Properties

Label 4000.2.d.c.2001.16
Level $4000$
Weight $2$
Character 4000.2001
Analytic conductor $31.940$
Analytic rank $0$
Dimension $40$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,2,Mod(2001,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.2001"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4000.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [40,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.9401608085\)
Analytic rank: \(0\)
Dimension: \(40\)
Twist minimal: no (minimal twist has level 1000)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.16
Character \(\chi\) \(=\) 4000.2001
Dual form 4000.2.d.c.2001.15

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.83526i q^{3} +1.31564 q^{7} -0.368171 q^{9} +6.60274i q^{11} -2.96705i q^{13} -2.69502 q^{17} -4.97013i q^{19} +2.41454i q^{21} +3.73739 q^{23} +4.83008i q^{27} +5.52846i q^{29} -8.36121 q^{31} -12.1177 q^{33} +7.19517i q^{37} +5.44530 q^{39} -3.77169 q^{41} +3.07951i q^{43} +8.77645 q^{47} -5.26908 q^{49} -4.94606i q^{51} +0.0464228i q^{53} +9.12147 q^{57} +1.02084i q^{59} -5.23191i q^{61} -0.484382 q^{63} +10.8187i q^{67} +6.85908i q^{69} -9.35643 q^{71} +12.4143 q^{73} +8.68684i q^{77} -1.43842 q^{79} -9.96896 q^{81} +13.0280i q^{83} -10.1462 q^{87} +3.94185 q^{89} -3.90357i q^{91} -15.3450i q^{93} +1.00691 q^{97} -2.43094i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 40 q - 24 q^{9} - 48 q^{31} - 8 q^{39} + 44 q^{41} + 12 q^{49} - 96 q^{71} - 96 q^{79} - 56 q^{81} - 44 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.83526i 1.05959i 0.848127 + 0.529793i \(0.177730\pi\)
−0.848127 + 0.529793i \(0.822270\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 1.31564 0.497266 0.248633 0.968598i \(-0.420019\pi\)
0.248633 + 0.968598i \(0.420019\pi\)
\(8\) 0 0
\(9\) −0.368171 −0.122724
\(10\) 0 0
\(11\) 6.60274i 1.99080i 0.0958055 + 0.995400i \(0.469457\pi\)
−0.0958055 + 0.995400i \(0.530543\pi\)
\(12\) 0 0
\(13\) − 2.96705i − 0.822911i −0.911430 0.411456i \(-0.865021\pi\)
0.911430 0.411456i \(-0.134979\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.69502 −0.653639 −0.326819 0.945087i \(-0.605977\pi\)
−0.326819 + 0.945087i \(0.605977\pi\)
\(18\) 0 0
\(19\) − 4.97013i − 1.14023i −0.821566 0.570113i \(-0.806899\pi\)
0.821566 0.570113i \(-0.193101\pi\)
\(20\) 0 0
\(21\) 2.41454i 0.526897i
\(22\) 0 0
\(23\) 3.73739 0.779301 0.389650 0.920963i \(-0.372596\pi\)
0.389650 + 0.920963i \(0.372596\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 4.83008i 0.929550i
\(28\) 0 0
\(29\) 5.52846i 1.02661i 0.858206 + 0.513305i \(0.171579\pi\)
−0.858206 + 0.513305i \(0.828421\pi\)
\(30\) 0 0
\(31\) −8.36121 −1.50172 −0.750859 0.660462i \(-0.770360\pi\)
−0.750859 + 0.660462i \(0.770360\pi\)
\(32\) 0 0
\(33\) −12.1177 −2.10943
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.19517i 1.18288i 0.806349 + 0.591439i \(0.201440\pi\)
−0.806349 + 0.591439i \(0.798560\pi\)
\(38\) 0 0
\(39\) 5.44530 0.871945
\(40\) 0 0
\(41\) −3.77169 −0.589040 −0.294520 0.955645i \(-0.595160\pi\)
−0.294520 + 0.955645i \(0.595160\pi\)
\(42\) 0 0
\(43\) 3.07951i 0.469621i 0.972041 + 0.234810i \(0.0754469\pi\)
−0.972041 + 0.234810i \(0.924553\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 8.77645 1.28018 0.640088 0.768301i \(-0.278898\pi\)
0.640088 + 0.768301i \(0.278898\pi\)
\(48\) 0 0
\(49\) −5.26908 −0.752726
\(50\) 0 0
\(51\) − 4.94606i − 0.692587i
\(52\) 0 0
\(53\) 0.0464228i 0.00637666i 0.999995 + 0.00318833i \(0.00101488\pi\)
−0.999995 + 0.00318833i \(0.998985\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 9.12147 1.20817
\(58\) 0 0
\(59\) 1.02084i 0.132902i 0.997790 + 0.0664510i \(0.0211676\pi\)
−0.997790 + 0.0664510i \(0.978832\pi\)
\(60\) 0 0
\(61\) − 5.23191i − 0.669877i −0.942240 0.334938i \(-0.891284\pi\)
0.942240 0.334938i \(-0.108716\pi\)
\(62\) 0 0
\(63\) −0.484382 −0.0610264
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.8187i 1.32172i 0.750511 + 0.660858i \(0.229807\pi\)
−0.750511 + 0.660858i \(0.770193\pi\)
\(68\) 0 0
\(69\) 6.85908i 0.825737i
\(70\) 0 0
\(71\) −9.35643 −1.11040 −0.555202 0.831715i \(-0.687359\pi\)
−0.555202 + 0.831715i \(0.687359\pi\)
\(72\) 0 0
\(73\) 12.4143 1.45298 0.726490 0.687177i \(-0.241150\pi\)
0.726490 + 0.687177i \(0.241150\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 8.68684i 0.989958i
\(78\) 0 0
\(79\) −1.43842 −0.161835 −0.0809174 0.996721i \(-0.525785\pi\)
−0.0809174 + 0.996721i \(0.525785\pi\)
\(80\) 0 0
\(81\) −9.96896 −1.10766
\(82\) 0 0
\(83\) 13.0280i 1.43001i 0.699120 + 0.715005i \(0.253575\pi\)
−0.699120 + 0.715005i \(0.746425\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −10.1462 −1.08778
\(88\) 0 0
\(89\) 3.94185 0.417835 0.208917 0.977933i \(-0.433006\pi\)
0.208917 + 0.977933i \(0.433006\pi\)
\(90\) 0 0
\(91\) − 3.90357i − 0.409206i
\(92\) 0 0
\(93\) − 15.3450i − 1.59120i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00691 0.102236 0.0511181 0.998693i \(-0.483722\pi\)
0.0511181 + 0.998693i \(0.483722\pi\)
\(98\) 0 0
\(99\) − 2.43094i − 0.244318i
\(100\) 0 0
\(101\) 2.50175i 0.248933i 0.992224 + 0.124466i \(0.0397219\pi\)
−0.992224 + 0.124466i \(0.960278\pi\)
\(102\) 0 0
\(103\) 5.34336 0.526497 0.263248 0.964728i \(-0.415206\pi\)
0.263248 + 0.964728i \(0.415206\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0.971619i 0.0939299i 0.998897 + 0.0469650i \(0.0149549\pi\)
−0.998897 + 0.0469650i \(0.985045\pi\)
\(108\) 0 0
\(109\) − 18.8454i − 1.80506i −0.430626 0.902531i \(-0.641707\pi\)
0.430626 0.902531i \(-0.358293\pi\)
\(110\) 0 0
\(111\) −13.2050 −1.25336
\(112\) 0 0
\(113\) −12.3812 −1.16472 −0.582361 0.812930i \(-0.697871\pi\)
−0.582361 + 0.812930i \(0.697871\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 1.09238i 0.100991i
\(118\) 0 0
\(119\) −3.54568 −0.325032
\(120\) 0 0
\(121\) −32.5961 −2.96329
\(122\) 0 0
\(123\) − 6.92203i − 0.624139i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −11.8083 −1.04782 −0.523909 0.851774i \(-0.675527\pi\)
−0.523909 + 0.851774i \(0.675527\pi\)
\(128\) 0 0
\(129\) −5.65169 −0.497604
\(130\) 0 0
\(131\) 12.6735i 1.10729i 0.832752 + 0.553646i \(0.186764\pi\)
−0.832752 + 0.553646i \(0.813236\pi\)
\(132\) 0 0
\(133\) − 6.53892i − 0.566996i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 4.33562 0.370417 0.185209 0.982699i \(-0.440704\pi\)
0.185209 + 0.982699i \(0.440704\pi\)
\(138\) 0 0
\(139\) − 3.48791i − 0.295841i −0.988999 0.147920i \(-0.952742\pi\)
0.988999 0.147920i \(-0.0472579\pi\)
\(140\) 0 0
\(141\) 16.1070i 1.35646i
\(142\) 0 0
\(143\) 19.5906 1.63825
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 9.67013i − 0.797579i
\(148\) 0 0
\(149\) 9.11838i 0.747007i 0.927629 + 0.373503i \(0.121844\pi\)
−0.927629 + 0.373503i \(0.878156\pi\)
\(150\) 0 0
\(151\) 10.5180 0.855944 0.427972 0.903792i \(-0.359228\pi\)
0.427972 + 0.903792i \(0.359228\pi\)
\(152\) 0 0
\(153\) 0.992229 0.0802170
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 5.59017i − 0.446144i −0.974802 0.223072i \(-0.928392\pi\)
0.974802 0.223072i \(-0.0716085\pi\)
\(158\) 0 0
\(159\) −0.0851977 −0.00675662
\(160\) 0 0
\(161\) 4.91708 0.387520
\(162\) 0 0
\(163\) 5.48367i 0.429514i 0.976667 + 0.214757i \(0.0688960\pi\)
−0.976667 + 0.214757i \(0.931104\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 19.4503 1.50511 0.752556 0.658528i \(-0.228821\pi\)
0.752556 + 0.658528i \(0.228821\pi\)
\(168\) 0 0
\(169\) 4.19663 0.322817
\(170\) 0 0
\(171\) 1.82986i 0.139933i
\(172\) 0 0
\(173\) 11.9677i 0.909885i 0.890521 + 0.454942i \(0.150340\pi\)
−0.890521 + 0.454942i \(0.849660\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.87350 −0.140821
\(178\) 0 0
\(179\) 11.0142i 0.823244i 0.911355 + 0.411622i \(0.135038\pi\)
−0.911355 + 0.411622i \(0.864962\pi\)
\(180\) 0 0
\(181\) 18.6306i 1.38480i 0.721511 + 0.692402i \(0.243448\pi\)
−0.721511 + 0.692402i \(0.756552\pi\)
\(182\) 0 0
\(183\) 9.60190 0.709793
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 17.7945i − 1.30126i
\(188\) 0 0
\(189\) 6.35466i 0.462234i
\(190\) 0 0
\(191\) −10.6266 −0.768912 −0.384456 0.923143i \(-0.625611\pi\)
−0.384456 + 0.923143i \(0.625611\pi\)
\(192\) 0 0
\(193\) −17.9777 −1.29406 −0.647031 0.762464i \(-0.723989\pi\)
−0.647031 + 0.762464i \(0.723989\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 23.6813i − 1.68722i −0.536956 0.843610i \(-0.680426\pi\)
0.536956 0.843610i \(-0.319574\pi\)
\(198\) 0 0
\(199\) −17.9303 −1.27104 −0.635522 0.772082i \(-0.719215\pi\)
−0.635522 + 0.772082i \(0.719215\pi\)
\(200\) 0 0
\(201\) −19.8551 −1.40047
\(202\) 0 0
\(203\) 7.27348i 0.510498i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −1.37600 −0.0956387
\(208\) 0 0
\(209\) 32.8165 2.26996
\(210\) 0 0
\(211\) 15.0943i 1.03913i 0.854430 + 0.519566i \(0.173906\pi\)
−0.854430 + 0.519566i \(0.826094\pi\)
\(212\) 0 0
\(213\) − 17.1715i − 1.17657i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −11.0004 −0.746754
\(218\) 0 0
\(219\) 22.7834i 1.53956i
\(220\) 0 0
\(221\) 7.99626i 0.537886i
\(222\) 0 0
\(223\) −21.0583 −1.41017 −0.705083 0.709125i \(-0.749090\pi\)
−0.705083 + 0.709125i \(0.749090\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.94442i 0.460917i 0.973082 + 0.230459i \(0.0740226\pi\)
−0.973082 + 0.230459i \(0.925977\pi\)
\(228\) 0 0
\(229\) − 19.8805i − 1.31374i −0.754003 0.656871i \(-0.771879\pi\)
0.754003 0.656871i \(-0.228121\pi\)
\(230\) 0 0
\(231\) −15.9426 −1.04895
\(232\) 0 0
\(233\) 9.43816 0.618315 0.309157 0.951011i \(-0.399953\pi\)
0.309157 + 0.951011i \(0.399953\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 2.63987i − 0.171478i
\(238\) 0 0
\(239\) 21.3865 1.38338 0.691688 0.722197i \(-0.256868\pi\)
0.691688 + 0.722197i \(0.256868\pi\)
\(240\) 0 0
\(241\) 11.4117 0.735094 0.367547 0.930005i \(-0.380198\pi\)
0.367547 + 0.930005i \(0.380198\pi\)
\(242\) 0 0
\(243\) − 3.80536i − 0.244114i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −14.7466 −0.938305
\(248\) 0 0
\(249\) −23.9097 −1.51522
\(250\) 0 0
\(251\) − 2.76130i − 0.174292i −0.996196 0.0871459i \(-0.972225\pi\)
0.996196 0.0871459i \(-0.0277746\pi\)
\(252\) 0 0
\(253\) 24.6770i 1.55143i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −12.1685 −0.759052 −0.379526 0.925181i \(-0.623913\pi\)
−0.379526 + 0.925181i \(0.623913\pi\)
\(258\) 0 0
\(259\) 9.46627i 0.588206i
\(260\) 0 0
\(261\) − 2.03542i − 0.125989i
\(262\) 0 0
\(263\) −22.4088 −1.38179 −0.690894 0.722956i \(-0.742783\pi\)
−0.690894 + 0.722956i \(0.742783\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 7.23430i 0.442732i
\(268\) 0 0
\(269\) − 29.7546i − 1.81417i −0.420946 0.907086i \(-0.638302\pi\)
0.420946 0.907086i \(-0.361698\pi\)
\(270\) 0 0
\(271\) −15.1173 −0.918308 −0.459154 0.888357i \(-0.651847\pi\)
−0.459154 + 0.888357i \(0.651847\pi\)
\(272\) 0 0
\(273\) 7.16407 0.433589
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.51304i 0.571583i 0.958292 + 0.285792i \(0.0922565\pi\)
−0.958292 + 0.285792i \(0.907743\pi\)
\(278\) 0 0
\(279\) 3.07836 0.184296
\(280\) 0 0
\(281\) −17.5890 −1.04927 −0.524637 0.851326i \(-0.675799\pi\)
−0.524637 + 0.851326i \(0.675799\pi\)
\(282\) 0 0
\(283\) − 15.3245i − 0.910944i −0.890250 0.455472i \(-0.849471\pi\)
0.890250 0.455472i \(-0.150529\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −4.96220 −0.292909
\(288\) 0 0
\(289\) −9.73686 −0.572756
\(290\) 0 0
\(291\) 1.84794i 0.108328i
\(292\) 0 0
\(293\) 3.18687i 0.186179i 0.995658 + 0.0930894i \(0.0296742\pi\)
−0.995658 + 0.0930894i \(0.970326\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −31.8918 −1.85055
\(298\) 0 0
\(299\) − 11.0890i − 0.641295i
\(300\) 0 0
\(301\) 4.05153i 0.233526i
\(302\) 0 0
\(303\) −4.59135 −0.263766
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 28.0569i − 1.60129i −0.599138 0.800645i \(-0.704490\pi\)
0.599138 0.800645i \(-0.295510\pi\)
\(308\) 0 0
\(309\) 9.80644i 0.557869i
\(310\) 0 0
\(311\) −27.7970 −1.57622 −0.788112 0.615532i \(-0.788941\pi\)
−0.788112 + 0.615532i \(0.788941\pi\)
\(312\) 0 0
\(313\) 21.6443 1.22341 0.611703 0.791088i \(-0.290485\pi\)
0.611703 + 0.791088i \(0.290485\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 16.0032i − 0.898827i −0.893324 0.449414i \(-0.851633\pi\)
0.893324 0.449414i \(-0.148367\pi\)
\(318\) 0 0
\(319\) −36.5030 −2.04377
\(320\) 0 0
\(321\) −1.78317 −0.0995269
\(322\) 0 0
\(323\) 13.3946i 0.745296i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 34.5862 1.91262
\(328\) 0 0
\(329\) 11.5467 0.636589
\(330\) 0 0
\(331\) − 5.39927i − 0.296771i −0.988930 0.148385i \(-0.952592\pi\)
0.988930 0.148385i \(-0.0474076\pi\)
\(332\) 0 0
\(333\) − 2.64905i − 0.145167i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 26.3679 1.43635 0.718176 0.695861i \(-0.244977\pi\)
0.718176 + 0.695861i \(0.244977\pi\)
\(338\) 0 0
\(339\) − 22.7226i − 1.23412i
\(340\) 0 0
\(341\) − 55.2069i − 2.98962i
\(342\) 0 0
\(343\) −16.1417 −0.871571
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 8.70069i − 0.467077i −0.972348 0.233539i \(-0.924969\pi\)
0.972348 0.233539i \(-0.0750306\pi\)
\(348\) 0 0
\(349\) 14.7757i 0.790923i 0.918483 + 0.395462i \(0.129415\pi\)
−0.918483 + 0.395462i \(0.870585\pi\)
\(350\) 0 0
\(351\) 14.3311 0.764937
\(352\) 0 0
\(353\) 17.4259 0.927485 0.463743 0.885970i \(-0.346506\pi\)
0.463743 + 0.885970i \(0.346506\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 6.50725i − 0.344400i
\(358\) 0 0
\(359\) 12.3632 0.652506 0.326253 0.945282i \(-0.394214\pi\)
0.326253 + 0.945282i \(0.394214\pi\)
\(360\) 0 0
\(361\) −5.70221 −0.300116
\(362\) 0 0
\(363\) − 59.8223i − 3.13986i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 4.15969 0.217134 0.108567 0.994089i \(-0.465374\pi\)
0.108567 + 0.994089i \(0.465374\pi\)
\(368\) 0 0
\(369\) 1.38863 0.0722891
\(370\) 0 0
\(371\) 0.0610758i 0.00317090i
\(372\) 0 0
\(373\) 33.9114i 1.75586i 0.478786 + 0.877932i \(0.341077\pi\)
−0.478786 + 0.877932i \(0.658923\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 16.4032 0.844808
\(378\) 0 0
\(379\) − 8.17397i − 0.419869i −0.977715 0.209934i \(-0.932675\pi\)
0.977715 0.209934i \(-0.0673250\pi\)
\(380\) 0 0
\(381\) − 21.6713i − 1.11025i
\(382\) 0 0
\(383\) 3.27290 0.167238 0.0836188 0.996498i \(-0.473352\pi\)
0.0836188 + 0.996498i \(0.473352\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) − 1.13379i − 0.0576336i
\(388\) 0 0
\(389\) 2.07560i 0.105237i 0.998615 + 0.0526186i \(0.0167568\pi\)
−0.998615 + 0.0526186i \(0.983243\pi\)
\(390\) 0 0
\(391\) −10.0724 −0.509381
\(392\) 0 0
\(393\) −23.2592 −1.17327
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 6.23114i − 0.312732i −0.987699 0.156366i \(-0.950022\pi\)
0.987699 0.156366i \(-0.0499779\pi\)
\(398\) 0 0
\(399\) 12.0006 0.600781
\(400\) 0 0
\(401\) 20.9959 1.04849 0.524243 0.851569i \(-0.324348\pi\)
0.524243 + 0.851569i \(0.324348\pi\)
\(402\) 0 0
\(403\) 24.8081i 1.23578i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −47.5078 −2.35488
\(408\) 0 0
\(409\) 6.61521 0.327101 0.163551 0.986535i \(-0.447705\pi\)
0.163551 + 0.986535i \(0.447705\pi\)
\(410\) 0 0
\(411\) 7.95698i 0.392489i
\(412\) 0 0
\(413\) 1.34306i 0.0660876i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 6.40121 0.313469
\(418\) 0 0
\(419\) 17.6296i 0.861262i 0.902528 + 0.430631i \(0.141709\pi\)
−0.902528 + 0.430631i \(0.858291\pi\)
\(420\) 0 0
\(421\) 18.0508i 0.879742i 0.898061 + 0.439871i \(0.144976\pi\)
−0.898061 + 0.439871i \(0.855024\pi\)
\(422\) 0 0
\(423\) −3.23124 −0.157108
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 6.88332i − 0.333107i
\(428\) 0 0
\(429\) 35.9539i 1.73587i
\(430\) 0 0
\(431\) −4.44104 −0.213917 −0.106959 0.994263i \(-0.534111\pi\)
−0.106959 + 0.994263i \(0.534111\pi\)
\(432\) 0 0
\(433\) 24.5345 1.17905 0.589526 0.807749i \(-0.299315\pi\)
0.589526 + 0.807749i \(0.299315\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 18.5753i − 0.888579i
\(438\) 0 0
\(439\) 26.1063 1.24598 0.622992 0.782228i \(-0.285917\pi\)
0.622992 + 0.782228i \(0.285917\pi\)
\(440\) 0 0
\(441\) 1.93993 0.0923774
\(442\) 0 0
\(443\) − 29.4964i − 1.40141i −0.713449 0.700707i \(-0.752868\pi\)
0.713449 0.700707i \(-0.247132\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −16.7346 −0.791518
\(448\) 0 0
\(449\) −18.7321 −0.884021 −0.442010 0.897010i \(-0.645735\pi\)
−0.442010 + 0.897010i \(0.645735\pi\)
\(450\) 0 0
\(451\) − 24.9035i − 1.17266i
\(452\) 0 0
\(453\) 19.3033i 0.906947i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.111216 −0.00520245 −0.00260123 0.999997i \(-0.500828\pi\)
−0.00260123 + 0.999997i \(0.500828\pi\)
\(458\) 0 0
\(459\) − 13.0172i − 0.607590i
\(460\) 0 0
\(461\) − 3.71668i − 0.173103i −0.996247 0.0865516i \(-0.972415\pi\)
0.996247 0.0865516i \(-0.0275847\pi\)
\(462\) 0 0
\(463\) 11.9601 0.555831 0.277915 0.960606i \(-0.410356\pi\)
0.277915 + 0.960606i \(0.410356\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 17.1232i 0.792365i 0.918172 + 0.396183i \(0.129665\pi\)
−0.918172 + 0.396183i \(0.870335\pi\)
\(468\) 0 0
\(469\) 14.2336i 0.657244i
\(470\) 0 0
\(471\) 10.2594 0.472728
\(472\) 0 0
\(473\) −20.3332 −0.934921
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) − 0.0170915i 0 0.000782567i
\(478\) 0 0
\(479\) −7.70565 −0.352080 −0.176040 0.984383i \(-0.556329\pi\)
−0.176040 + 0.984383i \(0.556329\pi\)
\(480\) 0 0
\(481\) 21.3484 0.973404
\(482\) 0 0
\(483\) 9.02410i 0.410611i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −0.471068 −0.0213461 −0.0106731 0.999943i \(-0.503397\pi\)
−0.0106731 + 0.999943i \(0.503397\pi\)
\(488\) 0 0
\(489\) −10.0639 −0.455107
\(490\) 0 0
\(491\) 42.9128i 1.93663i 0.249735 + 0.968314i \(0.419657\pi\)
−0.249735 + 0.968314i \(0.580343\pi\)
\(492\) 0 0
\(493\) − 14.8993i − 0.671032i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −12.3097 −0.552167
\(498\) 0 0
\(499\) 20.7158i 0.927365i 0.886001 + 0.463683i \(0.153472\pi\)
−0.886001 + 0.463683i \(0.846528\pi\)
\(500\) 0 0
\(501\) 35.6964i 1.59480i
\(502\) 0 0
\(503\) 6.72612 0.299903 0.149951 0.988693i \(-0.452088\pi\)
0.149951 + 0.988693i \(0.452088\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.70189i 0.342053i
\(508\) 0 0
\(509\) − 28.6335i − 1.26916i −0.772858 0.634579i \(-0.781174\pi\)
0.772858 0.634579i \(-0.218826\pi\)
\(510\) 0 0
\(511\) 16.3327 0.722518
\(512\) 0 0
\(513\) 24.0062 1.05990
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 57.9486i 2.54858i
\(518\) 0 0
\(519\) −21.9637 −0.964102
\(520\) 0 0
\(521\) −23.0885 −1.01152 −0.505762 0.862673i \(-0.668789\pi\)
−0.505762 + 0.862673i \(0.668789\pi\)
\(522\) 0 0
\(523\) 11.3256i 0.495236i 0.968858 + 0.247618i \(0.0796478\pi\)
−0.968858 + 0.247618i \(0.920352\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 22.5337 0.981581
\(528\) 0 0
\(529\) −9.03188 −0.392690
\(530\) 0 0
\(531\) − 0.375844i − 0.0163102i
\(532\) 0 0
\(533\) 11.1908i 0.484727i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −20.2140 −0.872298
\(538\) 0 0
\(539\) − 34.7904i − 1.49853i
\(540\) 0 0
\(541\) 28.1159i 1.20880i 0.796683 + 0.604398i \(0.206586\pi\)
−0.796683 + 0.604398i \(0.793414\pi\)
\(542\) 0 0
\(543\) −34.1920 −1.46732
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 25.7268i − 1.10000i −0.835166 0.549998i \(-0.814628\pi\)
0.835166 0.549998i \(-0.185372\pi\)
\(548\) 0 0
\(549\) 1.92624i 0.0822098i
\(550\) 0 0
\(551\) 27.4772 1.17057
\(552\) 0 0
\(553\) −1.89245 −0.0804750
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 11.3682i 0.481685i 0.970564 + 0.240842i \(0.0774237\pi\)
−0.970564 + 0.240842i \(0.922576\pi\)
\(558\) 0 0
\(559\) 9.13705 0.386456
\(560\) 0 0
\(561\) 32.6575 1.37880
\(562\) 0 0
\(563\) − 6.10463i − 0.257279i −0.991691 0.128640i \(-0.958939\pi\)
0.991691 0.128640i \(-0.0410611\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −13.1156 −0.550803
\(568\) 0 0
\(569\) 20.0788 0.841749 0.420875 0.907119i \(-0.361723\pi\)
0.420875 + 0.907119i \(0.361723\pi\)
\(570\) 0 0
\(571\) − 12.1145i − 0.506975i −0.967339 0.253487i \(-0.918422\pi\)
0.967339 0.253487i \(-0.0815776\pi\)
\(572\) 0 0
\(573\) − 19.5025i − 0.814729i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 37.1530 1.54670 0.773351 0.633979i \(-0.218579\pi\)
0.773351 + 0.633979i \(0.218579\pi\)
\(578\) 0 0
\(579\) − 32.9937i − 1.37117i
\(580\) 0 0
\(581\) 17.1402i 0.711095i
\(582\) 0 0
\(583\) −0.306517 −0.0126946
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 14.6112i 0.603071i 0.953455 + 0.301535i \(0.0974991\pi\)
−0.953455 + 0.301535i \(0.902501\pi\)
\(588\) 0 0
\(589\) 41.5563i 1.71230i
\(590\) 0 0
\(591\) 43.4612 1.78776
\(592\) 0 0
\(593\) 43.9414 1.80446 0.902229 0.431257i \(-0.141930\pi\)
0.902229 + 0.431257i \(0.141930\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) − 32.9067i − 1.34678i
\(598\) 0 0
\(599\) 19.8918 0.812756 0.406378 0.913705i \(-0.366792\pi\)
0.406378 + 0.913705i \(0.366792\pi\)
\(600\) 0 0
\(601\) −7.20689 −0.293975 −0.146988 0.989138i \(-0.546958\pi\)
−0.146988 + 0.989138i \(0.546958\pi\)
\(602\) 0 0
\(603\) − 3.98314i − 0.162206i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 6.17988 0.250834 0.125417 0.992104i \(-0.459973\pi\)
0.125417 + 0.992104i \(0.459973\pi\)
\(608\) 0 0
\(609\) −13.3487 −0.540917
\(610\) 0 0
\(611\) − 26.0401i − 1.05347i
\(612\) 0 0
\(613\) − 14.3999i − 0.581605i −0.956783 0.290803i \(-0.906078\pi\)
0.956783 0.290803i \(-0.0939223\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 38.5229 1.55087 0.775437 0.631425i \(-0.217530\pi\)
0.775437 + 0.631425i \(0.217530\pi\)
\(618\) 0 0
\(619\) 4.77140i 0.191779i 0.995392 + 0.0958894i \(0.0305695\pi\)
−0.995392 + 0.0958894i \(0.969430\pi\)
\(620\) 0 0
\(621\) 18.0519i 0.724399i
\(622\) 0 0
\(623\) 5.18606 0.207775
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 60.2267i 2.40522i
\(628\) 0 0
\(629\) − 19.3911i − 0.773175i
\(630\) 0 0
\(631\) 16.4566 0.655127 0.327563 0.944829i \(-0.393772\pi\)
0.327563 + 0.944829i \(0.393772\pi\)
\(632\) 0 0
\(633\) −27.7019 −1.10105
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.6336i 0.619427i
\(638\) 0 0
\(639\) 3.44477 0.136273
\(640\) 0 0
\(641\) 37.6381 1.48662 0.743309 0.668949i \(-0.233255\pi\)
0.743309 + 0.668949i \(0.233255\pi\)
\(642\) 0 0
\(643\) 0.647618i 0.0255396i 0.999918 + 0.0127698i \(0.00406486\pi\)
−0.999918 + 0.0127698i \(0.995935\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 40.6274 1.59723 0.798613 0.601845i \(-0.205567\pi\)
0.798613 + 0.601845i \(0.205567\pi\)
\(648\) 0 0
\(649\) −6.74033 −0.264581
\(650\) 0 0
\(651\) − 20.1885i − 0.791250i
\(652\) 0 0
\(653\) 21.7949i 0.852900i 0.904511 + 0.426450i \(0.140236\pi\)
−0.904511 + 0.426450i \(0.859764\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −4.57057 −0.178315
\(658\) 0 0
\(659\) − 10.4657i − 0.407684i −0.979004 0.203842i \(-0.934657\pi\)
0.979004 0.203842i \(-0.0653429\pi\)
\(660\) 0 0
\(661\) − 23.8297i − 0.926870i −0.886131 0.463435i \(-0.846617\pi\)
0.886131 0.463435i \(-0.153383\pi\)
\(662\) 0 0
\(663\) −14.6752 −0.569937
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.6620i 0.800037i
\(668\) 0 0
\(669\) − 38.6474i − 1.49419i
\(670\) 0 0
\(671\) 34.5449 1.33359
\(672\) 0 0
\(673\) 18.0022 0.693935 0.346968 0.937877i \(-0.387211\pi\)
0.346968 + 0.937877i \(0.387211\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 38.0024i 1.46055i 0.683152 + 0.730276i \(0.260609\pi\)
−0.683152 + 0.730276i \(0.739391\pi\)
\(678\) 0 0
\(679\) 1.32473 0.0508386
\(680\) 0 0
\(681\) −12.7448 −0.488382
\(682\) 0 0
\(683\) − 44.0579i − 1.68583i −0.538046 0.842915i \(-0.680837\pi\)
0.538046 0.842915i \(-0.319163\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 36.4859 1.39202
\(688\) 0 0
\(689\) 0.137739 0.00524742
\(690\) 0 0
\(691\) − 6.13682i − 0.233456i −0.993164 0.116728i \(-0.962759\pi\)
0.993164 0.116728i \(-0.0372405\pi\)
\(692\) 0 0
\(693\) − 3.19824i − 0.121491i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 10.1648 0.385019
\(698\) 0 0
\(699\) 17.3215i 0.655158i
\(700\) 0 0
\(701\) − 41.6486i − 1.57305i −0.617561 0.786523i \(-0.711879\pi\)
0.617561 0.786523i \(-0.288121\pi\)
\(702\) 0 0
\(703\) 35.7609 1.34875
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 3.29140i 0.123786i
\(708\) 0 0
\(709\) 46.6032i 1.75022i 0.483925 + 0.875109i \(0.339211\pi\)
−0.483925 + 0.875109i \(0.660789\pi\)
\(710\) 0 0
\(711\) 0.529584 0.0198610
\(712\) 0 0
\(713\) −31.2492 −1.17029
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 39.2497i 1.46581i
\(718\) 0 0
\(719\) 33.3634 1.24424 0.622122 0.782920i \(-0.286271\pi\)
0.622122 + 0.782920i \(0.286271\pi\)
\(720\) 0 0
\(721\) 7.02995 0.261809
\(722\) 0 0
\(723\) 20.9435i 0.778895i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −34.3672 −1.27461 −0.637305 0.770612i \(-0.719951\pi\)
−0.637305 + 0.770612i \(0.719951\pi\)
\(728\) 0 0
\(729\) −22.9231 −0.849002
\(730\) 0 0
\(731\) − 8.29934i − 0.306962i
\(732\) 0 0
\(733\) 40.7127i 1.50376i 0.659302 + 0.751878i \(0.270852\pi\)
−0.659302 + 0.751878i \(0.729148\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −71.4331 −2.63127
\(738\) 0 0
\(739\) 22.9998i 0.846061i 0.906115 + 0.423030i \(0.139034\pi\)
−0.906115 + 0.423030i \(0.860966\pi\)
\(740\) 0 0
\(741\) − 27.0638i − 0.994215i
\(742\) 0 0
\(743\) 14.7518 0.541192 0.270596 0.962693i \(-0.412779\pi\)
0.270596 + 0.962693i \(0.412779\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) − 4.79654i − 0.175496i
\(748\) 0 0
\(749\) 1.27830i 0.0467082i
\(750\) 0 0
\(751\) 19.6790 0.718099 0.359049 0.933319i \(-0.383101\pi\)
0.359049 + 0.933319i \(0.383101\pi\)
\(752\) 0 0
\(753\) 5.06770 0.184677
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 3.22189i 0.117102i 0.998284 + 0.0585508i \(0.0186480\pi\)
−0.998284 + 0.0585508i \(0.981352\pi\)
\(758\) 0 0
\(759\) −45.2887 −1.64388
\(760\) 0 0
\(761\) 21.5082 0.779672 0.389836 0.920884i \(-0.372532\pi\)
0.389836 + 0.920884i \(0.372532\pi\)
\(762\) 0 0
\(763\) − 24.7938i − 0.897596i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 3.02888 0.109366
\(768\) 0 0
\(769\) 16.0974 0.580487 0.290243 0.956953i \(-0.406264\pi\)
0.290243 + 0.956953i \(0.406264\pi\)
\(770\) 0 0
\(771\) − 22.3324i − 0.804281i
\(772\) 0 0
\(773\) 2.13036i 0.0766237i 0.999266 + 0.0383118i \(0.0121980\pi\)
−0.999266 + 0.0383118i \(0.987802\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −17.3731 −0.623255
\(778\) 0 0
\(779\) 18.7458i 0.671639i
\(780\) 0 0
\(781\) − 61.7781i − 2.21059i
\(782\) 0 0
\(783\) −26.7029 −0.954285
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 11.4913i 0.409619i 0.978802 + 0.204810i \(0.0656575\pi\)
−0.978802 + 0.204810i \(0.934342\pi\)
\(788\) 0 0
\(789\) − 41.1260i − 1.46412i
\(790\) 0 0
\(791\) −16.2892 −0.579177
\(792\) 0 0
\(793\) −15.5233 −0.551249
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 14.3363i − 0.507818i −0.967228 0.253909i \(-0.918284\pi\)
0.967228 0.253909i \(-0.0817164\pi\)
\(798\) 0 0
\(799\) −23.6527 −0.836773
\(800\) 0 0
\(801\) −1.45127 −0.0512782
\(802\) 0 0
\(803\) 81.9681i 2.89259i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 54.6074 1.92227
\(808\) 0 0
\(809\) 43.6620 1.53508 0.767538 0.641004i \(-0.221482\pi\)
0.767538 + 0.641004i \(0.221482\pi\)
\(810\) 0 0
\(811\) − 18.8353i − 0.661396i −0.943737 0.330698i \(-0.892716\pi\)
0.943737 0.330698i \(-0.107284\pi\)
\(812\) 0 0
\(813\) − 27.7441i − 0.973027i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 15.3056 0.535474
\(818\) 0 0
\(819\) 1.43718i 0.0502193i
\(820\) 0 0
\(821\) 1.64016i 0.0572421i 0.999590 + 0.0286210i \(0.00911160\pi\)
−0.999590 + 0.0286210i \(0.990888\pi\)
\(822\) 0 0
\(823\) 43.7219 1.52405 0.762024 0.647549i \(-0.224206\pi\)
0.762024 + 0.647549i \(0.224206\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.2651i 1.12197i 0.827827 + 0.560983i \(0.189577\pi\)
−0.827827 + 0.560983i \(0.810423\pi\)
\(828\) 0 0
\(829\) 6.83658i 0.237444i 0.992928 + 0.118722i \(0.0378798\pi\)
−0.992928 + 0.118722i \(0.962120\pi\)
\(830\) 0 0
\(831\) −17.4589 −0.605642
\(832\) 0 0
\(833\) 14.2003 0.492011
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) − 40.3854i − 1.39592i
\(838\) 0 0
\(839\) −12.3983 −0.428037 −0.214018 0.976830i \(-0.568655\pi\)
−0.214018 + 0.976830i \(0.568655\pi\)
\(840\) 0 0
\(841\) −1.56388 −0.0539268
\(842\) 0 0
\(843\) − 32.2804i − 1.11180i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −42.8849 −1.47354
\(848\) 0 0
\(849\) 28.1243 0.965224
\(850\) 0 0
\(851\) 26.8912i 0.921818i
\(852\) 0 0
\(853\) − 10.2780i − 0.351911i −0.984398 0.175955i \(-0.943699\pi\)
0.984398 0.175955i \(-0.0563015\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 11.1493 0.380852 0.190426 0.981702i \(-0.439013\pi\)
0.190426 + 0.981702i \(0.439013\pi\)
\(858\) 0 0
\(859\) 30.3826i 1.03664i 0.855186 + 0.518321i \(0.173443\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(860\) 0 0
\(861\) − 9.10692i − 0.310363i
\(862\) 0 0
\(863\) −46.2899 −1.57573 −0.787863 0.615851i \(-0.788812\pi\)
−0.787863 + 0.615851i \(0.788812\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 17.8696i − 0.606885i
\(868\) 0 0
\(869\) − 9.49750i − 0.322181i
\(870\) 0 0
\(871\) 32.0996 1.08765
\(872\) 0 0
\(873\) −0.370715 −0.0125468
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 39.8781i 1.34659i 0.739376 + 0.673293i \(0.235121\pi\)
−0.739376 + 0.673293i \(0.764879\pi\)
\(878\) 0 0
\(879\) −5.84872 −0.197273
\(880\) 0 0
\(881\) 38.6037 1.30059 0.650297 0.759680i \(-0.274645\pi\)
0.650297 + 0.759680i \(0.274645\pi\)
\(882\) 0 0
\(883\) 57.2207i 1.92563i 0.270164 + 0.962814i \(0.412922\pi\)
−0.270164 + 0.962814i \(0.587078\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 11.8099 0.396537 0.198269 0.980148i \(-0.436468\pi\)
0.198269 + 0.980148i \(0.436468\pi\)
\(888\) 0 0
\(889\) −15.5355 −0.521045
\(890\) 0 0
\(891\) − 65.8224i − 2.20513i
\(892\) 0 0
\(893\) − 43.6201i − 1.45969i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 20.3512 0.679508
\(898\) 0 0
\(899\) − 46.2246i − 1.54168i
\(900\) 0 0
\(901\) − 0.125110i − 0.00416803i
\(902\) 0 0
\(903\) −7.43561 −0.247441
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 36.7370i − 1.21983i −0.792466 0.609917i \(-0.791203\pi\)
0.792466 0.609917i \(-0.208797\pi\)
\(908\) 0 0
\(909\) − 0.921071i − 0.0305500i
\(910\) 0 0
\(911\) 16.4318 0.544409 0.272205 0.962239i \(-0.412247\pi\)
0.272205 + 0.962239i \(0.412247\pi\)
\(912\) 0 0
\(913\) −86.0205 −2.84686
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 16.6738i 0.550618i
\(918\) 0 0
\(919\) 30.9480 1.02088 0.510440 0.859913i \(-0.329482\pi\)
0.510440 + 0.859913i \(0.329482\pi\)
\(920\) 0 0
\(921\) 51.4916 1.69671
\(922\) 0 0
\(923\) 27.7610i 0.913764i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −1.96727 −0.0646136
\(928\) 0 0
\(929\) 11.4537 0.375784 0.187892 0.982190i \(-0.439835\pi\)
0.187892 + 0.982190i \(0.439835\pi\)
\(930\) 0 0
\(931\) 26.1880i 0.858278i
\(932\) 0 0
\(933\) − 51.0147i − 1.67015i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 29.7274 0.971151 0.485575 0.874195i \(-0.338610\pi\)
0.485575 + 0.874195i \(0.338610\pi\)
\(938\) 0 0
\(939\) 39.7228i 1.29630i
\(940\) 0 0
\(941\) 22.9601i 0.748477i 0.927332 + 0.374239i \(0.122096\pi\)
−0.927332 + 0.374239i \(0.877904\pi\)
\(942\) 0 0
\(943\) −14.0963 −0.459039
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) − 35.4333i − 1.15143i −0.817651 0.575714i \(-0.804724\pi\)
0.817651 0.575714i \(-0.195276\pi\)
\(948\) 0 0
\(949\) − 36.8337i − 1.19567i
\(950\) 0 0
\(951\) 29.3699 0.952385
\(952\) 0 0
\(953\) −1.35496 −0.0438914 −0.0219457 0.999759i \(-0.506986\pi\)
−0.0219457 + 0.999759i \(0.506986\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) − 66.9924i − 2.16556i
\(958\) 0 0
\(959\) 5.70413 0.184196
\(960\) 0 0
\(961\) 38.9099 1.25516
\(962\) 0 0
\(963\) − 0.357722i − 0.0115274i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −19.6245 −0.631080 −0.315540 0.948912i \(-0.602186\pi\)
−0.315540 + 0.948912i \(0.602186\pi\)
\(968\) 0 0
\(969\) −24.5826 −0.789706
\(970\) 0 0
\(971\) 1.55749i 0.0499822i 0.999688 + 0.0249911i \(0.00795575\pi\)
−0.999688 + 0.0249911i \(0.992044\pi\)
\(972\) 0 0
\(973\) − 4.58884i − 0.147112i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −49.4288 −1.58137 −0.790683 0.612226i \(-0.790274\pi\)
−0.790683 + 0.612226i \(0.790274\pi\)
\(978\) 0 0
\(979\) 26.0270i 0.831825i
\(980\) 0 0
\(981\) 6.93833i 0.221524i
\(982\) 0 0
\(983\) −18.1091 −0.577591 −0.288795 0.957391i \(-0.593255\pi\)
−0.288795 + 0.957391i \(0.593255\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 21.1911i 0.674521i
\(988\) 0 0
\(989\) 11.5093i 0.365976i
\(990\) 0 0
\(991\) −4.82935 −0.153409 −0.0767046 0.997054i \(-0.524440\pi\)
−0.0767046 + 0.997054i \(0.524440\pi\)
\(992\) 0 0
\(993\) 9.90905 0.314454
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 18.3807i − 0.582122i −0.956705 0.291061i \(-0.905992\pi\)
0.956705 0.291061i \(-0.0940082\pi\)
\(998\) 0 0
\(999\) −34.7533 −1.09955
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4000.2.d.c.2001.16 40
4.3 odd 2 1000.2.d.c.501.23 yes 40
5.2 odd 4 4000.2.f.d.3249.16 20
5.3 odd 4 4000.2.f.c.3249.5 20
5.4 even 2 inner 4000.2.d.c.2001.25 40
8.3 odd 2 1000.2.d.c.501.24 yes 40
8.5 even 2 inner 4000.2.d.c.2001.15 40
20.3 even 4 1000.2.f.c.749.1 20
20.7 even 4 1000.2.f.d.749.20 20
20.19 odd 2 1000.2.d.c.501.18 yes 40
40.3 even 4 1000.2.f.d.749.19 20
40.13 odd 4 4000.2.f.d.3249.15 20
40.19 odd 2 1000.2.d.c.501.17 40
40.27 even 4 1000.2.f.c.749.2 20
40.29 even 2 inner 4000.2.d.c.2001.26 40
40.37 odd 4 4000.2.f.c.3249.6 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1000.2.d.c.501.17 40 40.19 odd 2
1000.2.d.c.501.18 yes 40 20.19 odd 2
1000.2.d.c.501.23 yes 40 4.3 odd 2
1000.2.d.c.501.24 yes 40 8.3 odd 2
1000.2.f.c.749.1 20 20.3 even 4
1000.2.f.c.749.2 20 40.27 even 4
1000.2.f.d.749.19 20 40.3 even 4
1000.2.f.d.749.20 20 20.7 even 4
4000.2.d.c.2001.15 40 8.5 even 2 inner
4000.2.d.c.2001.16 40 1.1 even 1 trivial
4000.2.d.c.2001.25 40 5.4 even 2 inner
4000.2.d.c.2001.26 40 40.29 even 2 inner
4000.2.f.c.3249.5 20 5.3 odd 4
4000.2.f.c.3249.6 20 40.37 odd 4
4000.2.f.d.3249.15 20 40.13 odd 4
4000.2.f.d.3249.16 20 5.2 odd 4