Properties

Label 400.8.c.b.49.1
Level $400$
Weight $8$
Character 400.49
Analytic conductor $124.954$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,8,Mod(49,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.49");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(124.954010194\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(i)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 49.1
Root \(-1.00000i\) of defining polynomial
Character \(\chi\) \(=\) 400.49
Dual form 400.8.c.b.49.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-84.0000i q^{3} +456.000i q^{7} -4869.00 q^{9} +O(q^{10})\) \(q-84.0000i q^{3} +456.000i q^{7} -4869.00 q^{9} +2524.00 q^{11} +10778.0i q^{13} -11150.0i q^{17} +4124.00 q^{19} +38304.0 q^{21} +81704.0i q^{23} +225288. i q^{27} -99798.0 q^{29} +40480.0 q^{31} -212016. i q^{33} -419442. i q^{37} +905352. q^{39} +141402. q^{41} -690428. i q^{43} +682032. i q^{47} +615607. q^{49} -936600. q^{51} -1.81312e6i q^{53} -346416. i q^{57} -966028. q^{59} +1.88767e6 q^{61} -2.22026e6i q^{63} -2.96587e6i q^{67} +6.86314e6 q^{69} +2.54823e6 q^{71} +1.68033e6i q^{73} +1.15094e6i q^{77} +4.03806e6 q^{79} +8.27569e6 q^{81} -5.38576e6i q^{83} +8.38303e6i q^{87} +6.47305e6 q^{89} -4.91477e6 q^{91} -3.40032e6i q^{93} -6.06576e6i q^{97} -1.22894e7 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 9738 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - 9738 q^{9} + 5048 q^{11} + 8248 q^{19} + 76608 q^{21} - 199596 q^{29} + 80960 q^{31} + 1810704 q^{39} + 282804 q^{41} + 1231214 q^{49} - 1873200 q^{51} - 1932056 q^{59} + 3775340 q^{61} + 13726272 q^{69} + 5096464 q^{71} + 8076128 q^{79} + 16551378 q^{81} + 12946092 q^{89} - 9829536 q^{91} - 24578712 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 84.0000i − 1.79620i −0.439790 0.898100i \(-0.644947\pi\)
0.439790 0.898100i \(-0.355053\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 456.000i 0.502483i 0.967924 + 0.251242i \(0.0808389\pi\)
−0.967924 + 0.251242i \(0.919161\pi\)
\(8\) 0 0
\(9\) −4869.00 −2.22634
\(10\) 0 0
\(11\) 2524.00 0.571762 0.285881 0.958265i \(-0.407714\pi\)
0.285881 + 0.958265i \(0.407714\pi\)
\(12\) 0 0
\(13\) 10778.0i 1.36062i 0.732925 + 0.680309i \(0.238155\pi\)
−0.732925 + 0.680309i \(0.761845\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) − 11150.0i − 0.550432i −0.961382 0.275216i \(-0.911251\pi\)
0.961382 0.275216i \(-0.0887494\pi\)
\(18\) 0 0
\(19\) 4124.00 0.137937 0.0689685 0.997619i \(-0.478029\pi\)
0.0689685 + 0.997619i \(0.478029\pi\)
\(20\) 0 0
\(21\) 38304.0 0.902561
\(22\) 0 0
\(23\) 81704.0i 1.40022i 0.714036 + 0.700109i \(0.246865\pi\)
−0.714036 + 0.700109i \(0.753135\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 225288.i 2.20275i
\(28\) 0 0
\(29\) −99798.0 −0.759852 −0.379926 0.925017i \(-0.624051\pi\)
−0.379926 + 0.925017i \(0.624051\pi\)
\(30\) 0 0
\(31\) 40480.0 0.244048 0.122024 0.992527i \(-0.461062\pi\)
0.122024 + 0.992527i \(0.461062\pi\)
\(32\) 0 0
\(33\) − 212016.i − 1.02700i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 419442.i − 1.36134i −0.732591 0.680669i \(-0.761689\pi\)
0.732591 0.680669i \(-0.238311\pi\)
\(38\) 0 0
\(39\) 905352. 2.44394
\(40\) 0 0
\(41\) 141402. 0.320414 0.160207 0.987083i \(-0.448784\pi\)
0.160207 + 0.987083i \(0.448784\pi\)
\(42\) 0 0
\(43\) − 690428.i − 1.32428i −0.749382 0.662138i \(-0.769649\pi\)
0.749382 0.662138i \(-0.230351\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 682032.i 0.958213i 0.877757 + 0.479107i \(0.159039\pi\)
−0.877757 + 0.479107i \(0.840961\pi\)
\(48\) 0 0
\(49\) 615607. 0.747510
\(50\) 0 0
\(51\) −936600. −0.988686
\(52\) 0 0
\(53\) − 1.81312e6i − 1.67286i −0.548071 0.836432i \(-0.684638\pi\)
0.548071 0.836432i \(-0.315362\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) − 346416.i − 0.247763i
\(58\) 0 0
\(59\) −966028. −0.612361 −0.306181 0.951973i \(-0.599051\pi\)
−0.306181 + 0.951973i \(0.599051\pi\)
\(60\) 0 0
\(61\) 1.88767e6 1.06481 0.532404 0.846490i \(-0.321289\pi\)
0.532404 + 0.846490i \(0.321289\pi\)
\(62\) 0 0
\(63\) − 2.22026e6i − 1.11870i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 2.96587e6i − 1.20473i −0.798220 0.602365i \(-0.794225\pi\)
0.798220 0.602365i \(-0.205775\pi\)
\(68\) 0 0
\(69\) 6.86314e6 2.51507
\(70\) 0 0
\(71\) 2.54823e6 0.844957 0.422479 0.906373i \(-0.361160\pi\)
0.422479 + 0.906373i \(0.361160\pi\)
\(72\) 0 0
\(73\) 1.68033e6i 0.505549i 0.967525 + 0.252775i \(0.0813431\pi\)
−0.967525 + 0.252775i \(0.918657\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 1.15094e6i 0.287301i
\(78\) 0 0
\(79\) 4.03806e6 0.921464 0.460732 0.887539i \(-0.347587\pi\)
0.460732 + 0.887539i \(0.347587\pi\)
\(80\) 0 0
\(81\) 8.27569e6 1.73024
\(82\) 0 0
\(83\) − 5.38576e6i − 1.03389i −0.856019 0.516945i \(-0.827069\pi\)
0.856019 0.516945i \(-0.172931\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 8.38303e6i 1.36485i
\(88\) 0 0
\(89\) 6.47305e6 0.973293 0.486647 0.873599i \(-0.338220\pi\)
0.486647 + 0.873599i \(0.338220\pi\)
\(90\) 0 0
\(91\) −4.91477e6 −0.683688
\(92\) 0 0
\(93\) − 3.40032e6i − 0.438359i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) − 6.06576e6i − 0.674814i −0.941359 0.337407i \(-0.890450\pi\)
0.941359 0.337407i \(-0.109550\pi\)
\(98\) 0 0
\(99\) −1.22894e7 −1.27293
\(100\) 0 0
\(101\) 9.70069e6 0.936866 0.468433 0.883499i \(-0.344819\pi\)
0.468433 + 0.883499i \(0.344819\pi\)
\(102\) 0 0
\(103\) 4.10159e6i 0.369847i 0.982753 + 0.184924i \(0.0592037\pi\)
−0.982753 + 0.184924i \(0.940796\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 72900.0i − 0.00575287i −0.999996 0.00287643i \(-0.999084\pi\)
0.999996 0.00287643i \(-0.000915598\pi\)
\(108\) 0 0
\(109\) −9.55841e6 −0.706957 −0.353478 0.935443i \(-0.615001\pi\)
−0.353478 + 0.935443i \(0.615001\pi\)
\(110\) 0 0
\(111\) −3.52331e7 −2.44524
\(112\) 0 0
\(113\) − 9.33890e6i − 0.608865i −0.952534 0.304433i \(-0.901533\pi\)
0.952534 0.304433i \(-0.0984668\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) − 5.24781e7i − 3.02920i
\(118\) 0 0
\(119\) 5.08440e6 0.276583
\(120\) 0 0
\(121\) −1.31166e7 −0.673089
\(122\) 0 0
\(123\) − 1.18778e7i − 0.575529i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.59794e7i 1.55862i 0.626637 + 0.779311i \(0.284431\pi\)
−0.626637 + 0.779311i \(0.715569\pi\)
\(128\) 0 0
\(129\) −5.79960e7 −2.37867
\(130\) 0 0
\(131\) 676052. 0.0262743 0.0131371 0.999914i \(-0.495818\pi\)
0.0131371 + 0.999914i \(0.495818\pi\)
\(132\) 0 0
\(133\) 1.88054e6i 0.0693111i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) − 2.95841e7i − 0.982962i −0.870888 0.491481i \(-0.836456\pi\)
0.870888 0.491481i \(-0.163544\pi\)
\(138\) 0 0
\(139\) −3.19084e7 −1.00775 −0.503876 0.863776i \(-0.668093\pi\)
−0.503876 + 0.863776i \(0.668093\pi\)
\(140\) 0 0
\(141\) 5.72907e7 1.72114
\(142\) 0 0
\(143\) 2.72037e7i 0.777949i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) − 5.17110e7i − 1.34268i
\(148\) 0 0
\(149\) 1.16603e7 0.288773 0.144386 0.989521i \(-0.453879\pi\)
0.144386 + 0.989521i \(0.453879\pi\)
\(150\) 0 0
\(151\) 1.76295e7 0.416698 0.208349 0.978055i \(-0.433191\pi\)
0.208349 + 0.978055i \(0.433191\pi\)
\(152\) 0 0
\(153\) 5.42894e7i 1.22545i
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 6.34658e6i 0.130885i 0.997856 + 0.0654427i \(0.0208460\pi\)
−0.997856 + 0.0654427i \(0.979154\pi\)
\(158\) 0 0
\(159\) −1.52302e8 −3.00480
\(160\) 0 0
\(161\) −3.72570e7 −0.703587
\(162\) 0 0
\(163\) 8.04234e7i 1.45454i 0.686351 + 0.727271i \(0.259211\pi\)
−0.686351 + 0.727271i \(0.740789\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) − 1.14767e8i − 1.90682i −0.301673 0.953411i \(-0.597545\pi\)
0.301673 0.953411i \(-0.402455\pi\)
\(168\) 0 0
\(169\) −5.34168e7 −0.851283
\(170\) 0 0
\(171\) −2.00798e7 −0.307095
\(172\) 0 0
\(173\) 6.33755e7i 0.930594i 0.885155 + 0.465297i \(0.154053\pi\)
−0.885155 + 0.465297i \(0.845947\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 8.11464e7i 1.09992i
\(178\) 0 0
\(179\) −1.13228e7 −0.147559 −0.0737796 0.997275i \(-0.523506\pi\)
−0.0737796 + 0.997275i \(0.523506\pi\)
\(180\) 0 0
\(181\) −5.22650e6 −0.0655143 −0.0327571 0.999463i \(-0.510429\pi\)
−0.0327571 + 0.999463i \(0.510429\pi\)
\(182\) 0 0
\(183\) − 1.58564e8i − 1.91261i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 2.81426e7i − 0.314716i
\(188\) 0 0
\(189\) −1.02731e8 −1.10684
\(190\) 0 0
\(191\) 8.50301e7 0.882990 0.441495 0.897264i \(-0.354448\pi\)
0.441495 + 0.897264i \(0.354448\pi\)
\(192\) 0 0
\(193\) − 1.15092e8i − 1.15237i −0.817319 0.576186i \(-0.804540\pi\)
0.817319 0.576186i \(-0.195460\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 1.38522e8i − 1.29088i −0.763810 0.645441i \(-0.776674\pi\)
0.763810 0.645441i \(-0.223326\pi\)
\(198\) 0 0
\(199\) −2.19614e7 −0.197548 −0.0987742 0.995110i \(-0.531492\pi\)
−0.0987742 + 0.995110i \(0.531492\pi\)
\(200\) 0 0
\(201\) −2.49133e8 −2.16394
\(202\) 0 0
\(203\) − 4.55079e7i − 0.381813i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) − 3.97817e8i − 3.11736i
\(208\) 0 0
\(209\) 1.04090e7 0.0788671
\(210\) 0 0
\(211\) 6.10208e7 0.447187 0.223594 0.974682i \(-0.428221\pi\)
0.223594 + 0.974682i \(0.428221\pi\)
\(212\) 0 0
\(213\) − 2.14051e8i − 1.51771i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.84589e7i 0.122630i
\(218\) 0 0
\(219\) 1.41147e8 0.908068
\(220\) 0 0
\(221\) 1.20175e8 0.748928
\(222\) 0 0
\(223\) − 4.22448e7i − 0.255098i −0.991832 0.127549i \(-0.959289\pi\)
0.991832 0.127549i \(-0.0407110\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 2.39102e8i 1.35673i 0.734726 + 0.678364i \(0.237311\pi\)
−0.734726 + 0.678364i \(0.762689\pi\)
\(228\) 0 0
\(229\) 4.67889e7 0.257465 0.128733 0.991679i \(-0.458909\pi\)
0.128733 + 0.991679i \(0.458909\pi\)
\(230\) 0 0
\(231\) 9.66793e7 0.516050
\(232\) 0 0
\(233\) − 3.45225e8i − 1.78795i −0.448113 0.893977i \(-0.647904\pi\)
0.448113 0.893977i \(-0.352096\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) − 3.39197e8i − 1.65513i
\(238\) 0 0
\(239\) 2.34413e8 1.11068 0.555340 0.831624i \(-0.312588\pi\)
0.555340 + 0.831624i \(0.312588\pi\)
\(240\) 0 0
\(241\) −1.09557e8 −0.504175 −0.252087 0.967705i \(-0.581117\pi\)
−0.252087 + 0.967705i \(0.581117\pi\)
\(242\) 0 0
\(243\) − 2.02453e8i − 0.905112i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 4.44485e7i 0.187680i
\(248\) 0 0
\(249\) −4.52404e8 −1.85707
\(250\) 0 0
\(251\) 3.94031e8 1.57280 0.786398 0.617720i \(-0.211943\pi\)
0.786398 + 0.617720i \(0.211943\pi\)
\(252\) 0 0
\(253\) 2.06221e8i 0.800591i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.19064e8i 1.17250i 0.810131 + 0.586248i \(0.199396\pi\)
−0.810131 + 0.586248i \(0.800604\pi\)
\(258\) 0 0
\(259\) 1.91266e8 0.684050
\(260\) 0 0
\(261\) 4.85916e8 1.69169
\(262\) 0 0
\(263\) 2.19359e8i 0.743549i 0.928323 + 0.371774i \(0.121250\pi\)
−0.928323 + 0.371774i \(0.878750\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) − 5.43736e8i − 1.74823i
\(268\) 0 0
\(269\) 1.48033e8 0.463687 0.231844 0.972753i \(-0.425524\pi\)
0.231844 + 0.972753i \(0.425524\pi\)
\(270\) 0 0
\(271\) 3.69934e8 1.12910 0.564549 0.825399i \(-0.309050\pi\)
0.564549 + 0.825399i \(0.309050\pi\)
\(272\) 0 0
\(273\) 4.12841e8i 1.22804i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 3.95860e8i − 1.11908i −0.828803 0.559541i \(-0.810977\pi\)
0.828803 0.559541i \(-0.189023\pi\)
\(278\) 0 0
\(279\) −1.97097e8 −0.543332
\(280\) 0 0
\(281\) −5.97760e8 −1.60714 −0.803572 0.595208i \(-0.797070\pi\)
−0.803572 + 0.595208i \(0.797070\pi\)
\(282\) 0 0
\(283\) 8.05797e7i 0.211336i 0.994401 + 0.105668i \(0.0336981\pi\)
−0.994401 + 0.105668i \(0.966302\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 6.44793e7i 0.161003i
\(288\) 0 0
\(289\) 2.86016e8 0.697025
\(290\) 0 0
\(291\) −5.09524e8 −1.21210
\(292\) 0 0
\(293\) − 7.54530e8i − 1.75243i −0.481924 0.876213i \(-0.660062\pi\)
0.481924 0.876213i \(-0.339938\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 5.68627e8i 1.25945i
\(298\) 0 0
\(299\) −8.80606e8 −1.90516
\(300\) 0 0
\(301\) 3.14835e8 0.665427
\(302\) 0 0
\(303\) − 8.14858e8i − 1.68280i
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 8.20472e8i − 1.61838i −0.587549 0.809188i \(-0.699907\pi\)
0.587549 0.809188i \(-0.300093\pi\)
\(308\) 0 0
\(309\) 3.44534e8 0.664320
\(310\) 0 0
\(311\) −6.53503e8 −1.23193 −0.615965 0.787773i \(-0.711234\pi\)
−0.615965 + 0.787773i \(0.711234\pi\)
\(312\) 0 0
\(313\) − 6.63587e8i − 1.22319i −0.791172 0.611594i \(-0.790529\pi\)
0.791172 0.611594i \(-0.209471\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 3.54718e8i − 0.625426i −0.949848 0.312713i \(-0.898762\pi\)
0.949848 0.312713i \(-0.101238\pi\)
\(318\) 0 0
\(319\) −2.51890e8 −0.434454
\(320\) 0 0
\(321\) −6.12360e6 −0.0103333
\(322\) 0 0
\(323\) − 4.59826e7i − 0.0759250i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.02906e8i 1.26984i
\(328\) 0 0
\(329\) −3.11007e8 −0.481486
\(330\) 0 0
\(331\) 3.05543e8 0.463100 0.231550 0.972823i \(-0.425620\pi\)
0.231550 + 0.972823i \(0.425620\pi\)
\(332\) 0 0
\(333\) 2.04226e9i 3.03080i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 3.54965e7i 0.0505220i 0.999681 + 0.0252610i \(0.00804169\pi\)
−0.999681 + 0.0252610i \(0.991958\pi\)
\(338\) 0 0
\(339\) −7.84467e8 −1.09364
\(340\) 0 0
\(341\) 1.02172e8 0.139537
\(342\) 0 0
\(343\) 6.56252e8i 0.878095i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 1.90594e8i 0.244882i 0.992476 + 0.122441i \(0.0390723\pi\)
−0.992476 + 0.122441i \(0.960928\pi\)
\(348\) 0 0
\(349\) −8.60864e8 −1.08404 −0.542020 0.840366i \(-0.682340\pi\)
−0.542020 + 0.840366i \(0.682340\pi\)
\(350\) 0 0
\(351\) −2.42815e9 −2.99710
\(352\) 0 0
\(353\) 1.04544e9i 1.26500i 0.774562 + 0.632498i \(0.217970\pi\)
−0.774562 + 0.632498i \(0.782030\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) − 4.27090e8i − 0.496798i
\(358\) 0 0
\(359\) 7.63303e8 0.870696 0.435348 0.900262i \(-0.356625\pi\)
0.435348 + 0.900262i \(0.356625\pi\)
\(360\) 0 0
\(361\) −8.76864e8 −0.980973
\(362\) 0 0
\(363\) 1.10179e9i 1.20900i
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 1.38692e9i 1.46460i 0.680980 + 0.732302i \(0.261554\pi\)
−0.680980 + 0.732302i \(0.738446\pi\)
\(368\) 0 0
\(369\) −6.88486e8 −0.713351
\(370\) 0 0
\(371\) 8.26782e8 0.840586
\(372\) 0 0
\(373\) − 4.77105e8i − 0.476029i −0.971262 0.238015i \(-0.923503\pi\)
0.971262 0.238015i \(-0.0764966\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) − 1.07562e9i − 1.03387i
\(378\) 0 0
\(379\) −3.92468e8 −0.370311 −0.185156 0.982709i \(-0.559279\pi\)
−0.185156 + 0.982709i \(0.559279\pi\)
\(380\) 0 0
\(381\) 3.02227e9 2.79960
\(382\) 0 0
\(383\) 2.10409e9i 1.91368i 0.290617 + 0.956839i \(0.406139\pi\)
−0.290617 + 0.956839i \(0.593861\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 3.36169e9i 2.94829i
\(388\) 0 0
\(389\) 1.26019e9 1.08546 0.542730 0.839907i \(-0.317391\pi\)
0.542730 + 0.839907i \(0.317391\pi\)
\(390\) 0 0
\(391\) 9.11000e8 0.770725
\(392\) 0 0
\(393\) − 5.67884e7i − 0.0471939i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 9.81298e8i − 0.787107i −0.919302 0.393554i \(-0.871246\pi\)
0.919302 0.393554i \(-0.128754\pi\)
\(398\) 0 0
\(399\) 1.57966e8 0.124497
\(400\) 0 0
\(401\) 9.09981e8 0.704737 0.352369 0.935861i \(-0.385376\pi\)
0.352369 + 0.935861i \(0.385376\pi\)
\(402\) 0 0
\(403\) 4.36293e8i 0.332056i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 1.05867e9i − 0.778361i
\(408\) 0 0
\(409\) 3.55609e7 0.0257004 0.0128502 0.999917i \(-0.495910\pi\)
0.0128502 + 0.999917i \(0.495910\pi\)
\(410\) 0 0
\(411\) −2.48507e9 −1.76560
\(412\) 0 0
\(413\) − 4.40509e8i − 0.307701i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 2.68031e9i 1.81013i
\(418\) 0 0
\(419\) 2.65360e9 1.76233 0.881163 0.472813i \(-0.156761\pi\)
0.881163 + 0.472813i \(0.156761\pi\)
\(420\) 0 0
\(421\) −1.12113e9 −0.732264 −0.366132 0.930563i \(-0.619318\pi\)
−0.366132 + 0.930563i \(0.619318\pi\)
\(422\) 0 0
\(423\) − 3.32081e9i − 2.13331i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8.60778e8i 0.535049i
\(428\) 0 0
\(429\) 2.28511e9 1.39735
\(430\) 0 0
\(431\) 1.06344e9 0.639799 0.319900 0.947451i \(-0.396351\pi\)
0.319900 + 0.947451i \(0.396351\pi\)
\(432\) 0 0
\(433\) 7.05962e8i 0.417901i 0.977926 + 0.208951i \(0.0670048\pi\)
−0.977926 + 0.208951i \(0.932995\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 3.36947e8i 0.193142i
\(438\) 0 0
\(439\) 1.48506e9 0.837760 0.418880 0.908042i \(-0.362423\pi\)
0.418880 + 0.908042i \(0.362423\pi\)
\(440\) 0 0
\(441\) −2.99739e9 −1.66421
\(442\) 0 0
\(443\) − 7.22153e8i − 0.394654i −0.980338 0.197327i \(-0.936774\pi\)
0.980338 0.197327i \(-0.0632260\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) − 9.79462e8i − 0.518694i
\(448\) 0 0
\(449\) 1.22968e9 0.641109 0.320554 0.947230i \(-0.396131\pi\)
0.320554 + 0.947230i \(0.396131\pi\)
\(450\) 0 0
\(451\) 3.56899e8 0.183201
\(452\) 0 0
\(453\) − 1.48088e9i − 0.748473i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 8.85551e7i − 0.0434017i −0.999765 0.0217009i \(-0.993092\pi\)
0.999765 0.0217009i \(-0.00690814\pi\)
\(458\) 0 0
\(459\) 2.51196e9 1.21246
\(460\) 0 0
\(461\) 2.10937e8 0.100277 0.0501384 0.998742i \(-0.484034\pi\)
0.0501384 + 0.998742i \(0.484034\pi\)
\(462\) 0 0
\(463\) − 3.29775e9i − 1.54413i −0.635543 0.772066i \(-0.719224\pi\)
0.635543 0.772066i \(-0.280776\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8.82873e7i − 0.0401134i −0.999799 0.0200567i \(-0.993615\pi\)
0.999799 0.0200567i \(-0.00638467\pi\)
\(468\) 0 0
\(469\) 1.35244e9 0.605357
\(470\) 0 0
\(471\) 5.33113e8 0.235096
\(472\) 0 0
\(473\) − 1.74264e9i − 0.757171i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 8.82807e9i 3.72436i
\(478\) 0 0
\(479\) −4.51507e9 −1.87711 −0.938557 0.345125i \(-0.887836\pi\)
−0.938557 + 0.345125i \(0.887836\pi\)
\(480\) 0 0
\(481\) 4.52075e9 1.85226
\(482\) 0 0
\(483\) 3.12959e9i 1.26378i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) − 3.31338e9i − 1.29993i −0.759965 0.649964i \(-0.774784\pi\)
0.759965 0.649964i \(-0.225216\pi\)
\(488\) 0 0
\(489\) 6.75557e9 2.61265
\(490\) 0 0
\(491\) 4.01694e9 1.53147 0.765737 0.643154i \(-0.222374\pi\)
0.765737 + 0.643154i \(0.222374\pi\)
\(492\) 0 0
\(493\) 1.11275e9i 0.418247i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.16199e9i 0.424577i
\(498\) 0 0
\(499\) 2.70976e9 0.976290 0.488145 0.872763i \(-0.337674\pi\)
0.488145 + 0.872763i \(0.337674\pi\)
\(500\) 0 0
\(501\) −9.64045e9 −3.42504
\(502\) 0 0
\(503\) 3.04579e8i 0.106712i 0.998576 + 0.0533558i \(0.0169918\pi\)
−0.998576 + 0.0533558i \(0.983008\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4.48701e9i 1.52908i
\(508\) 0 0
\(509\) 1.88202e8 0.0632575 0.0316287 0.999500i \(-0.489931\pi\)
0.0316287 + 0.999500i \(0.489931\pi\)
\(510\) 0 0
\(511\) −7.66229e8 −0.254030
\(512\) 0 0
\(513\) 9.29088e8i 0.303841i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 1.72145e9i 0.547870i
\(518\) 0 0
\(519\) 5.32355e9 1.67153
\(520\) 0 0
\(521\) 4.14963e9 1.28552 0.642758 0.766069i \(-0.277790\pi\)
0.642758 + 0.766069i \(0.277790\pi\)
\(522\) 0 0
\(523\) 2.51360e9i 0.768318i 0.923267 + 0.384159i \(0.125509\pi\)
−0.923267 + 0.384159i \(0.874491\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.51352e8i − 0.134332i
\(528\) 0 0
\(529\) −3.27072e9 −0.960613
\(530\) 0 0
\(531\) 4.70359e9 1.36332
\(532\) 0 0
\(533\) 1.52403e9i 0.435962i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 9.51112e8i 0.265046i
\(538\) 0 0
\(539\) 1.55379e9 0.427398
\(540\) 0 0
\(541\) −1.32416e9 −0.359543 −0.179772 0.983708i \(-0.557536\pi\)
−0.179772 + 0.983708i \(0.557536\pi\)
\(542\) 0 0
\(543\) 4.39026e8i 0.117677i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 5.58047e8i − 0.145786i −0.997340 0.0728929i \(-0.976777\pi\)
0.997340 0.0728929i \(-0.0232231\pi\)
\(548\) 0 0
\(549\) −9.19107e9 −2.37062
\(550\) 0 0
\(551\) −4.11567e8 −0.104812
\(552\) 0 0
\(553\) 1.84136e9i 0.463020i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) − 3.30331e9i − 0.809946i −0.914329 0.404973i \(-0.867281\pi\)
0.914329 0.404973i \(-0.132719\pi\)
\(558\) 0 0
\(559\) 7.44143e9 1.80184
\(560\) 0 0
\(561\) −2.36398e9 −0.565293
\(562\) 0 0
\(563\) − 1.22011e8i − 0.0288152i −0.999896 0.0144076i \(-0.995414\pi\)
0.999896 0.0144076i \(-0.00458623\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 3.77371e9i 0.869417i
\(568\) 0 0
\(569\) −5.00925e8 −0.113993 −0.0569967 0.998374i \(-0.518152\pi\)
−0.0569967 + 0.998374i \(0.518152\pi\)
\(570\) 0 0
\(571\) 6.98702e9 1.57060 0.785300 0.619116i \(-0.212509\pi\)
0.785300 + 0.619116i \(0.212509\pi\)
\(572\) 0 0
\(573\) − 7.14253e9i − 1.58603i
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) − 8.16573e9i − 1.76962i −0.465954 0.884809i \(-0.654289\pi\)
0.465954 0.884809i \(-0.345711\pi\)
\(578\) 0 0
\(579\) −9.66769e9 −2.06989
\(580\) 0 0
\(581\) 2.45591e9 0.519512
\(582\) 0 0
\(583\) − 4.57631e9i − 0.956479i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 8.53182e9i − 1.74104i −0.492135 0.870519i \(-0.663783\pi\)
0.492135 0.870519i \(-0.336217\pi\)
\(588\) 0 0
\(589\) 1.66940e8 0.0336632
\(590\) 0 0
\(591\) −1.16358e10 −2.31868
\(592\) 0 0
\(593\) 1.71175e9i 0.337092i 0.985694 + 0.168546i \(0.0539072\pi\)
−0.985694 + 0.168546i \(0.946093\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 1.84475e9i 0.354836i
\(598\) 0 0
\(599\) −4.77362e9 −0.907516 −0.453758 0.891125i \(-0.649917\pi\)
−0.453758 + 0.891125i \(0.649917\pi\)
\(600\) 0 0
\(601\) 7.89998e8 0.148445 0.0742224 0.997242i \(-0.476353\pi\)
0.0742224 + 0.997242i \(0.476353\pi\)
\(602\) 0 0
\(603\) 1.44408e10i 2.68214i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 1.82652e9i 0.331485i 0.986169 + 0.165743i \(0.0530021\pi\)
−0.986169 + 0.165743i \(0.946998\pi\)
\(608\) 0 0
\(609\) −3.82266e9 −0.685813
\(610\) 0 0
\(611\) −7.35094e9 −1.30376
\(612\) 0 0
\(613\) 6.90339e9i 1.21046i 0.796050 + 0.605231i \(0.206919\pi\)
−0.796050 + 0.605231i \(0.793081\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) − 5.69235e9i − 0.975649i −0.872942 0.487825i \(-0.837791\pi\)
0.872942 0.487825i \(-0.162209\pi\)
\(618\) 0 0
\(619\) −4.28594e9 −0.726321 −0.363161 0.931727i \(-0.618302\pi\)
−0.363161 + 0.931727i \(0.618302\pi\)
\(620\) 0 0
\(621\) −1.84069e10 −3.08433
\(622\) 0 0
\(623\) 2.95171e9i 0.489064i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) − 8.74354e8i − 0.141661i
\(628\) 0 0
\(629\) −4.67678e9 −0.749324
\(630\) 0 0
\(631\) 5.61602e8 0.0889869 0.0444935 0.999010i \(-0.485833\pi\)
0.0444935 + 0.999010i \(0.485833\pi\)
\(632\) 0 0
\(633\) − 5.12575e9i − 0.803238i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 6.63501e9i 1.01708i
\(638\) 0 0
\(639\) −1.24073e10 −1.88116
\(640\) 0 0
\(641\) 5.17445e9 0.775998 0.387999 0.921660i \(-0.373166\pi\)
0.387999 + 0.921660i \(0.373166\pi\)
\(642\) 0 0
\(643\) − 1.04374e10i − 1.54830i −0.633004 0.774148i \(-0.718178\pi\)
0.633004 0.774148i \(-0.281822\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.71623e8i 0.141037i 0.997510 + 0.0705185i \(0.0224654\pi\)
−0.997510 + 0.0705185i \(0.977535\pi\)
\(648\) 0 0
\(649\) −2.43825e9 −0.350125
\(650\) 0 0
\(651\) 1.55055e9 0.220268
\(652\) 0 0
\(653\) 7.25223e9i 1.01924i 0.860400 + 0.509619i \(0.170214\pi\)
−0.860400 + 0.509619i \(0.829786\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) − 8.18151e9i − 1.12552i
\(658\) 0 0
\(659\) 3.81924e9 0.519851 0.259925 0.965629i \(-0.416302\pi\)
0.259925 + 0.965629i \(0.416302\pi\)
\(660\) 0 0
\(661\) 1.07881e10 1.45292 0.726459 0.687210i \(-0.241165\pi\)
0.726459 + 0.687210i \(0.241165\pi\)
\(662\) 0 0
\(663\) − 1.00947e10i − 1.34523i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) − 8.15390e9i − 1.06396i
\(668\) 0 0
\(669\) −3.54857e9 −0.458207
\(670\) 0 0
\(671\) 4.76448e9 0.608817
\(672\) 0 0
\(673\) 6.34833e9i 0.802798i 0.915903 + 0.401399i \(0.131476\pi\)
−0.915903 + 0.401399i \(0.868524\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.82566e9i 1.09317i 0.837404 + 0.546584i \(0.184072\pi\)
−0.837404 + 0.546584i \(0.815928\pi\)
\(678\) 0 0
\(679\) 2.76599e9 0.339083
\(680\) 0 0
\(681\) 2.00846e10 2.43696
\(682\) 0 0
\(683\) 4.92331e9i 0.591268i 0.955301 + 0.295634i \(0.0955309\pi\)
−0.955301 + 0.295634i \(0.904469\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) − 3.93027e9i − 0.462459i
\(688\) 0 0
\(689\) 1.95418e10 2.27613
\(690\) 0 0
\(691\) 5.68449e9 0.655418 0.327709 0.944779i \(-0.393723\pi\)
0.327709 + 0.944779i \(0.393723\pi\)
\(692\) 0 0
\(693\) − 5.60395e9i − 0.639628i
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 1.57663e9i − 0.176366i
\(698\) 0 0
\(699\) −2.89989e10 −3.21152
\(700\) 0 0
\(701\) −1.70567e9 −0.187017 −0.0935085 0.995618i \(-0.529808\pi\)
−0.0935085 + 0.995618i \(0.529808\pi\)
\(702\) 0 0
\(703\) − 1.72978e9i − 0.187779i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 4.42351e9i 0.470760i
\(708\) 0 0
\(709\) −4.52189e9 −0.476495 −0.238248 0.971204i \(-0.576573\pi\)
−0.238248 + 0.971204i \(0.576573\pi\)
\(710\) 0 0
\(711\) −1.96613e10 −2.05149
\(712\) 0 0
\(713\) 3.30738e9i 0.341720i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 1.96907e10i − 1.99500i
\(718\) 0 0
\(719\) −3.09206e9 −0.310239 −0.155120 0.987896i \(-0.549576\pi\)
−0.155120 + 0.987896i \(0.549576\pi\)
\(720\) 0 0
\(721\) −1.87033e9 −0.185842
\(722\) 0 0
\(723\) 9.20280e9i 0.905599i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 1.44622e10i − 1.39593i −0.716132 0.697965i \(-0.754089\pi\)
0.716132 0.697965i \(-0.245911\pi\)
\(728\) 0 0
\(729\) 1.09288e9 0.104478
\(730\) 0 0
\(731\) −7.69827e9 −0.728924
\(732\) 0 0
\(733\) − 3.15415e9i − 0.295814i −0.989001 0.147907i \(-0.952746\pi\)
0.989001 0.147907i \(-0.0472536\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) − 7.48585e9i − 0.688819i
\(738\) 0 0
\(739\) 1.54236e10 1.40582 0.702912 0.711277i \(-0.251883\pi\)
0.702912 + 0.711277i \(0.251883\pi\)
\(740\) 0 0
\(741\) 3.73367e9 0.337111
\(742\) 0 0
\(743\) − 1.59520e10i − 1.42677i −0.700772 0.713385i \(-0.747161\pi\)
0.700772 0.713385i \(-0.252839\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 2.62233e10i 2.30179i
\(748\) 0 0
\(749\) 3.32424e7 0.00289072
\(750\) 0 0
\(751\) −6.13964e9 −0.528936 −0.264468 0.964395i \(-0.585196\pi\)
−0.264468 + 0.964395i \(0.585196\pi\)
\(752\) 0 0
\(753\) − 3.30986e10i − 2.82506i
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 1.42818e10i − 1.19660i −0.801273 0.598299i \(-0.795843\pi\)
0.801273 0.598299i \(-0.204157\pi\)
\(758\) 0 0
\(759\) 1.73226e10 1.43802
\(760\) 0 0
\(761\) 1.47536e10 1.21353 0.606767 0.794880i \(-0.292466\pi\)
0.606767 + 0.794880i \(0.292466\pi\)
\(762\) 0 0
\(763\) − 4.35863e9i − 0.355234i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) − 1.04118e10i − 0.833190i
\(768\) 0 0
\(769\) −1.97592e10 −1.56685 −0.783424 0.621487i \(-0.786529\pi\)
−0.783424 + 0.621487i \(0.786529\pi\)
\(770\) 0 0
\(771\) 2.68014e10 2.10604
\(772\) 0 0
\(773\) − 1.01370e10i − 0.789374i −0.918816 0.394687i \(-0.870853\pi\)
0.918816 0.394687i \(-0.129147\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) − 1.60663e10i − 1.22869i
\(778\) 0 0
\(779\) 5.83142e8 0.0441970
\(780\) 0 0
\(781\) 6.43174e9 0.483114
\(782\) 0 0
\(783\) − 2.24833e10i − 1.67376i
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 1.27882e10i 0.935188i 0.883943 + 0.467594i \(0.154879\pi\)
−0.883943 + 0.467594i \(0.845121\pi\)
\(788\) 0 0
\(789\) 1.84261e10 1.33556
\(790\) 0 0
\(791\) 4.25854e9 0.305945
\(792\) 0 0
\(793\) 2.03453e10i 1.44880i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 7.38617e9i − 0.516791i −0.966039 0.258396i \(-0.916806\pi\)
0.966039 0.258396i \(-0.0831938\pi\)
\(798\) 0 0
\(799\) 7.60466e9 0.527431
\(800\) 0 0
\(801\) −3.15173e10 −2.16688
\(802\) 0 0
\(803\) 4.24114e9i 0.289054i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) − 1.24348e10i − 0.832875i
\(808\) 0 0
\(809\) −1.53742e10 −1.02087 −0.510437 0.859915i \(-0.670516\pi\)
−0.510437 + 0.859915i \(0.670516\pi\)
\(810\) 0 0
\(811\) −9.77882e9 −0.643744 −0.321872 0.946783i \(-0.604312\pi\)
−0.321872 + 0.946783i \(0.604312\pi\)
\(812\) 0 0
\(813\) − 3.10745e10i − 2.02809i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) − 2.84733e9i − 0.182667i
\(818\) 0 0
\(819\) 2.39300e10 1.52212
\(820\) 0 0
\(821\) 1.83470e10 1.15708 0.578540 0.815654i \(-0.303623\pi\)
0.578540 + 0.815654i \(0.303623\pi\)
\(822\) 0 0
\(823\) − 3.16960e10i − 1.98201i −0.133829 0.991004i \(-0.542727\pi\)
0.133829 0.991004i \(-0.457273\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 6.12845e9i 0.376774i 0.982095 + 0.188387i \(0.0603260\pi\)
−0.982095 + 0.188387i \(0.939674\pi\)
\(828\) 0 0
\(829\) 1.24652e10 0.759904 0.379952 0.925006i \(-0.375940\pi\)
0.379952 + 0.925006i \(0.375940\pi\)
\(830\) 0 0
\(831\) −3.32522e10 −2.01010
\(832\) 0 0
\(833\) − 6.86402e9i − 0.411454i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 9.11966e9i 0.537575i
\(838\) 0 0
\(839\) −1.82237e10 −1.06530 −0.532648 0.846337i \(-0.678803\pi\)
−0.532648 + 0.846337i \(0.678803\pi\)
\(840\) 0 0
\(841\) −7.29024e9 −0.422625
\(842\) 0 0
\(843\) 5.02118e10i 2.88675i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 5.98117e9i − 0.338216i
\(848\) 0 0
\(849\) 6.76870e9 0.379602
\(850\) 0 0
\(851\) 3.42701e10 1.90617
\(852\) 0 0
\(853\) 2.48619e10i 1.37155i 0.727812 + 0.685777i \(0.240537\pi\)
−0.727812 + 0.685777i \(0.759463\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 2.96761e10i 1.61055i 0.592902 + 0.805275i \(0.297982\pi\)
−0.592902 + 0.805275i \(0.702018\pi\)
\(858\) 0 0
\(859\) 1.14772e10 0.617819 0.308910 0.951091i \(-0.400036\pi\)
0.308910 + 0.951091i \(0.400036\pi\)
\(860\) 0 0
\(861\) 5.41626e9 0.289194
\(862\) 0 0
\(863\) 2.13485e10i 1.13066i 0.824866 + 0.565328i \(0.191250\pi\)
−0.824866 + 0.565328i \(0.808750\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) − 2.40254e10i − 1.25200i
\(868\) 0 0
\(869\) 1.01921e10 0.526858
\(870\) 0 0
\(871\) 3.19661e10 1.63918
\(872\) 0 0
\(873\) 2.95342e10i 1.50236i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) − 7.92753e9i − 0.396862i −0.980115 0.198431i \(-0.936415\pi\)
0.980115 0.198431i \(-0.0635846\pi\)
\(878\) 0 0
\(879\) −6.33805e10 −3.14771
\(880\) 0 0
\(881\) 7.32045e9 0.360680 0.180340 0.983604i \(-0.442280\pi\)
0.180340 + 0.983604i \(0.442280\pi\)
\(882\) 0 0
\(883\) − 3.54988e9i − 0.173521i −0.996229 0.0867604i \(-0.972349\pi\)
0.996229 0.0867604i \(-0.0276514\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 5.80634e9i − 0.279364i −0.990196 0.139682i \(-0.955392\pi\)
0.990196 0.139682i \(-0.0446080\pi\)
\(888\) 0 0
\(889\) −1.64066e10 −0.783182
\(890\) 0 0
\(891\) 2.08878e10 0.989285
\(892\) 0 0
\(893\) 2.81270e9i 0.132173i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 7.39709e10i 3.42206i
\(898\) 0 0
\(899\) −4.03982e9 −0.185440
\(900\) 0 0
\(901\) −2.02163e10 −0.920798
\(902\) 0 0
\(903\) − 2.64462e10i − 1.19524i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 1.78240e10i − 0.793196i −0.917992 0.396598i \(-0.870191\pi\)
0.917992 0.396598i \(-0.129809\pi\)
\(908\) 0 0
\(909\) −4.72326e10 −2.08578
\(910\) 0 0
\(911\) −1.87703e10 −0.822538 −0.411269 0.911514i \(-0.634914\pi\)
−0.411269 + 0.911514i \(0.634914\pi\)
\(912\) 0 0
\(913\) − 1.35937e10i − 0.591138i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 3.08280e8i 0.0132024i
\(918\) 0 0
\(919\) 3.75844e10 1.59736 0.798681 0.601754i \(-0.205531\pi\)
0.798681 + 0.601754i \(0.205531\pi\)
\(920\) 0 0
\(921\) −6.89197e10 −2.90693
\(922\) 0 0
\(923\) 2.74648e10i 1.14966i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) − 1.99707e10i − 0.823404i
\(928\) 0 0
\(929\) 1.92372e10 0.787205 0.393602 0.919281i \(-0.371229\pi\)
0.393602 + 0.919281i \(0.371229\pi\)
\(930\) 0 0
\(931\) 2.53876e9 0.103109
\(932\) 0 0
\(933\) 5.48943e10i 2.21279i
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.04732e9i 0.0415900i 0.999784 + 0.0207950i \(0.00661973\pi\)
−0.999784 + 0.0207950i \(0.993380\pi\)
\(938\) 0 0
\(939\) −5.57413e10 −2.19709
\(940\) 0 0
\(941\) −7.97861e9 −0.312150 −0.156075 0.987745i \(-0.549884\pi\)
−0.156075 + 0.987745i \(0.549884\pi\)
\(942\) 0 0
\(943\) 1.15531e10i 0.448650i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 4.26943e9i 0.163360i 0.996659 + 0.0816799i \(0.0260285\pi\)
−0.996659 + 0.0816799i \(0.973971\pi\)
\(948\) 0 0
\(949\) −1.81106e10 −0.687860
\(950\) 0 0
\(951\) −2.97963e10 −1.12339
\(952\) 0 0
\(953\) 1.06048e10i 0.396897i 0.980111 + 0.198449i \(0.0635903\pi\)
−0.980111 + 0.198449i \(0.936410\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 2.11588e10i 0.780367i
\(958\) 0 0
\(959\) 1.34904e10 0.493922
\(960\) 0 0
\(961\) −2.58740e10 −0.940441
\(962\) 0 0
\(963\) 3.54950e8i 0.0128078i
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 1.65090e10i 0.587123i 0.955940 + 0.293562i \(0.0948406\pi\)
−0.955940 + 0.293562i \(0.905159\pi\)
\(968\) 0 0
\(969\) −3.86254e9 −0.136377
\(970\) 0 0
\(971\) 2.46094e10 0.862649 0.431324 0.902197i \(-0.358046\pi\)
0.431324 + 0.902197i \(0.358046\pi\)
\(972\) 0 0
\(973\) − 1.45503e10i − 0.506379i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 2.53886e10i − 0.870979i −0.900194 0.435489i \(-0.856575\pi\)
0.900194 0.435489i \(-0.143425\pi\)
\(978\) 0 0
\(979\) 1.63380e10 0.556492
\(980\) 0 0
\(981\) 4.65399e10 1.57392
\(982\) 0 0
\(983\) 1.87585e10i 0.629884i 0.949111 + 0.314942i \(0.101985\pi\)
−0.949111 + 0.314942i \(0.898015\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 2.61246e10i 0.864846i
\(988\) 0 0
\(989\) 5.64107e10 1.85428
\(990\) 0 0
\(991\) 3.59792e9 0.117434 0.0587170 0.998275i \(-0.481299\pi\)
0.0587170 + 0.998275i \(0.481299\pi\)
\(992\) 0 0
\(993\) − 2.56656e10i − 0.831821i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 1.34287e10i − 0.429143i −0.976708 0.214571i \(-0.931165\pi\)
0.976708 0.214571i \(-0.0688354\pi\)
\(998\) 0 0
\(999\) 9.44952e10 2.99868
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.8.c.b.49.1 2
4.3 odd 2 200.8.c.a.49.2 2
5.2 odd 4 400.8.a.b.1.1 1
5.3 odd 4 16.8.a.c.1.1 1
5.4 even 2 inner 400.8.c.b.49.2 2
15.8 even 4 144.8.a.g.1.1 1
20.3 even 4 8.8.a.a.1.1 1
20.7 even 4 200.8.a.i.1.1 1
20.19 odd 2 200.8.c.a.49.1 2
40.3 even 4 64.8.a.g.1.1 1
40.13 odd 4 64.8.a.a.1.1 1
60.23 odd 4 72.8.a.d.1.1 1
80.3 even 4 256.8.b.e.129.1 2
80.13 odd 4 256.8.b.c.129.2 2
80.43 even 4 256.8.b.e.129.2 2
80.53 odd 4 256.8.b.c.129.1 2
120.53 even 4 576.8.a.k.1.1 1
120.83 odd 4 576.8.a.j.1.1 1
140.83 odd 4 392.8.a.d.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.8.a.a.1.1 1 20.3 even 4
16.8.a.c.1.1 1 5.3 odd 4
64.8.a.a.1.1 1 40.13 odd 4
64.8.a.g.1.1 1 40.3 even 4
72.8.a.d.1.1 1 60.23 odd 4
144.8.a.g.1.1 1 15.8 even 4
200.8.a.i.1.1 1 20.7 even 4
200.8.c.a.49.1 2 20.19 odd 2
200.8.c.a.49.2 2 4.3 odd 2
256.8.b.c.129.1 2 80.53 odd 4
256.8.b.c.129.2 2 80.13 odd 4
256.8.b.e.129.1 2 80.3 even 4
256.8.b.e.129.2 2 80.43 even 4
392.8.a.d.1.1 1 140.83 odd 4
400.8.a.b.1.1 1 5.2 odd 4
400.8.c.b.49.1 2 1.1 even 1 trivial
400.8.c.b.49.2 2 5.4 even 2 inner
576.8.a.j.1.1 1 120.83 odd 4
576.8.a.k.1.1 1 120.53 even 4