Properties

Label 400.4.c
Level $400$
Weight $4$
Character orbit 400.c
Rep. character $\chi_{400}(49,\cdot)$
Character field $\Q$
Dimension $26$
Newform subspaces $13$
Sturm bound $240$
Trace bound $11$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 13 \)
Sturm bound: \(240\)
Trace bound: \(11\)
Distinguishing \(T_p\): \(3\), \(7\), \(11\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(400, [\chi])\).

Total New Old
Modular forms 198 28 170
Cusp forms 162 26 136
Eisenstein series 36 2 34

Trace form

\( 26 q - 214 q^{9} + 68 q^{11} - 140 q^{19} + 80 q^{21} - 84 q^{29} - 448 q^{31} + 808 q^{39} + 176 q^{41} - 1490 q^{49} + 236 q^{51} - 1752 q^{59} - 524 q^{61} + 1600 q^{69} + 872 q^{71} + 1448 q^{79} + 1090 q^{81}+ \cdots - 9720 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(400, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
400.4.c.a 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 40.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+5\beta q^{3}+9\beta q^{7}-73 q^{9}+16 q^{11}+\cdots\)
400.4.c.b 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 200.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+9 i q^{3}-26 i q^{7}-54 q^{9}+59 q^{11}+\cdots\)
400.4.c.c 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 10.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+4\beta q^{3}-2\beta q^{7}-37 q^{9}-12 q^{11}+\cdots\)
400.4.c.d 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 50.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+7 i q^{3}+34 i q^{7}-22 q^{9}-27 q^{11}+\cdots\)
400.4.c.e 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 25.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+7 i q^{3}-6 i q^{7}-22 q^{9}+43 q^{11}+\cdots\)
400.4.c.f 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 40.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+3\beta q^{3}-17\beta q^{7}-9 q^{9}-16 q^{11}+\cdots\)
400.4.c.g 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 200.4.a.c \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+5 i q^{3}-2 i q^{7}+2 q^{9}-39 q^{11}+\cdots\)
400.4.c.h 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 40.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{3}-8\beta q^{7}+11 q^{9}-36 q^{11}+\cdots\)
400.4.c.i 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 8.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{3}+12\beta q^{7}+11 q^{9}+44 q^{11}+\cdots\)
400.4.c.j 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 20.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+2\beta q^{3}+8\beta q^{7}+11 q^{9}+60 q^{11}+\cdots\)
400.4.c.k 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 5.4.a.a \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta q^{3}-3\beta q^{7}+23 q^{9}-32 q^{11}+\cdots\)
400.4.c.l 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 100.4.a.b \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}-26 i q^{7}+26 q^{9}-45 q^{11}+\cdots\)
400.4.c.m 400.c 5.b $2$ $23.601$ \(\Q(\sqrt{-1}) \) None 200.4.a.e \(0\) \(0\) \(0\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+i q^{3}+6 i q^{7}+26 q^{9}+19 q^{11}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(400, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)