Properties

Label 400.6.c.i
Level 400
Weight 6
Character orbit 400.c
Analytic conductor 64.154
Analytic rank 0
Dimension 2
CM no
Inner twists 2

Related objects

Downloads

Learn more about

Newspace parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Self dual: no
Analytic conductor: \(64.1535279252\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
Defining polynomial: \(x^{2} + 1\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 10)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 6 i q^{3} + 118 i q^{7} + 207 q^{9} +O(q^{10})\) \( q + 6 i q^{3} + 118 i q^{7} + 207 q^{9} -192 q^{11} -1106 i q^{13} + 762 i q^{17} -2740 q^{19} -708 q^{21} + 1566 i q^{23} + 2700 i q^{27} -5910 q^{29} + 6868 q^{31} -1152 i q^{33} -5518 i q^{37} + 6636 q^{39} -378 q^{41} -2434 i q^{43} -13122 i q^{47} + 2883 q^{49} -4572 q^{51} + 9174 i q^{53} -16440 i q^{57} -34980 q^{59} -9838 q^{61} + 24426 i q^{63} -33722 i q^{67} -9396 q^{69} -70212 q^{71} -21986 i q^{73} -22656 i q^{77} + 4520 q^{79} + 34101 q^{81} -109074 i q^{83} -35460 i q^{87} -38490 q^{89} + 130508 q^{91} + 41208 i q^{93} -1918 i q^{97} -39744 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2q + 414q^{9} + O(q^{10}) \) \( 2q + 414q^{9} - 384q^{11} - 5480q^{19} - 1416q^{21} - 11820q^{29} + 13736q^{31} + 13272q^{39} - 756q^{41} + 5766q^{49} - 9144q^{51} - 69960q^{59} - 19676q^{61} - 18792q^{69} - 140424q^{71} + 9040q^{79} + 68202q^{81} - 76980q^{89} + 261016q^{91} - 79488q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
49.1
1.00000i
1.00000i
0 6.00000i 0 0 0 118.000i 0 207.000 0
49.2 0 6.00000i 0 0 0 118.000i 0 207.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.6.c.i 2
4.b odd 2 1 50.6.b.b 2
5.b even 2 1 inner 400.6.c.i 2
5.c odd 4 1 80.6.a.c 1
5.c odd 4 1 400.6.a.i 1
12.b even 2 1 450.6.c.f 2
15.e even 4 1 720.6.a.v 1
20.d odd 2 1 50.6.b.b 2
20.e even 4 1 10.6.a.c 1
20.e even 4 1 50.6.a.b 1
40.i odd 4 1 320.6.a.k 1
40.k even 4 1 320.6.a.f 1
60.h even 2 1 450.6.c.f 2
60.l odd 4 1 90.6.a.b 1
60.l odd 4 1 450.6.a.u 1
140.j odd 4 1 490.6.a.k 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
10.6.a.c 1 20.e even 4 1
50.6.a.b 1 20.e even 4 1
50.6.b.b 2 4.b odd 2 1
50.6.b.b 2 20.d odd 2 1
80.6.a.c 1 5.c odd 4 1
90.6.a.b 1 60.l odd 4 1
320.6.a.f 1 40.k even 4 1
320.6.a.k 1 40.i odd 4 1
400.6.a.i 1 5.c odd 4 1
400.6.c.i 2 1.a even 1 1 trivial
400.6.c.i 2 5.b even 2 1 inner
450.6.a.u 1 60.l odd 4 1
450.6.c.f 2 12.b even 2 1
450.6.c.f 2 60.h even 2 1
490.6.a.k 1 140.j odd 4 1
720.6.a.v 1 15.e even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 36 \) acting on \(S_{6}^{\mathrm{new}}(400, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 450 T^{2} + 59049 T^{4} \)
$5$ 1
$7$ \( 1 - 19690 T^{2} + 282475249 T^{4} \)
$11$ \( ( 1 + 192 T + 161051 T^{2} )^{2} \)
$13$ \( 1 + 480650 T^{2} + 137858491849 T^{4} \)
$17$ \( 1 - 2259070 T^{2} + 2015993900449 T^{4} \)
$19$ \( ( 1 + 2740 T + 2476099 T^{2} )^{2} \)
$23$ \( 1 - 10420330 T^{2} + 41426511213649 T^{4} \)
$29$ \( ( 1 + 5910 T + 20511149 T^{2} )^{2} \)
$31$ \( ( 1 - 6868 T + 28629151 T^{2} )^{2} \)
$37$ \( 1 - 108239590 T^{2} + 4808584372417849 T^{4} \)
$41$ \( ( 1 + 378 T + 115856201 T^{2} )^{2} \)
$43$ \( 1 - 288092530 T^{2} + 21611482313284249 T^{4} \)
$47$ \( 1 - 286503130 T^{2} + 52599132235830049 T^{4} \)
$53$ \( 1 - 752228710 T^{2} + 174887470365513049 T^{4} \)
$59$ \( ( 1 + 34980 T + 714924299 T^{2} )^{2} \)
$61$ \( ( 1 + 9838 T + 844596301 T^{2} )^{2} \)
$67$ \( 1 - 1563076930 T^{2} + 1822837804551761449 T^{4} \)
$71$ \( ( 1 + 70212 T + 1804229351 T^{2} )^{2} \)
$73$ \( 1 - 3662758990 T^{2} + 4297625829703557649 T^{4} \)
$79$ \( ( 1 - 4520 T + 3077056399 T^{2} )^{2} \)
$83$ \( 1 + 4019056190 T^{2} + 15516041187205853449 T^{4} \)
$89$ \( ( 1 + 38490 T + 5584059449 T^{2} )^{2} \)
$97$ \( 1 - 17171001790 T^{2} + 73742412689492826049 T^{4} \)
show more
show less