Properties

Label 4000.1.b.a
Level $4000$
Weight $1$
Character orbit 4000.b
Analytic conductor $1.996$
Analytic rank $0$
Dimension $4$
Projective image $A_{5}$
CM/RM no
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4000,1,Mod(2751,4000)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4000.2751"); S:= CuspForms(chi, 1); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4000, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) B = ModularForms(chi, 1).cuspidal_submodule().basis() N = [B[i] for i in range(len(B))]
 
Level: \( N \) \(=\) \( 4000 = 2^{5} \cdot 5^{3} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 4000.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,0,0,0,0,0,-2,0,0,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.99626005053\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(A_{5}\)
Projective field: Galois closure of 5.1.1000000.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_1) q^{3} - \beta_{3} q^{7} + ( - \beta_{2} - 1) q^{9} - \beta_{3} q^{11} + ( - \beta_{2} - 1) q^{13} - q^{17} + (\beta_{3} + \beta_1) q^{19} + ( - \beta_{2} - 1) q^{21} + \beta_{3} q^{27}+ \cdots + (\beta_{3} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 2 q^{9} - 2 q^{13} - 4 q^{17} - 2 q^{21} - 4 q^{29} - 2 q^{33} + 4 q^{41} - 2 q^{53} + 6 q^{57} - 2 q^{61} - 2 q^{73} - 4 q^{77} + 4 q^{93} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} + 3x^{2} + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} + 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} + 2\nu \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} - 1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} - 2\beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4000\mathbb{Z}\right)^\times\).

\(n\) \(1377\) \(2501\) \(2751\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2751.1
0.618034i
1.61803i
1.61803i
0.618034i
0 1.61803i 0 0 0 1.00000i 0 −1.61803 0
2751.2 0 0.618034i 0 0 0 1.00000i 0 0.618034 0
2751.3 0 0.618034i 0 0 0 1.00000i 0 0.618034 0
2751.4 0 1.61803i 0 0 0 1.00000i 0 −1.61803 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4000.1.b.a 4
4.b odd 2 1 inner 4000.1.b.a 4
5.b even 2 1 4000.1.b.b yes 4
5.c odd 4 1 4000.1.h.a 4
5.c odd 4 1 4000.1.h.b 4
20.d odd 2 1 4000.1.b.b yes 4
20.e even 4 1 4000.1.h.a 4
20.e even 4 1 4000.1.h.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4000.1.b.a 4 1.a even 1 1 trivial
4000.1.b.a 4 4.b odd 2 1 inner
4000.1.b.b yes 4 5.b even 2 1
4000.1.b.b yes 4 20.d odd 2 1
4000.1.h.a 4 5.c odd 4 1
4000.1.h.a 4 20.e even 4 1
4000.1.h.b 4 5.c odd 4 1
4000.1.h.b 4 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{13}^{2} + T_{13} - 1 \) acting on \(S_{1}^{\mathrm{new}}(4000, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{4} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$17$ \( (T + 1)^{4} \) Copy content Toggle raw display
$19$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$23$ \( T^{4} \) Copy content Toggle raw display
$29$ \( (T + 1)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( (T - 1)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$53$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$61$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 3T^{2} + 1 \) Copy content Toggle raw display
$71$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$73$ \( (T^{2} + T - 1)^{2} \) Copy content Toggle raw display
$79$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( (T^{2} - T - 1)^{2} \) Copy content Toggle raw display
show more
show less