + 0.898284i \(0.355186\pi\)
\(618\) −32.3012 −1.29935
\(619\) −38.3648 −1.54201 −0.771005 0.636829i \(-0.780246\pi\)
−0.771005 + 0.636829i \(0.780246\pi\)
\(620\) −34.1427 −1.37120
\(621\) 3.25521 0.130627
\(622\) −25.5191 −1.02322
\(623\) 12.7662 0.511468
\(624\) 41.0318 1.64259
\(625\) −23.7161 −0.948642
\(626\) 91.2600 3.64748
\(627\) −46.2163 −1.84570
\(628\) −39.7526 −1.58630
\(629\) −0.778396 −0.0310367
\(630\) 28.1996 1.12350
\(631\) 32.7312 1.30301 0.651504 0.758645i \(-0.274138\pi\)
0.651504 + 0.758645i \(0.274138\pi\)
\(632\) −78.0752 −3.10567
\(633\) 25.2619 1.00407
\(634\) 62.7901 2.49371
\(635\) 7.28014 0.288904
\(636\) −52.2825 −2.07313
\(637\) −8.64393 −0.342485
\(638\) 12.1203 0.479846
\(639\) −6.00520 −0.237562
\(640\) 25.5701 1.01075
\(641\) −37.5281 −1.48227 −0.741135 0.671356i \(-0.765712\pi\)
−0.741135 + 0.671356i \(0.765712\pi\)
\(642\) −51.8518 −2.04643
\(643\) −17.9463 −0.707734 −0.353867 0.935296i \(-0.615134\pi\)
−0.353867 + 0.935296i \(0.615134\pi\)
\(644\) 13.7559 0.542058
\(645\) 20.6586 0.813432
\(646\) 28.6595 1.12759
\(647\) 43.9094 1.72626 0.863128 0.504984i \(-0.168502\pi\)
0.863128 + 0.504984i \(0.168502\pi\)
\(648\) 87.1556 3.42379
\(649\) 15.9055 0.624346
\(650\) 25.9394 1.01743
\(651\) −14.5021 −0.568383
\(652\) 33.7167 1.32045
\(653\) 4.59271 0.179726 0.0898632 0.995954i \(-0.471357\pi\)
0.0898632 + 0.995954i \(0.471357\pi\)
\(654\) 82.9499 3.24360
\(655\) −33.5346 −1.31031
\(656\) 130.868 5.10954
\(657\) 12.6413 0.493184
\(658\) −28.5830 −1.11428
\(659\) 17.7980 0.693312 0.346656 0.937992i \(-0.387317\pi\)
0.346656 + 0.937992i \(0.387317\pi\)
\(660\) 137.846 5.36564
\(661\) −7.85173 −0.305397 −0.152698 0.988273i \(-0.548796\pi\)
−0.152698 + 0.988273i \(0.548796\pi\)
\(662\) −23.8781 −0.928047
\(663\) −7.52289 −0.292165
\(664\) 130.977 5.08288
\(665\) −58.5665 −2.27111
\(666\) −0.996616 −0.0386181
\(667\) −0.855755 −0.0331350
\(668\) −84.9378 −3.28634
\(669\) −15.1314 −0.585013
\(670\) −31.8964 −1.23226
\(671\) 25.4646 0.983049
\(672\) 90.0578 3.47406
\(673\) 8.30514 0.320139 0.160070 0.987106i \(-0.448828\pi\)
0.160070 + 0.987106i \(0.448828\pi\)
\(674\) −51.7048 −1.99159
\(675\) 21.1624 0.814540
\(676\) −47.5405 −1.82848
\(677\) −22.8151 −0.876856 −0.438428 0.898766i \(-0.644465\pi\)
−0.438428 + 0.898766i \(0.644465\pi\)
\(678\) −0.584395 −0.0224436
\(679\) 32.7193 1.25565
\(680\) −51.2953 −1.96708
\(681\) −6.20813 −0.237896
\(682\) −24.3722 −0.933261
\(683\) −26.0992 −0.998659 −0.499330 0.866412i \(-0.666420\pi\)
−0.499330 + 0.866412i \(0.666420\pi\)
\(684\) 26.2116 1.00223
\(685\) 45.9606 1.75607
\(686\) 21.4304 0.818216
\(687\) 7.34585 0.280262
\(688\) 35.6291 1.35835
\(689\) −9.79923 −0.373321
\(690\) −13.6249 −0.518691
\(691\) −40.3821 −1.53621 −0.768104 0.640325i \(-0.778800\pi\)
−0.768104 + 0.640325i \(0.778800\pi\)
\(692\) −13.4794 −0.512411
\(693\) 14.3793 0.546224
\(694\) 81.2910 3.08576
\(695\) 48.5281 1.84078
\(696\) −16.7962 −0.636657
\(697\) −23.9938 −0.908828
\(698\) −19.6850 −0.745087
\(699\) −47.8530 −1.80997
\(700\) 89.4280 3.38006
\(701\) 4.65945 0.175985 0.0879925 0.996121i \(-0.471955\pi\)
0.0879925 + 0.996121i \(0.471955\pi\)
\(702\) 19.9557 0.753178
\(703\) 2.06983 0.0780651
\(704\) 56.2754 2.12096
\(705\) 20.2232 0.761648
\(706\) −13.2120 −0.497239
\(707\) −34.3750 −1.29280
\(708\) −36.7313 −1.38045
\(709\) 39.2115 1.47262 0.736308 0.676646i \(-0.236567\pi\)
0.736308 + 0.676646i \(0.236567\pi\)
\(710\) −52.0758 −1.95437
\(711\) 9.60261 0.360126
\(712\) −29.7320 −1.11426
\(713\) 1.72081 0.0644448
\(714\) −36.3079 −1.35879
\(715\) 25.8362 0.966221
\(716\) −12.1632 −0.454558
\(717\) −43.1724 −1.61230
\(718\) −78.0997 −2.91465
\(719\) −18.7233 −0.698259 −0.349130 0.937074i \(-0.613523\pi\)
−0.349130 + 0.937074i \(0.613523\pi\)
\(720\) −34.4103 −1.28240
\(721\) −20.8722 −0.777321
\(722\) −25.9355 −0.965221
\(723\) 44.3216 1.64834
\(724\) 100.198 3.72384
\(725\) −5.56332 −0.206617
\(726\) 40.3587 1.49785
\(727\) −20.0218 −0.742566 −0.371283 0.928520i \(-0.621082\pi\)
−0.371283 + 0.928520i \(0.621082\pi\)
\(728\) 50.6041 1.87551
\(729\) 13.4192 0.497009
\(730\) 109.623 4.05731
\(731\) −6.53236 −0.241608
\(732\) −58.8064 −2.17355
\(733\) −7.86616 −0.290543 −0.145272 0.989392i \(-0.546406\pi\)
−0.145272 + 0.989392i \(0.546406\pi\)
\(734\) 30.6057 1.12968
\(735\) 29.5168 1.08874
\(736\) −10.6862 −0.393898
\(737\) −16.2643 −0.599104
\(738\) −30.7203 −1.13083
\(739\) −38.3531 −1.41084 −0.705421 0.708789i \(-0.749242\pi\)
−0.705421 + 0.708789i \(0.749242\pi\)
\(740\) −6.17353 −0.226943
\(741\) 20.0041 0.734869
\(742\) −47.2942 −1.73622
\(743\) 32.4177 1.18929 0.594645 0.803989i \(-0.297293\pi\)
0.594645 + 0.803989i \(0.297293\pi\)
\(744\) 33.7748 1.23825
\(745\) 10.3126 0.377823
\(746\) −13.5956 −0.497771
\(747\) −16.1090 −0.589399
\(748\) −43.5875 −1.59372
\(749\) −33.5052 −1.22425
\(750\) −4.13434 −0.150965
\(751\) −7.40699 −0.270285 −0.135142 0.990826i \(-0.543149\pi\)
−0.135142 + 0.990826i \(0.543149\pi\)
\(752\) 34.8781 1.27187
\(753\) 19.3397 0.704779
\(754\) −5.24609 −0.191052
\(755\) 15.6866 0.570894
\(756\) 68.7986 2.50218
\(757\) 31.6570 1.15059 0.575297 0.817945i \(-0.304886\pi\)
0.575297 + 0.817945i \(0.304886\pi\)
\(758\) −9.07589 −0.329651
\(759\) −6.94749 −0.252178
\(760\) 136.399 4.94772
\(761\) 15.6918 0.568826 0.284413 0.958702i \(-0.408201\pi\)
0.284413 + 0.958702i \(0.408201\pi\)
\(762\) −12.0012 −0.434758
\(763\) 53.6000 1.94045
\(764\) 86.5414 3.13096
\(765\) 6.30889 0.228098
\(766\) −77.9957 −2.81810
\(767\) −6.88449 −0.248585
\(768\) 9.82111 0.354389
\(769\) 35.0984 1.26568 0.632840 0.774282i \(-0.281889\pi\)
0.632840 + 0.774282i \(0.281889\pi\)
\(770\) 124.694 4.49366
\(771\) −4.45677 −0.160507
\(772\) 4.98511 0.179418
\(773\) −25.7645 −0.926683 −0.463342 0.886180i \(-0.653350\pi\)
−0.463342 + 0.886180i \(0.653350\pi\)
\(774\) −8.36367 −0.300626
\(775\) 11.1871 0.401852
\(776\) −76.2019 −2.73549
\(777\) −2.62220 −0.0940711
\(778\) −3.58970 −0.128697
\(779\) 63.8017 2.28593
\(780\) −59.6647 −2.13634
\(781\) −26.5540 −0.950177
\(782\) 4.30826 0.154063
\(783\) −4.27996 −0.152953
\(784\) 50.9065 1.81809
\(785\) 25.4425 0.908080
\(786\) 55.2814 1.97182
\(787\) −26.4428 −0.942585 −0.471293 0.881977i \(-0.656212\pi\)
−0.471293 + 0.881977i \(0.656212\pi\)
\(788\) −111.723 −3.97997
\(789\) −25.0401 −0.891452
\(790\) 83.2717 2.96267
\(791\) −0.377621 −0.0134266
\(792\) −33.4888 −1.18997
\(793\) −11.0220 −0.391403
\(794\) −56.5402 −2.00654
\(795\) 33.4618 1.18677
\(796\) −90.2944 −3.20040
\(797\) −41.7701 −1.47957 −0.739787 0.672841i \(-0.765074\pi\)
−0.739787 + 0.672841i \(0.765074\pi\)
\(798\) 96.5462 3.41770
\(799\) −6.39466 −0.226227
\(800\) −69.4716 −2.45619
\(801\) 3.65679 0.129206
\(802\) −49.9008 −1.76206
\(803\) 55.8978 1.97259
\(804\) 37.5599 1.32463
\(805\) −8.80405 −0.310302
\(806\) 10.5492 0.371580
\(807\) 14.4512 0.508707
\(808\) 80.0580 2.81643
\(809\) −44.3212 −1.55825 −0.779126 0.626868i \(-0.784337\pi\)
−0.779126 + 0.626868i \(0.784337\pi\)
\(810\) −92.9564 −3.26615
\(811\) −4.76808 −0.167430 −0.0837150 0.996490i \(-0.526679\pi\)
−0.0837150 + 0.996490i \(0.526679\pi\)
\(812\) −18.0863 −0.634704
\(813\) −33.3539 −1.16977
\(814\) −4.40687 −0.154461
\(815\) −21.5794 −0.755892
\(816\) 44.3044 1.55096
\(817\) 17.3702 0.607705
\(818\) 12.4288 0.434564
\(819\) −6.22388 −0.217480
\(820\) −190.297 −6.64544
\(821\) 4.19011 0.146236 0.0731180 0.997323i \(-0.476705\pi\)
0.0731180 + 0.997323i \(0.476705\pi\)
\(822\) −75.7655 −2.64263
\(823\) 29.6461 1.03340 0.516699 0.856167i \(-0.327161\pi\)
0.516699 + 0.856167i \(0.327161\pi\)
\(824\) 48.6105 1.69343
\(825\) −45.1661 −1.57248
\(826\) −33.2267 −1.15611
\(827\) −26.3826 −0.917412 −0.458706 0.888588i \(-0.651687\pi\)
−0.458706 + 0.888588i \(0.651687\pi\)
\(828\) 3.94028 0.136934
\(829\) 27.1071 0.941467 0.470733 0.882275i \(-0.343989\pi\)
0.470733 + 0.882275i \(0.343989\pi\)
\(830\) −139.694 −4.84885
\(831\) 49.4885 1.71674
\(832\) −24.3580 −0.844463
\(833\) −9.33336 −0.323382
\(834\) −79.9979 −2.77010
\(835\) 54.3619 1.88127
\(836\) 115.903 4.00860
\(837\) 8.60643 0.297482
\(838\) 30.4168 1.05073
\(839\) −45.4996 −1.57082 −0.785410 0.618976i \(-0.787548\pi\)
−0.785410 + 0.618976i \(0.787548\pi\)
\(840\) −172.800 −5.96216
\(841\) −27.8749 −0.961202
\(842\) 19.0605 0.656870
\(843\) −3.84070 −0.132281
\(844\) −63.3531 −2.18070
\(845\) 30.4269 1.04672
\(846\) −8.18738 −0.281488
\(847\) 26.0787 0.896075
\(848\) 57.7104 1.98178
\(849\) −30.9859 −1.06343
\(850\) 28.0083 0.960677
\(851\) 0.311149 0.0106660
\(852\) 61.3223 2.10087
\(853\) −33.3558 −1.14208 −0.571041 0.820921i \(-0.693460\pi\)
−0.571041 + 0.820921i \(0.693460\pi\)
\(854\) −53.1957 −1.82032
\(855\) −16.7760 −0.573726
\(856\) 78.0324 2.66709
\(857\) 6.28659 0.214746 0.107373 0.994219i \(-0.465756\pi\)
0.107373 + 0.994219i \(0.465756\pi\)
\(858\) −42.5907 −1.45402
\(859\) 9.78132 0.333734 0.166867 0.985979i \(-0.446635\pi\)
0.166867 + 0.985979i \(0.446635\pi\)
\(860\) −51.8087 −1.76666
\(861\) −80.8284 −2.75463
\(862\) −57.4131 −1.95550
\(863\) −19.5565 −0.665709 −0.332855 0.942978i \(-0.608012\pi\)
−0.332855 + 0.942978i \(0.608012\pi\)
\(864\) −53.4458 −1.81826
\(865\) 8.62711 0.293331
\(866\) −24.3698 −0.828121
\(867\) 25.7776 0.875452
\(868\) 36.3691 1.23445
\(869\) 42.4612 1.44040
\(870\) 17.9141 0.607343
\(871\) 7.03979 0.238534
\(872\) −124.832 −4.22735
\(873\) 9.37220 0.317201
\(874\) −11.4561 −0.387508
\(875\) −2.67150 −0.0903132
\(876\) −129.087 −4.36145
\(877\) −1.18896 −0.0401482 −0.0200741 0.999798i \(-0.506390\pi\)
−0.0200741 + 0.999798i \(0.506390\pi\)
\(878\) −33.0351 −1.11488
\(879\) −50.9943 −1.72000
\(880\) −152.157 −5.12920
\(881\) 31.9666 1.07698 0.538492 0.842631i \(-0.318994\pi\)
0.538492 + 0.842631i \(0.318994\pi\)
\(882\) −11.9499 −0.402375
\(883\) −31.3395 −1.05466 −0.527330 0.849661i \(-0.676807\pi\)
−0.527330 + 0.849661i \(0.676807\pi\)
\(884\) 18.8663 0.634541
\(885\) 23.5088 0.790238
\(886\) −19.9934 −0.671690
\(887\) 15.2247 0.511194 0.255597 0.966783i \(-0.417728\pi\)
0.255597 + 0.966783i \(0.417728\pi\)
\(888\) 6.10701 0.204938
\(889\) −7.75487 −0.260090
\(890\) 31.7109 1.06295
\(891\) −47.3995 −1.58794
\(892\) 37.9472 1.27057
\(893\) 17.0040 0.569018
\(894\) −17.0001 −0.568569
\(895\) 7.78467 0.260213
\(896\) −27.2375 −0.909940
\(897\) 3.00713 0.100405
\(898\) −63.5665 −2.12124
\(899\) −2.26252 −0.0754594
\(900\) 25.6160 0.853867
\(901\) −10.5808 −0.352497
\(902\) −135.840 −4.52298
\(903\) −22.0057 −0.732305
\(904\) 0.879464 0.0292505
\(905\) −64.1289 −2.13172
\(906\) −25.8591 −0.859112
\(907\) 8.41726 0.279491 0.139745 0.990187i \(-0.455372\pi\)
0.139745 + 0.990187i \(0.455372\pi\)
\(908\) 15.5690 0.516677
\(909\) −9.84647 −0.326587
\(910\) −53.9721 −1.78916
\(911\) −8.66797 −0.287183 −0.143591 0.989637i \(-0.545865\pi\)
−0.143591 + 0.989637i \(0.545865\pi\)
\(912\) −117.810 −3.90107
\(913\) −71.2315 −2.35742
\(914\) 27.5035 0.909733
\(915\) 37.6373 1.24425
\(916\) −18.4223 −0.608689
\(917\) 35.7214 1.17962
\(918\) 21.5473 0.711167
\(919\) 49.7293 1.64042 0.820209 0.572064i \(-0.193857\pi\)
0.820209 + 0.572064i \(0.193857\pi\)
\(920\) 20.5043 0.676006
\(921\) −46.9623 −1.54746
\(922\) −44.3051 −1.45911
\(923\) 11.4935 0.378315
\(924\) −146.834 −4.83050
\(925\) 2.02280 0.0665092
\(926\) −37.7883 −1.24180
\(927\) −5.97869 −0.196366
\(928\) 14.0502 0.461221
\(929\) −30.8518 −1.01221 −0.506107 0.862471i \(-0.668916\pi\)
−0.506107 + 0.862471i \(0.668916\pi\)
\(930\) −36.0228 −1.18123
\(931\) 24.8183 0.813387
\(932\) 120.008 3.93099
\(933\) −19.2328 −0.629652
\(934\) 55.8289 1.82678
\(935\) 27.8969 0.912326
\(936\) 14.4952 0.473789
\(937\) 37.5152 1.22557 0.612784 0.790251i \(-0.290050\pi\)
0.612784 + 0.790251i \(0.290050\pi\)
\(938\) 33.9763 1.10936
\(939\) 68.7792 2.24452
\(940\) −50.7166 −1.65419
\(941\) 48.1286 1.56895 0.784474 0.620162i \(-0.212933\pi\)
0.784474 + 0.620162i \(0.212933\pi\)
\(942\) −41.9416 −1.36653
\(943\) 9.59104 0.312327
\(944\) 40.5446 1.31962
\(945\) −44.0325 −1.43238
\(946\) −36.9828 −1.20241
\(947\) 8.11752 0.263784 0.131892 0.991264i \(-0.457895\pi\)
0.131892 + 0.991264i \(0.457895\pi\)
\(948\) −98.0573 −3.18475
\(949\) −24.1946 −0.785390
\(950\) −74.4768 −2.41635
\(951\) 47.3225 1.53454
\(952\) 54.6401 1.77090
\(953\) −2.87512 −0.0931344 −0.0465672 0.998915i \(-0.514828\pi\)
−0.0465672 + 0.998915i \(0.514828\pi\)
\(954\) −13.5471 −0.438603
\(955\) −55.3883 −1.79232
\(956\) 108.270 3.50170
\(957\) 9.13458 0.295279
\(958\) −68.9723 −2.22840
\(959\) −48.9576 −1.58092
\(960\) 83.1764 2.68451
\(961\) −26.4504 −0.853238
\(962\) 1.90746 0.0614989
\(963\) −9.59733 −0.309270
\(964\) −111.152 −3.57996
\(965\) −3.19057 −0.102708
\(966\) 14.5134 0.466960
\(967\) 31.1425 1.00148 0.500738 0.865599i \(-0.333062\pi\)
0.500738 + 0.865599i \(0.333062\pi\)
\(968\) −60.7363 −1.95214
\(969\) 21.5996 0.693879
\(970\) 81.2737 2.60954
\(971\) 16.8233 0.539886 0.269943 0.962876i \(-0.412995\pi\)
0.269943 + 0.962876i \(0.412995\pi\)
\(972\) 48.9255 1.56929
\(973\) −51.6925 −1.65719
\(974\) −22.6112 −0.724511
\(975\) 19.5496 0.626087
\(976\) 64.9116 2.07777
\(977\) −44.0565 −1.40949 −0.704745 0.709460i \(-0.748939\pi\)
−0.704745 + 0.709460i \(0.748939\pi\)
\(978\) 35.5733 1.13751
\(979\) 16.1697 0.516787
\(980\) −74.0236 −2.36460
\(981\) 15.3533 0.490194
\(982\) 45.5637 1.45400
\(983\) 32.4601 1.03532 0.517659 0.855587i \(-0.326804\pi\)
0.517659 + 0.855587i \(0.326804\pi\)
\(984\) 188.246 6.00107
\(985\) 71.5051 2.27834
\(986\) −5.66451 −0.180395
\(987\) −21.5419 −0.685685
\(988\) −50.1672 −1.59603
\(989\) 2.61118 0.0830308
\(990\) 35.7177 1.13518
\(991\) −54.5632 −1.73326 −0.866629 0.498953i \(-0.833718\pi\)
−0.866629 + 0.498953i \(0.833718\pi\)
\(992\) −28.2531 −0.897037
\(993\) −17.9960 −0.571085
\(994\) 55.4715 1.75945
\(995\) 57.7902 1.83207
\(996\) 164.498 5.21232
\(997\) −1.81459 −0.0574686 −0.0287343 0.999587i \(-0.509148\pi\)
−0.0287343 + 0.999587i \(0.509148\pi\)
\(998\) −17.5979 −0.557050
\(999\) 1.55618 0.0492352
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4001.2.a.b.1.11 184
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
4001.2.a.b.1.11 184 1.1 even 1 trivial