Defining parameters
| Level: | \( N \) | = | \( 4000 = 2^{5} \cdot 5^{3} \) |
| Weight: | \( k \) | = | \( 1 \) |
| Character orbit: | \([\chi]\) | = | 4000.bf (of order \(10\) and degree \(4\)) |
| Character conductor: | \(\operatorname{cond}(\chi)\) | = | \( 100 \) |
| Character field: | \(\Q(\zeta_{10})\) | ||
| Newforms: | \( 2 \) | ||
| Sturm bound: | \(600\) | ||
| Trace bound: | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{1}(4000, [\chi])\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 232 | 16 | 216 |
| Cusp forms | 72 | 16 | 56 |
| Eisenstein series | 160 | 0 | 160 |
The following table gives the dimensions of subspaces with specified projective image type.
| \(D_n\) | \(A_4\) | \(S_4\) | \(A_5\) | |
|---|---|---|---|---|
| Dimension | 0 | 0 | 0 | 16 |
Trace form
Decomposition of \(S_{1}^{\mathrm{new}}(4000, [\chi])\) into irreducible Hecke orbits
| Label | Dim. | \(A\) | Field | Image | CM | RM | Traces | $q$-expansion | |||
|---|---|---|---|---|---|---|---|---|---|---|---|
| \(a_2\) | \(a_3\) | \(a_5\) | \(a_7\) | ||||||||
| 4000.1.bf.a | \(8\) | \(1.996\) | \(\Q(\zeta_{20})\) | \(A_{5}\) | None | None | \(0\) | \(-2\) | \(0\) | \(4\) | \(q-\zeta_{20}^{2}q^{3}+(-\zeta_{20}^{4}+\zeta_{20}^{6})q^{7}+\cdots\) |
| 4000.1.bf.b | \(8\) | \(1.996\) | \(\Q(\zeta_{20})\) | \(A_{5}\) | None | None | \(0\) | \(2\) | \(0\) | \(-4\) | \(q+\zeta_{20}^{2}q^{3}+(\zeta_{20}^{4}-\zeta_{20}^{6})q^{7}+(-\zeta_{20}^{3}+\cdots)q^{13}+\cdots\) |
Decomposition of \(S_{1}^{\mathrm{old}}(4000, [\chi])\) into lower level spaces
\( S_{1}^{\mathrm{old}}(4000, [\chi]) \cong \) \(S_{1}^{\mathrm{new}}(400, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(500, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{1}^{\mathrm{new}}(2000, [\chi])\)\(^{\oplus 2}\)