Newspace parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(64.1535279252\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{241})\) |
Defining polynomial: |
\( x^{4} + 121x^{2} + 3600 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{11}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 200) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 121x^{2} + 3600 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{3} + 61\nu ) / 60 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 181\nu ) / 60 \)
|
\(\beta_{3}\) | \(=\) |
\( 2\nu^{2} + 121 \)
|
\(\nu\) | \(=\) |
\( ( \beta_{2} - \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{3} - 121 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -61\beta_{2} + 181\beta_1 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).
\(n\) | \(101\) | \(177\) | \(351\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
49.1 |
|
0 | − | 19.5242i | 0 | 0 | 0 | − | 35.0483i | 0 | −138.193 | 0 | ||||||||||||||||||||||||||||
49.2 | 0 | − | 11.5242i | 0 | 0 | 0 | − | 27.0483i | 0 | 110.193 | 0 | |||||||||||||||||||||||||||||
49.3 | 0 | 11.5242i | 0 | 0 | 0 | 27.0483i | 0 | 110.193 | 0 | |||||||||||||||||||||||||||||||
49.4 | 0 | 19.5242i | 0 | 0 | 0 | 35.0483i | 0 | −138.193 | 0 | |||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.6.c.o | 4 | |
4.b | odd | 2 | 1 | 200.6.c.f | 4 | ||
5.b | even | 2 | 1 | inner | 400.6.c.o | 4 | |
5.c | odd | 4 | 1 | 400.6.a.r | 2 | ||
5.c | odd | 4 | 1 | 400.6.a.u | 2 | ||
20.d | odd | 2 | 1 | 200.6.c.f | 4 | ||
20.e | even | 4 | 1 | 200.6.a.e | ✓ | 2 | |
20.e | even | 4 | 1 | 200.6.a.f | yes | 2 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
200.6.a.e | ✓ | 2 | 20.e | even | 4 | 1 | |
200.6.a.f | yes | 2 | 20.e | even | 4 | 1 | |
200.6.c.f | 4 | 4.b | odd | 2 | 1 | ||
200.6.c.f | 4 | 20.d | odd | 2 | 1 | ||
400.6.a.r | 2 | 5.c | odd | 4 | 1 | ||
400.6.a.u | 2 | 5.c | odd | 4 | 1 | ||
400.6.c.o | 4 | 1.a | even | 1 | 1 | trivial | |
400.6.c.o | 4 | 5.b | even | 2 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} + 514T_{3}^{2} + 50625 \)
acting on \(S_{6}^{\mathrm{new}}(400, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} + 514 T^{2} + 50625 \)
$5$
\( T^{4} \)
$7$
\( T^{4} + 1960 T^{2} + 898704 \)
$11$
\( (T^{2} - 200 T - 96281)^{2} \)
$13$
\( T^{4} + 1478560 T^{2} + \cdots + 318150146304 \)
$17$
\( T^{4} + 162034 T^{2} + \cdots + 1795640625 \)
$19$
\( (T^{2} + 840 T - 662521)^{2} \)
$23$
\( T^{4} + 6534280 T^{2} + \cdots + 1855011312144 \)
$29$
\( (T^{2} - 4680 T + 196736)^{2} \)
$31$
\( (T^{2} - 5008 T - 23931140)^{2} \)
$37$
\( T^{4} + \cdots + 302523267094416 \)
$41$
\( (T^{2} + 5334 T - 204026247)^{2} \)
$43$
\( T^{4} + 558073120 T^{2} + \cdots + 77\!\cdots\!84 \)
$47$
\( (T^{2} + 169937296)^{2} \)
$53$
\( T^{4} + 1158148872 T^{2} + \cdots + 26\!\cdots\!96 \)
$59$
\( (T^{2} + 81776 T + 1630122048)^{2} \)
$61$
\( (T^{2} + 46932 T + 550186580)^{2} \)
$67$
\( T^{4} + 2417557010 T^{2} + \cdots + 13\!\cdots\!29 \)
$71$
\( (T^{2} + 7448 T - 14650800)^{2} \)
$73$
\( T^{4} + 5923612530 T^{2} + \cdots + 87\!\cdots\!29 \)
$79$
\( (T^{2} + 108104 T + 662040300)^{2} \)
$83$
\( T^{4} + 7481654530 T^{2} + \cdots + 11\!\cdots\!29 \)
$89$
\( (T^{2} + 70990 T - 4823083791)^{2} \)
$97$
\( T^{4} + 11650234952 T^{2} + \cdots + 12\!\cdots\!76 \)
show more
show less