Properties

Label 4000.1.bh
Level $4000$
Weight $1$
Character orbit 4000.bh
Rep. character $\chi_{4000}(351,\cdot)$
Character field $\Q(\zeta_{10})$
Dimension $8$
Newform subspaces $1$
Sturm bound $600$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 4000.bh (of order \(10\) and degree \(4\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 100 \)
Character field: \(\Q(\zeta_{10})\)
Newform subspaces: \( 1 \)
Sturm bound: \(600\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{1}(4000, [\chi])\).

Total New Old
Modular forms 248 8 240
Cusp forms 88 8 80
Eisenstein series 160 0 160

The following table gives the dimensions of subspaces with specified projective image type.

\(D_n\) \(A_4\) \(S_4\) \(A_5\)
Dimension 0 0 0 8

Trace form

\( 8 q - 6 q^{13} + 4 q^{21} - 6 q^{29} - 2 q^{37} - 4 q^{49} - 2 q^{53} + 4 q^{57} - 2 q^{61} + 2 q^{69} + 2 q^{73} + 2 q^{81} + 8 q^{93} - 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{1}^{\mathrm{new}}(4000, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field Image CM RM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4000.1.bh.a 4000.bh 100.j $8$ $1.996$ \(\Q(\zeta_{20})\) $A_{5}$ None None 800.1.bh.a \(0\) \(0\) \(0\) \(0\) \(q-\zeta_{20}q^{3}+(\zeta_{20}^{3}+\zeta_{20}^{7})q^{7}+(-1+\cdots)q^{13}+\cdots\)

Decomposition of \(S_{1}^{\mathrm{old}}(4000, [\chi])\) into lower level spaces

\( S_{1}^{\mathrm{old}}(4000, [\chi]) \simeq \) \(S_{1}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(800, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(2000, [\chi])\)\(^{\oplus 2}\)