Newspace parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 6 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.a (trivial) |
Newform invariants
Self dual: | yes |
Analytic conductor: | \(64.1535279252\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.4.1595208.1 |
Defining polynomial: |
\( x^{4} - x^{3} - 20x^{2} + 33x - 3 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{8}\cdot 5^{2} \) |
Twist minimal: | no (minimal twist has level 40) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} - x^{3} - 20x^{2} + 33x - 3 \)
:
\(\beta_{1}\) | \(=\) |
\( -2\nu^{3} + 40\nu - 29 \)
|
\(\beta_{2}\) | \(=\) |
\( ( 22\nu^{3} + 40\nu^{2} - 240\nu - 141 ) / 3 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -8\nu^{3} + 40\nu^{2} + 120\nu - 516 ) / 3 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{3} + \beta_{2} + 5\beta _1 + 20 ) / 80 \)
|
\(\nu^{2}\) | \(=\) |
\( ( 5\beta_{3} + \beta_{2} - 3\beta _1 + 820 ) / 80 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -\beta_{3} + \beta_{2} + 3\beta _1 - 38 ) / 4 \)
|
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.1 |
|
0 | −24.1383 | 0 | 0 | 0 | 179.876 | 0 | 339.657 | 0 | ||||||||||||||||||||||||||||||
1.2 | 0 | −5.49000 | 0 | 0 | 0 | −188.968 | 0 | −212.860 | 0 | |||||||||||||||||||||||||||||||
1.3 | 0 | 4.69449 | 0 | 0 | 0 | 10.2635 | 0 | −220.962 | 0 | |||||||||||||||||||||||||||||||
1.4 | 0 | 28.9338 | 0 | 0 | 0 | 146.828 | 0 | 594.165 | 0 | |||||||||||||||||||||||||||||||
Atkin-Lehner signs
\( p \) | Sign |
---|---|
\(2\) | \(1\) |
\(5\) | \(-1\) |
Inner twists
This newform does not admit any (nontrivial) inner twists.
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 400.6.a.ba | 4 | |
4.b | odd | 2 | 1 | 200.6.a.j | 4 | ||
5.b | even | 2 | 1 | 400.6.a.z | 4 | ||
5.c | odd | 4 | 2 | 80.6.c.d | 8 | ||
15.e | even | 4 | 2 | 720.6.f.n | 8 | ||
20.d | odd | 2 | 1 | 200.6.a.k | 4 | ||
20.e | even | 4 | 2 | 40.6.c.a | ✓ | 8 | |
40.i | odd | 4 | 2 | 320.6.c.i | 8 | ||
40.k | even | 4 | 2 | 320.6.c.j | 8 | ||
60.l | odd | 4 | 2 | 360.6.f.b | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
40.6.c.a | ✓ | 8 | 20.e | even | 4 | 2 | |
80.6.c.d | 8 | 5.c | odd | 4 | 2 | ||
200.6.a.j | 4 | 4.b | odd | 2 | 1 | ||
200.6.a.k | 4 | 20.d | odd | 2 | 1 | ||
320.6.c.i | 8 | 40.i | odd | 4 | 2 | ||
320.6.c.j | 8 | 40.k | even | 4 | 2 | ||
360.6.f.b | 8 | 60.l | odd | 4 | 2 | ||
400.6.a.z | 4 | 5.b | even | 2 | 1 | ||
400.6.a.ba | 4 | 1.a | even | 1 | 1 | trivial | |
720.6.f.n | 8 | 15.e | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{3}^{4} - 4T_{3}^{3} - 728T_{3}^{2} - 432T_{3} + 18000 \)
acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(400))\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} \)
$3$
\( T^{4} - 4 T^{3} - 728 T^{2} + \cdots + 18000 \)
$5$
\( T^{4} \)
$7$
\( T^{4} - 148 T^{3} + \cdots - 51222832 \)
$11$
\( T^{4} - 368 T^{3} + \cdots + 37397137664 \)
$13$
\( T^{4} + 440 T^{3} + \cdots + 10683053312 \)
$17$
\( T^{4} - 672 T^{3} + \cdots + 22118400000 \)
$19$
\( T^{4} - 688 T^{3} + \cdots + 1042985883904 \)
$23$
\( T^{4} - 4492 T^{3} + \cdots - 5643370924592 \)
$29$
\( T^{4} + 2936 T^{3} + \cdots - 97147517576176 \)
$31$
\( T^{4} + \cdots + 244229603328000 \)
$37$
\( T^{4} + 8792 T^{3} + \cdots - 16\!\cdots\!36 \)
$41$
\( T^{4} + \cdots - 296811236945008 \)
$43$
\( T^{4} - 48276 T^{3} + \cdots - 74\!\cdots\!72 \)
$47$
\( T^{4} - 14724 T^{3} + \cdots + 11\!\cdots\!96 \)
$53$
\( T^{4} + 84296 T^{3} + \cdots + 11\!\cdots\!76 \)
$59$
\( T^{4} - 45840 T^{3} + \cdots - 11\!\cdots\!48 \)
$61$
\( T^{4} - 61928 T^{3} + \cdots + 31\!\cdots\!00 \)
$67$
\( T^{4} - 72700 T^{3} + \cdots + 71\!\cdots\!32 \)
$71$
\( T^{4} - 62816 T^{3} + \cdots + 25\!\cdots\!00 \)
$73$
\( T^{4} + 133072 T^{3} + \cdots - 15\!\cdots\!32 \)
$79$
\( T^{4} - 21632 T^{3} + \cdots - 96\!\cdots\!00 \)
$83$
\( T^{4} - 74660 T^{3} + \cdots + 25\!\cdots\!52 \)
$89$
\( T^{4} - 20952 T^{3} + \cdots - 93\!\cdots\!76 \)
$97$
\( T^{4} + 59456 T^{3} + \cdots - 14\!\cdots\!84 \)
show more
show less