Defining parameters
| Level: | \( N \) | \(=\) | \( 4000 = 2^{5} \cdot 5^{3} \) |
| Weight: | \( k \) | \(=\) | \( 1 \) |
| Character orbit: | \([\chi]\) | \(=\) | 4000.bh (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 100 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newform subspaces: | \( 1 \) | ||
| Sturm bound: | \(600\) | ||
| Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(4000, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 248 | 8 | 240 |
| Cusp forms | 88 | 8 | 80 |
| Eisenstein series | 160 | 0 | 160 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 0 | 8 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(4000, [\chi])\) into newform subspaces
| Label | Dim | $A$ | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| $a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||||
| 4000.1.bh.a | $8$ | $1.996$ | \(\Q(\zeta_{20})\) | $A_{5}$ | None | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{20}q^{3}+(\zeta_{20}^{3}+\zeta_{20}^{7})q^{7}+(-1+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(4000, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(4000, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(2000, [\chi])\)\(^{\oplus 2}\)