Properties

Label 400.4.a.v.1.2
Level $400$
Weight $4$
Character 400.1
Self dual yes
Analytic conductor $23.601$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [400,4,Mod(1,400)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(400, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("400.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 400.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(23.6007640023\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{6}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 6 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 40)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(2.44949\) of defining polynomial
Character \(\chi\) \(=\) 400.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.89898 q^{3} -16.6969 q^{7} -18.5959 q^{9} +19.1918 q^{11} +61.7980 q^{13} -30.3837 q^{17} -59.1918 q^{19} -48.4041 q^{21} -205.687 q^{23} -132.182 q^{27} +8.38367 q^{29} -331.151 q^{31} +55.6367 q^{33} +266.565 q^{37} +179.151 q^{39} -320.788 q^{41} -83.1214 q^{43} +276.434 q^{47} -64.2122 q^{49} -88.0816 q^{51} +390.888 q^{53} -171.596 q^{57} -779.110 q^{59} -483.171 q^{61} +310.495 q^{63} -123.707 q^{67} -596.282 q^{69} -187.233 q^{71} -778.706 q^{73} -320.445 q^{77} +446.384 q^{79} +118.898 q^{81} +1054.05 q^{83} +24.3041 q^{87} -94.8490 q^{89} -1031.84 q^{91} -960.000 q^{93} +252.041 q^{97} -356.890 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{3} - 4 q^{7} + 2 q^{9} - 40 q^{11} + 104 q^{13} + 96 q^{17} - 40 q^{19} - 136 q^{21} - 284 q^{23} - 88 q^{27} - 140 q^{29} - 192 q^{31} + 464 q^{33} + 200 q^{37} - 112 q^{39} - 524 q^{41} - 372 q^{43}+ \cdots - 1576 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.89898 0.557909 0.278954 0.960304i \(-0.410012\pi\)
0.278954 + 0.960304i \(0.410012\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −16.6969 −0.901550 −0.450775 0.892638i \(-0.648852\pi\)
−0.450775 + 0.892638i \(0.648852\pi\)
\(8\) 0 0
\(9\) −18.5959 −0.688738
\(10\) 0 0
\(11\) 19.1918 0.526051 0.263025 0.964789i \(-0.415280\pi\)
0.263025 + 0.964789i \(0.415280\pi\)
\(12\) 0 0
\(13\) 61.7980 1.31844 0.659218 0.751952i \(-0.270887\pi\)
0.659218 + 0.751952i \(0.270887\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −30.3837 −0.433478 −0.216739 0.976230i \(-0.569542\pi\)
−0.216739 + 0.976230i \(0.569542\pi\)
\(18\) 0 0
\(19\) −59.1918 −0.714713 −0.357356 0.933968i \(-0.616322\pi\)
−0.357356 + 0.933968i \(0.616322\pi\)
\(20\) 0 0
\(21\) −48.4041 −0.502983
\(22\) 0 0
\(23\) −205.687 −1.86472 −0.932362 0.361526i \(-0.882256\pi\)
−0.932362 + 0.361526i \(0.882256\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) −132.182 −0.942162
\(28\) 0 0
\(29\) 8.38367 0.0536831 0.0268415 0.999640i \(-0.491455\pi\)
0.0268415 + 0.999640i \(0.491455\pi\)
\(30\) 0 0
\(31\) −331.151 −1.91860 −0.959298 0.282396i \(-0.908871\pi\)
−0.959298 + 0.282396i \(0.908871\pi\)
\(32\) 0 0
\(33\) 55.6367 0.293488
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 266.565 1.18441 0.592204 0.805788i \(-0.298258\pi\)
0.592204 + 0.805788i \(0.298258\pi\)
\(38\) 0 0
\(39\) 179.151 0.735567
\(40\) 0 0
\(41\) −320.788 −1.22192 −0.610959 0.791662i \(-0.709216\pi\)
−0.610959 + 0.791662i \(0.709216\pi\)
\(42\) 0 0
\(43\) −83.1214 −0.294788 −0.147394 0.989078i \(-0.547089\pi\)
−0.147394 + 0.989078i \(0.547089\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 276.434 0.857915 0.428957 0.903325i \(-0.358881\pi\)
0.428957 + 0.903325i \(0.358881\pi\)
\(48\) 0 0
\(49\) −64.2122 −0.187208
\(50\) 0 0
\(51\) −88.0816 −0.241841
\(52\) 0 0
\(53\) 390.888 1.01307 0.506534 0.862220i \(-0.330927\pi\)
0.506534 + 0.862220i \(0.330927\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −171.596 −0.398744
\(58\) 0 0
\(59\) −779.110 −1.71918 −0.859589 0.510986i \(-0.829280\pi\)
−0.859589 + 0.510986i \(0.829280\pi\)
\(60\) 0 0
\(61\) −483.171 −1.01416 −0.507080 0.861899i \(-0.669275\pi\)
−0.507080 + 0.861899i \(0.669275\pi\)
\(62\) 0 0
\(63\) 310.495 0.620931
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −123.707 −0.225571 −0.112785 0.993619i \(-0.535977\pi\)
−0.112785 + 0.993619i \(0.535977\pi\)
\(68\) 0 0
\(69\) −596.282 −1.04035
\(70\) 0 0
\(71\) −187.233 −0.312964 −0.156482 0.987681i \(-0.550015\pi\)
−0.156482 + 0.987681i \(0.550015\pi\)
\(72\) 0 0
\(73\) −778.706 −1.24850 −0.624251 0.781224i \(-0.714596\pi\)
−0.624251 + 0.781224i \(0.714596\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −320.445 −0.474261
\(78\) 0 0
\(79\) 446.384 0.635723 0.317861 0.948137i \(-0.397035\pi\)
0.317861 + 0.948137i \(0.397035\pi\)
\(80\) 0 0
\(81\) 118.898 0.163097
\(82\) 0 0
\(83\) 1054.05 1.39394 0.696970 0.717100i \(-0.254531\pi\)
0.696970 + 0.717100i \(0.254531\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 24.3041 0.0299503
\(88\) 0 0
\(89\) −94.8490 −0.112966 −0.0564830 0.998404i \(-0.517989\pi\)
−0.0564830 + 0.998404i \(0.517989\pi\)
\(90\) 0 0
\(91\) −1031.84 −1.18864
\(92\) 0 0
\(93\) −960.000 −1.07040
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 252.041 0.263823 0.131912 0.991261i \(-0.457888\pi\)
0.131912 + 0.991261i \(0.457888\pi\)
\(98\) 0 0
\(99\) −356.890 −0.362311
\(100\) 0 0
\(101\) 37.9184 0.0373566 0.0186783 0.999826i \(-0.494054\pi\)
0.0186783 + 0.999826i \(0.494054\pi\)
\(102\) 0 0
\(103\) −94.4133 −0.0903186 −0.0451593 0.998980i \(-0.514380\pi\)
−0.0451593 + 0.998980i \(0.514380\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 901.464 0.814466 0.407233 0.913324i \(-0.366494\pi\)
0.407233 + 0.913324i \(0.366494\pi\)
\(108\) 0 0
\(109\) 1415.69 1.24403 0.622013 0.783007i \(-0.286315\pi\)
0.622013 + 0.783007i \(0.286315\pi\)
\(110\) 0 0
\(111\) 772.767 0.660791
\(112\) 0 0
\(113\) −293.576 −0.244401 −0.122200 0.992505i \(-0.538995\pi\)
−0.122200 + 0.992505i \(0.538995\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −1149.19 −0.908057
\(118\) 0 0
\(119\) 507.314 0.390802
\(120\) 0 0
\(121\) −962.673 −0.723271
\(122\) 0 0
\(123\) −929.957 −0.681719
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) −774.717 −0.541300 −0.270650 0.962678i \(-0.587239\pi\)
−0.270650 + 0.962678i \(0.587239\pi\)
\(128\) 0 0
\(129\) −240.967 −0.164465
\(130\) 0 0
\(131\) −334.343 −0.222990 −0.111495 0.993765i \(-0.535564\pi\)
−0.111495 + 0.993765i \(0.535564\pi\)
\(132\) 0 0
\(133\) 988.322 0.644349
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 323.514 0.201750 0.100875 0.994899i \(-0.467836\pi\)
0.100875 + 0.994899i \(0.467836\pi\)
\(138\) 0 0
\(139\) 396.482 0.241936 0.120968 0.992656i \(-0.461400\pi\)
0.120968 + 0.992656i \(0.461400\pi\)
\(140\) 0 0
\(141\) 801.376 0.478638
\(142\) 0 0
\(143\) 1186.02 0.693564
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −186.150 −0.104445
\(148\) 0 0
\(149\) −1682.89 −0.925284 −0.462642 0.886545i \(-0.653099\pi\)
−0.462642 + 0.886545i \(0.653099\pi\)
\(150\) 0 0
\(151\) 2924.52 1.57612 0.788060 0.615598i \(-0.211085\pi\)
0.788060 + 0.615598i \(0.211085\pi\)
\(152\) 0 0
\(153\) 565.012 0.298553
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 2768.42 1.40729 0.703644 0.710553i \(-0.251555\pi\)
0.703644 + 0.710553i \(0.251555\pi\)
\(158\) 0 0
\(159\) 1133.18 0.565199
\(160\) 0 0
\(161\) 3434.34 1.68114
\(162\) 0 0
\(163\) −2816.33 −1.35333 −0.676663 0.736292i \(-0.736575\pi\)
−0.676663 + 0.736292i \(0.736575\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1836.41 −0.850933 −0.425466 0.904974i \(-0.639890\pi\)
−0.425466 + 0.904974i \(0.639890\pi\)
\(168\) 0 0
\(169\) 1621.99 0.738274
\(170\) 0 0
\(171\) 1100.73 0.492249
\(172\) 0 0
\(173\) 1224.22 0.538011 0.269006 0.963139i \(-0.413305\pi\)
0.269006 + 0.963139i \(0.413305\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −2258.62 −0.959145
\(178\) 0 0
\(179\) −2729.58 −1.13977 −0.569883 0.821726i \(-0.693011\pi\)
−0.569883 + 0.821726i \(0.693011\pi\)
\(180\) 0 0
\(181\) 2642.36 1.08511 0.542555 0.840020i \(-0.317457\pi\)
0.542555 + 0.840020i \(0.317457\pi\)
\(182\) 0 0
\(183\) −1400.70 −0.565809
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −583.118 −0.228031
\(188\) 0 0
\(189\) 2207.03 0.849406
\(190\) 0 0
\(191\) 2339.23 0.886183 0.443091 0.896476i \(-0.353882\pi\)
0.443091 + 0.896476i \(0.353882\pi\)
\(192\) 0 0
\(193\) 4601.61 1.71622 0.858111 0.513464i \(-0.171638\pi\)
0.858111 + 0.513464i \(0.171638\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −823.941 −0.297987 −0.148993 0.988838i \(-0.547603\pi\)
−0.148993 + 0.988838i \(0.547603\pi\)
\(198\) 0 0
\(199\) 3329.70 1.18611 0.593055 0.805162i \(-0.297922\pi\)
0.593055 + 0.805162i \(0.297922\pi\)
\(200\) 0 0
\(201\) −358.624 −0.125848
\(202\) 0 0
\(203\) −139.982 −0.0483980
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 3824.93 1.28431
\(208\) 0 0
\(209\) −1136.00 −0.375975
\(210\) 0 0
\(211\) −1018.78 −0.332398 −0.166199 0.986092i \(-0.553149\pi\)
−0.166199 + 0.986092i \(0.553149\pi\)
\(212\) 0 0
\(213\) −542.784 −0.174605
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 5529.21 1.72971
\(218\) 0 0
\(219\) −2257.45 −0.696550
\(220\) 0 0
\(221\) −1877.65 −0.571513
\(222\) 0 0
\(223\) 99.1581 0.0297763 0.0148882 0.999889i \(-0.495261\pi\)
0.0148882 + 0.999889i \(0.495261\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 1197.59 0.350163 0.175081 0.984554i \(-0.443981\pi\)
0.175081 + 0.984554i \(0.443981\pi\)
\(228\) 0 0
\(229\) −453.592 −0.130892 −0.0654458 0.997856i \(-0.520847\pi\)
−0.0654458 + 0.997856i \(0.520847\pi\)
\(230\) 0 0
\(231\) −928.963 −0.264594
\(232\) 0 0
\(233\) −3788.49 −1.06520 −0.532601 0.846367i \(-0.678785\pi\)
−0.532601 + 0.846367i \(0.678785\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1294.06 0.354675
\(238\) 0 0
\(239\) 6000.47 1.62401 0.812005 0.583651i \(-0.198376\pi\)
0.812005 + 0.583651i \(0.198376\pi\)
\(240\) 0 0
\(241\) 1842.53 0.492480 0.246240 0.969209i \(-0.420805\pi\)
0.246240 + 0.969209i \(0.420805\pi\)
\(242\) 0 0
\(243\) 3913.59 1.03316
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3657.93 −0.942303
\(248\) 0 0
\(249\) 3055.67 0.777691
\(250\) 0 0
\(251\) −1149.46 −0.289057 −0.144529 0.989501i \(-0.546167\pi\)
−0.144529 + 0.989501i \(0.546167\pi\)
\(252\) 0 0
\(253\) −3947.51 −0.980939
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5407.67 −1.31253 −0.656267 0.754528i \(-0.727866\pi\)
−0.656267 + 0.754528i \(0.727866\pi\)
\(258\) 0 0
\(259\) −4450.82 −1.06780
\(260\) 0 0
\(261\) −155.902 −0.0369735
\(262\) 0 0
\(263\) −2067.34 −0.484705 −0.242352 0.970188i \(-0.577919\pi\)
−0.242352 + 0.970188i \(0.577919\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −274.965 −0.0630247
\(268\) 0 0
\(269\) −592.388 −0.134270 −0.0671348 0.997744i \(-0.521386\pi\)
−0.0671348 + 0.997744i \(0.521386\pi\)
\(270\) 0 0
\(271\) 2583.27 0.579049 0.289524 0.957171i \(-0.406503\pi\)
0.289524 + 0.957171i \(0.406503\pi\)
\(272\) 0 0
\(273\) −2991.27 −0.663151
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) −4488.09 −0.973513 −0.486756 0.873538i \(-0.661820\pi\)
−0.486756 + 0.873538i \(0.661820\pi\)
\(278\) 0 0
\(279\) 6158.06 1.32141
\(280\) 0 0
\(281\) −6280.54 −1.33333 −0.666665 0.745357i \(-0.732279\pi\)
−0.666665 + 0.745357i \(0.732279\pi\)
\(282\) 0 0
\(283\) 5233.40 1.09927 0.549635 0.835405i \(-0.314767\pi\)
0.549635 + 0.835405i \(0.314767\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5356.17 1.10162
\(288\) 0 0
\(289\) −3989.83 −0.812097
\(290\) 0 0
\(291\) 730.661 0.147189
\(292\) 0 0
\(293\) −2438.21 −0.486149 −0.243074 0.970008i \(-0.578156\pi\)
−0.243074 + 0.970008i \(0.578156\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −2536.81 −0.495625
\(298\) 0 0
\(299\) −12711.0 −2.45852
\(300\) 0 0
\(301\) 1387.87 0.265766
\(302\) 0 0
\(303\) 109.925 0.0208416
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) −7910.44 −1.47060 −0.735298 0.677744i \(-0.762958\pi\)
−0.735298 + 0.677744i \(0.762958\pi\)
\(308\) 0 0
\(309\) −273.702 −0.0503895
\(310\) 0 0
\(311\) −5419.71 −0.988178 −0.494089 0.869411i \(-0.664498\pi\)
−0.494089 + 0.869411i \(0.664498\pi\)
\(312\) 0 0
\(313\) 5570.86 1.00602 0.503009 0.864281i \(-0.332226\pi\)
0.503009 + 0.864281i \(0.332226\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −3724.09 −0.659829 −0.329915 0.944011i \(-0.607020\pi\)
−0.329915 + 0.944011i \(0.607020\pi\)
\(318\) 0 0
\(319\) 160.898 0.0282400
\(320\) 0 0
\(321\) 2613.33 0.454398
\(322\) 0 0
\(323\) 1798.47 0.309812
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 4104.07 0.694053
\(328\) 0 0
\(329\) −4615.60 −0.773453
\(330\) 0 0
\(331\) −3223.96 −0.535362 −0.267681 0.963508i \(-0.586257\pi\)
−0.267681 + 0.963508i \(0.586257\pi\)
\(332\) 0 0
\(333\) −4957.03 −0.815746
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 9524.43 1.53955 0.769776 0.638314i \(-0.220368\pi\)
0.769776 + 0.638314i \(0.220368\pi\)
\(338\) 0 0
\(339\) −851.069 −0.136353
\(340\) 0 0
\(341\) −6355.40 −1.00928
\(342\) 0 0
\(343\) 6799.20 1.07033
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 6042.30 0.934777 0.467388 0.884052i \(-0.345195\pi\)
0.467388 + 0.884052i \(0.345195\pi\)
\(348\) 0 0
\(349\) −1626.20 −0.249422 −0.124711 0.992193i \(-0.539800\pi\)
−0.124711 + 0.992193i \(0.539800\pi\)
\(350\) 0 0
\(351\) −8168.55 −1.24218
\(352\) 0 0
\(353\) 886.955 0.133733 0.0668667 0.997762i \(-0.478700\pi\)
0.0668667 + 0.997762i \(0.478700\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 1470.69 0.218032
\(358\) 0 0
\(359\) −1722.27 −0.253198 −0.126599 0.991954i \(-0.540406\pi\)
−0.126599 + 0.991954i \(0.540406\pi\)
\(360\) 0 0
\(361\) −3355.33 −0.489186
\(362\) 0 0
\(363\) −2790.77 −0.403519
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −9271.77 −1.31875 −0.659377 0.751813i \(-0.729180\pi\)
−0.659377 + 0.751813i \(0.729180\pi\)
\(368\) 0 0
\(369\) 5965.34 0.841581
\(370\) 0 0
\(371\) −6526.63 −0.913331
\(372\) 0 0
\(373\) 5697.15 0.790850 0.395425 0.918498i \(-0.370597\pi\)
0.395425 + 0.918498i \(0.370597\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 518.094 0.0707777
\(378\) 0 0
\(379\) 8526.24 1.15558 0.577789 0.816186i \(-0.303916\pi\)
0.577789 + 0.816186i \(0.303916\pi\)
\(380\) 0 0
\(381\) −2245.89 −0.301996
\(382\) 0 0
\(383\) −4069.23 −0.542893 −0.271447 0.962453i \(-0.587502\pi\)
−0.271447 + 0.962453i \(0.587502\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 1545.72 0.203032
\(388\) 0 0
\(389\) −2394.17 −0.312054 −0.156027 0.987753i \(-0.549869\pi\)
−0.156027 + 0.987753i \(0.549869\pi\)
\(390\) 0 0
\(391\) 6249.52 0.808316
\(392\) 0 0
\(393\) −969.253 −0.124408
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 3497.79 0.442190 0.221095 0.975252i \(-0.429037\pi\)
0.221095 + 0.975252i \(0.429037\pi\)
\(398\) 0 0
\(399\) 2865.13 0.359488
\(400\) 0 0
\(401\) −8608.89 −1.07209 −0.536044 0.844190i \(-0.680082\pi\)
−0.536044 + 0.844190i \(0.680082\pi\)
\(402\) 0 0
\(403\) −20464.5 −2.52955
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 5115.88 0.623058
\(408\) 0 0
\(409\) 1385.67 0.167523 0.0837615 0.996486i \(-0.473307\pi\)
0.0837615 + 0.996486i \(0.473307\pi\)
\(410\) 0 0
\(411\) 937.861 0.112558
\(412\) 0 0
\(413\) 13008.8 1.54992
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 1149.39 0.134978
\(418\) 0 0
\(419\) −3738.23 −0.435858 −0.217929 0.975965i \(-0.569930\pi\)
−0.217929 + 0.975965i \(0.569930\pi\)
\(420\) 0 0
\(421\) −8993.95 −1.04118 −0.520592 0.853806i \(-0.674289\pi\)
−0.520592 + 0.853806i \(0.674289\pi\)
\(422\) 0 0
\(423\) −5140.54 −0.590878
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 8067.48 0.914316
\(428\) 0 0
\(429\) 3438.24 0.386946
\(430\) 0 0
\(431\) −462.547 −0.0516940 −0.0258470 0.999666i \(-0.508228\pi\)
−0.0258470 + 0.999666i \(0.508228\pi\)
\(432\) 0 0
\(433\) −5231.82 −0.580659 −0.290329 0.956927i \(-0.593765\pi\)
−0.290329 + 0.956927i \(0.593765\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 12175.0 1.33274
\(438\) 0 0
\(439\) −8995.77 −0.978006 −0.489003 0.872282i \(-0.662639\pi\)
−0.489003 + 0.872282i \(0.662639\pi\)
\(440\) 0 0
\(441\) 1194.09 0.128937
\(442\) 0 0
\(443\) 5549.52 0.595182 0.297591 0.954694i \(-0.403817\pi\)
0.297591 + 0.954694i \(0.403817\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −4878.65 −0.516224
\(448\) 0 0
\(449\) −5951.29 −0.625521 −0.312760 0.949832i \(-0.601254\pi\)
−0.312760 + 0.949832i \(0.601254\pi\)
\(450\) 0 0
\(451\) −6156.51 −0.642791
\(452\) 0 0
\(453\) 8478.13 0.879332
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −13912.7 −1.42409 −0.712047 0.702132i \(-0.752232\pi\)
−0.712047 + 0.702132i \(0.752232\pi\)
\(458\) 0 0
\(459\) 4016.16 0.408406
\(460\) 0 0
\(461\) 17467.6 1.76475 0.882374 0.470549i \(-0.155944\pi\)
0.882374 + 0.470549i \(0.155944\pi\)
\(462\) 0 0
\(463\) −1575.36 −0.158127 −0.0790637 0.996870i \(-0.525193\pi\)
−0.0790637 + 0.996870i \(0.525193\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −15618.3 −1.54760 −0.773800 0.633430i \(-0.781646\pi\)
−0.773800 + 0.633430i \(0.781646\pi\)
\(468\) 0 0
\(469\) 2065.53 0.203363
\(470\) 0 0
\(471\) 8025.60 0.785138
\(472\) 0 0
\(473\) −1595.25 −0.155074
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −7268.92 −0.697738
\(478\) 0 0
\(479\) −9527.90 −0.908854 −0.454427 0.890784i \(-0.650156\pi\)
−0.454427 + 0.890784i \(0.650156\pi\)
\(480\) 0 0
\(481\) 16473.2 1.56157
\(482\) 0 0
\(483\) 9956.08 0.937924
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −15729.6 −1.46361 −0.731805 0.681514i \(-0.761322\pi\)
−0.731805 + 0.681514i \(0.761322\pi\)
\(488\) 0 0
\(489\) −8164.49 −0.755033
\(490\) 0 0
\(491\) −2566.49 −0.235894 −0.117947 0.993020i \(-0.537631\pi\)
−0.117947 + 0.993020i \(0.537631\pi\)
\(492\) 0 0
\(493\) −254.727 −0.0232704
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 3126.21 0.282152
\(498\) 0 0
\(499\) 13560.4 1.21652 0.608261 0.793737i \(-0.291867\pi\)
0.608261 + 0.793737i \(0.291867\pi\)
\(500\) 0 0
\(501\) −5323.72 −0.474743
\(502\) 0 0
\(503\) 5222.51 0.462943 0.231471 0.972842i \(-0.425646\pi\)
0.231471 + 0.972842i \(0.425646\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 4702.11 0.411890
\(508\) 0 0
\(509\) −11875.9 −1.03416 −0.517082 0.855936i \(-0.672982\pi\)
−0.517082 + 0.855936i \(0.672982\pi\)
\(510\) 0 0
\(511\) 13002.0 1.12559
\(512\) 0 0
\(513\) 7824.07 0.673375
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 5305.27 0.451307
\(518\) 0 0
\(519\) 3549.00 0.300161
\(520\) 0 0
\(521\) 2456.04 0.206528 0.103264 0.994654i \(-0.467071\pi\)
0.103264 + 0.994654i \(0.467071\pi\)
\(522\) 0 0
\(523\) −634.460 −0.0530459 −0.0265229 0.999648i \(-0.508444\pi\)
−0.0265229 + 0.999648i \(0.508444\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 10061.6 0.831669
\(528\) 0 0
\(529\) 30140.0 2.47720
\(530\) 0 0
\(531\) 14488.3 1.18406
\(532\) 0 0
\(533\) −19824.0 −1.61102
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −7912.98 −0.635885
\(538\) 0 0
\(539\) −1232.35 −0.0984807
\(540\) 0 0
\(541\) 18078.4 1.43669 0.718347 0.695685i \(-0.244899\pi\)
0.718347 + 0.695685i \(0.244899\pi\)
\(542\) 0 0
\(543\) 7660.14 0.605393
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 24815.3 1.93972 0.969860 0.243661i \(-0.0783486\pi\)
0.969860 + 0.243661i \(0.0783486\pi\)
\(548\) 0 0
\(549\) 8985.02 0.698490
\(550\) 0 0
\(551\) −496.245 −0.0383680
\(552\) 0 0
\(553\) −7453.24 −0.573136
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −10073.7 −0.766310 −0.383155 0.923684i \(-0.625162\pi\)
−0.383155 + 0.923684i \(0.625162\pi\)
\(558\) 0 0
\(559\) −5136.73 −0.388660
\(560\) 0 0
\(561\) −1690.45 −0.127221
\(562\) 0 0
\(563\) −7505.06 −0.561813 −0.280906 0.959735i \(-0.590635\pi\)
−0.280906 + 0.959735i \(0.590635\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −1985.23 −0.147040
\(568\) 0 0
\(569\) −15251.4 −1.12368 −0.561838 0.827247i \(-0.689906\pi\)
−0.561838 + 0.827247i \(0.689906\pi\)
\(570\) 0 0
\(571\) 2683.78 0.196695 0.0983474 0.995152i \(-0.468644\pi\)
0.0983474 + 0.995152i \(0.468644\pi\)
\(572\) 0 0
\(573\) 6781.39 0.494409
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7369.88 −0.531737 −0.265868 0.964009i \(-0.585659\pi\)
−0.265868 + 0.964009i \(0.585659\pi\)
\(578\) 0 0
\(579\) 13340.0 0.957496
\(580\) 0 0
\(581\) −17599.4 −1.25671
\(582\) 0 0
\(583\) 7501.85 0.532925
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −20865.4 −1.46713 −0.733567 0.679618i \(-0.762146\pi\)
−0.733567 + 0.679618i \(0.762146\pi\)
\(588\) 0 0
\(589\) 19601.4 1.37124
\(590\) 0 0
\(591\) −2388.59 −0.166249
\(592\) 0 0
\(593\) −25894.0 −1.79316 −0.896578 0.442886i \(-0.853954\pi\)
−0.896578 + 0.442886i \(0.853954\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 9652.73 0.661742
\(598\) 0 0
\(599\) −5632.42 −0.384198 −0.192099 0.981376i \(-0.561529\pi\)
−0.192099 + 0.981376i \(0.561529\pi\)
\(600\) 0 0
\(601\) −13079.7 −0.887742 −0.443871 0.896091i \(-0.646395\pi\)
−0.443871 + 0.896091i \(0.646395\pi\)
\(602\) 0 0
\(603\) 2300.45 0.155359
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 18890.2 1.26314 0.631572 0.775317i \(-0.282410\pi\)
0.631572 + 0.775317i \(0.282410\pi\)
\(608\) 0 0
\(609\) −405.804 −0.0270017
\(610\) 0 0
\(611\) 17083.0 1.13111
\(612\) 0 0
\(613\) −13631.5 −0.898155 −0.449078 0.893493i \(-0.648247\pi\)
−0.449078 + 0.893493i \(0.648247\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 14982.2 0.977568 0.488784 0.872405i \(-0.337441\pi\)
0.488784 + 0.872405i \(0.337441\pi\)
\(618\) 0 0
\(619\) 25049.9 1.62656 0.813279 0.581873i \(-0.197680\pi\)
0.813279 + 0.581873i \(0.197680\pi\)
\(620\) 0 0
\(621\) 27188.0 1.75687
\(622\) 0 0
\(623\) 1583.69 0.101844
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3293.24 −0.209760
\(628\) 0 0
\(629\) −8099.23 −0.513414
\(630\) 0 0
\(631\) −18711.0 −1.18046 −0.590232 0.807233i \(-0.700964\pi\)
−0.590232 + 0.807233i \(0.700964\pi\)
\(632\) 0 0
\(633\) −2953.43 −0.185448
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −3968.19 −0.246821
\(638\) 0 0
\(639\) 3481.76 0.215550
\(640\) 0 0
\(641\) 25792.2 1.58929 0.794643 0.607077i \(-0.207658\pi\)
0.794643 + 0.607077i \(0.207658\pi\)
\(642\) 0 0
\(643\) 20256.7 1.24237 0.621186 0.783663i \(-0.286651\pi\)
0.621186 + 0.783663i \(0.286651\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 6655.43 0.404408 0.202204 0.979343i \(-0.435190\pi\)
0.202204 + 0.979343i \(0.435190\pi\)
\(648\) 0 0
\(649\) −14952.6 −0.904375
\(650\) 0 0
\(651\) 16029.1 0.965021
\(652\) 0 0
\(653\) 8490.91 0.508844 0.254422 0.967093i \(-0.418115\pi\)
0.254422 + 0.967093i \(0.418115\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 14480.8 0.859890
\(658\) 0 0
\(659\) −15543.8 −0.918816 −0.459408 0.888225i \(-0.651938\pi\)
−0.459408 + 0.888225i \(0.651938\pi\)
\(660\) 0 0
\(661\) −13519.8 −0.795553 −0.397777 0.917482i \(-0.630218\pi\)
−0.397777 + 0.917482i \(0.630218\pi\)
\(662\) 0 0
\(663\) −5443.27 −0.318852
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1724.41 −0.100104
\(668\) 0 0
\(669\) 287.457 0.0166125
\(670\) 0 0
\(671\) −9272.95 −0.533499
\(672\) 0 0
\(673\) 11565.3 0.662421 0.331211 0.943557i \(-0.392543\pi\)
0.331211 + 0.943557i \(0.392543\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −28227.5 −1.60247 −0.801235 0.598350i \(-0.795823\pi\)
−0.801235 + 0.598350i \(0.795823\pi\)
\(678\) 0 0
\(679\) −4208.31 −0.237850
\(680\) 0 0
\(681\) 3471.79 0.195359
\(682\) 0 0
\(683\) 6425.99 0.360005 0.180003 0.983666i \(-0.442389\pi\)
0.180003 + 0.983666i \(0.442389\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −1314.95 −0.0730256
\(688\) 0 0
\(689\) 24156.1 1.33566
\(690\) 0 0
\(691\) 19066.9 1.04969 0.524846 0.851197i \(-0.324123\pi\)
0.524846 + 0.851197i \(0.324123\pi\)
\(692\) 0 0
\(693\) 5958.97 0.326641
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 9746.71 0.529674
\(698\) 0 0
\(699\) −10982.7 −0.594285
\(700\) 0 0
\(701\) 4796.00 0.258406 0.129203 0.991618i \(-0.458758\pi\)
0.129203 + 0.991618i \(0.458758\pi\)
\(702\) 0 0
\(703\) −15778.5 −0.846511
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −633.121 −0.0336789
\(708\) 0 0
\(709\) −9805.33 −0.519389 −0.259695 0.965691i \(-0.583622\pi\)
−0.259695 + 0.965691i \(0.583622\pi\)
\(710\) 0 0
\(711\) −8300.91 −0.437846
\(712\) 0 0
\(713\) 68113.4 3.57765
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 17395.2 0.906049
\(718\) 0 0
\(719\) −27539.7 −1.42845 −0.714227 0.699915i \(-0.753221\pi\)
−0.714227 + 0.699915i \(0.753221\pi\)
\(720\) 0 0
\(721\) 1576.41 0.0814267
\(722\) 0 0
\(723\) 5341.45 0.274759
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 16543.8 0.843985 0.421993 0.906599i \(-0.361331\pi\)
0.421993 + 0.906599i \(0.361331\pi\)
\(728\) 0 0
\(729\) 8135.16 0.413309
\(730\) 0 0
\(731\) 2525.53 0.127784
\(732\) 0 0
\(733\) −16718.6 −0.842450 −0.421225 0.906956i \(-0.638400\pi\)
−0.421225 + 0.906956i \(0.638400\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −2374.17 −0.118662
\(738\) 0 0
\(739\) 24022.6 1.19579 0.597893 0.801576i \(-0.296005\pi\)
0.597893 + 0.801576i \(0.296005\pi\)
\(740\) 0 0
\(741\) −10604.3 −0.525719
\(742\) 0 0
\(743\) −26201.8 −1.29374 −0.646871 0.762600i \(-0.723923\pi\)
−0.646871 + 0.762600i \(0.723923\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −19601.0 −0.960059
\(748\) 0 0
\(749\) −15051.7 −0.734282
\(750\) 0 0
\(751\) −24451.7 −1.18809 −0.594045 0.804432i \(-0.702470\pi\)
−0.594045 + 0.804432i \(0.702470\pi\)
\(752\) 0 0
\(753\) −3332.26 −0.161268
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −21403.8 −1.02765 −0.513827 0.857894i \(-0.671773\pi\)
−0.513827 + 0.857894i \(0.671773\pi\)
\(758\) 0 0
\(759\) −11443.7 −0.547275
\(760\) 0 0
\(761\) −28935.9 −1.37835 −0.689176 0.724594i \(-0.742027\pi\)
−0.689176 + 0.724594i \(0.742027\pi\)
\(762\) 0 0
\(763\) −23637.8 −1.12155
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −48147.4 −2.26663
\(768\) 0 0
\(769\) −11479.3 −0.538301 −0.269151 0.963098i \(-0.586743\pi\)
−0.269151 + 0.963098i \(0.586743\pi\)
\(770\) 0 0
\(771\) −15676.7 −0.732275
\(772\) 0 0
\(773\) −2512.27 −0.116895 −0.0584477 0.998290i \(-0.518615\pi\)
−0.0584477 + 0.998290i \(0.518615\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) −12902.8 −0.595736
\(778\) 0 0
\(779\) 18988.0 0.873320
\(780\) 0 0
\(781\) −3593.34 −0.164635
\(782\) 0 0
\(783\) −1108.17 −0.0505781
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 2650.18 0.120036 0.0600182 0.998197i \(-0.480884\pi\)
0.0600182 + 0.998197i \(0.480884\pi\)
\(788\) 0 0
\(789\) −5993.16 −0.270421
\(790\) 0 0
\(791\) 4901.81 0.220339
\(792\) 0 0
\(793\) −29859.0 −1.33711
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 24516.7 1.08962 0.544810 0.838560i \(-0.316602\pi\)
0.544810 + 0.838560i \(0.316602\pi\)
\(798\) 0 0
\(799\) −8399.07 −0.371887
\(800\) 0 0
\(801\) 1763.80 0.0778039
\(802\) 0 0
\(803\) −14944.8 −0.656775
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −1717.32 −0.0749102
\(808\) 0 0
\(809\) −29725.5 −1.29183 −0.645917 0.763408i \(-0.723525\pi\)
−0.645917 + 0.763408i \(0.723525\pi\)
\(810\) 0 0
\(811\) 2050.38 0.0887773 0.0443887 0.999014i \(-0.485866\pi\)
0.0443887 + 0.999014i \(0.485866\pi\)
\(812\) 0 0
\(813\) 7488.83 0.323056
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 4920.11 0.210689
\(818\) 0 0
\(819\) 19188.0 0.818658
\(820\) 0 0
\(821\) −33863.4 −1.43952 −0.719758 0.694225i \(-0.755747\pi\)
−0.719758 + 0.694225i \(0.755747\pi\)
\(822\) 0 0
\(823\) 1216.52 0.0515251 0.0257625 0.999668i \(-0.491799\pi\)
0.0257625 + 0.999668i \(0.491799\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 25654.4 1.07871 0.539355 0.842079i \(-0.318668\pi\)
0.539355 + 0.842079i \(0.318668\pi\)
\(828\) 0 0
\(829\) 24544.6 1.02831 0.514154 0.857698i \(-0.328106\pi\)
0.514154 + 0.857698i \(0.328106\pi\)
\(830\) 0 0
\(831\) −13010.9 −0.543131
\(832\) 0 0
\(833\) 1951.00 0.0811504
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 43772.1 1.80763
\(838\) 0 0
\(839\) −16548.6 −0.680954 −0.340477 0.940253i \(-0.610589\pi\)
−0.340477 + 0.940253i \(0.610589\pi\)
\(840\) 0 0
\(841\) −24318.7 −0.997118
\(842\) 0 0
\(843\) −18207.2 −0.743877
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 16073.7 0.652065
\(848\) 0 0
\(849\) 15171.5 0.613292
\(850\) 0 0
\(851\) −54828.9 −2.20859
\(852\) 0 0
\(853\) 24363.5 0.977950 0.488975 0.872298i \(-0.337371\pi\)
0.488975 + 0.872298i \(0.337371\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 575.718 0.0229477 0.0114738 0.999934i \(-0.496348\pi\)
0.0114738 + 0.999934i \(0.496348\pi\)
\(858\) 0 0
\(859\) −1531.31 −0.0608236 −0.0304118 0.999537i \(-0.509682\pi\)
−0.0304118 + 0.999537i \(0.509682\pi\)
\(860\) 0 0
\(861\) 15527.4 0.614604
\(862\) 0 0
\(863\) 7706.51 0.303978 0.151989 0.988382i \(-0.451432\pi\)
0.151989 + 0.988382i \(0.451432\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −11566.4 −0.453076
\(868\) 0 0
\(869\) 8566.92 0.334422
\(870\) 0 0
\(871\) −7644.85 −0.297400
\(872\) 0 0
\(873\) −4686.93 −0.181705
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −43618.9 −1.67948 −0.839741 0.542988i \(-0.817293\pi\)
−0.839741 + 0.542988i \(0.817293\pi\)
\(878\) 0 0
\(879\) −7068.31 −0.271227
\(880\) 0 0
\(881\) −13416.4 −0.513066 −0.256533 0.966536i \(-0.582580\pi\)
−0.256533 + 0.966536i \(0.582580\pi\)
\(882\) 0 0
\(883\) 29538.2 1.12575 0.562875 0.826542i \(-0.309695\pi\)
0.562875 + 0.826542i \(0.309695\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −1950.88 −0.0738490 −0.0369245 0.999318i \(-0.511756\pi\)
−0.0369245 + 0.999318i \(0.511756\pi\)
\(888\) 0 0
\(889\) 12935.4 0.488009
\(890\) 0 0
\(891\) 2281.87 0.0857974
\(892\) 0 0
\(893\) −16362.6 −0.613162
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −36849.0 −1.37163
\(898\) 0 0
\(899\) −2776.26 −0.102996
\(900\) 0 0
\(901\) −11876.6 −0.439142
\(902\) 0 0
\(903\) 4023.42 0.148273
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 3507.55 0.128408 0.0642042 0.997937i \(-0.479549\pi\)
0.0642042 + 0.997937i \(0.479549\pi\)
\(908\) 0 0
\(909\) −705.127 −0.0257289
\(910\) 0 0
\(911\) 33841.4 1.23075 0.615377 0.788233i \(-0.289004\pi\)
0.615377 + 0.788233i \(0.289004\pi\)
\(912\) 0 0
\(913\) 20229.2 0.733283
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 5582.50 0.201036
\(918\) 0 0
\(919\) −25440.7 −0.913178 −0.456589 0.889678i \(-0.650929\pi\)
−0.456589 + 0.889678i \(0.650929\pi\)
\(920\) 0 0
\(921\) −22932.2 −0.820458
\(922\) 0 0
\(923\) −11570.6 −0.412623
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 1755.70 0.0622058
\(928\) 0 0
\(929\) −26416.7 −0.932941 −0.466471 0.884537i \(-0.654475\pi\)
−0.466471 + 0.884537i \(0.654475\pi\)
\(930\) 0 0
\(931\) 3800.84 0.133800
\(932\) 0 0
\(933\) −15711.6 −0.551313
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1936.70 0.0675231 0.0337616 0.999430i \(-0.489251\pi\)
0.0337616 + 0.999430i \(0.489251\pi\)
\(938\) 0 0
\(939\) 16149.8 0.561266
\(940\) 0 0
\(941\) 23459.1 0.812694 0.406347 0.913719i \(-0.366802\pi\)
0.406347 + 0.913719i \(0.366802\pi\)
\(942\) 0 0
\(943\) 65981.8 2.27854
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 23606.8 0.810049 0.405025 0.914306i \(-0.367263\pi\)
0.405025 + 0.914306i \(0.367263\pi\)
\(948\) 0 0
\(949\) −48122.4 −1.64607
\(950\) 0 0
\(951\) −10796.1 −0.368125
\(952\) 0 0
\(953\) −30164.2 −1.02530 −0.512652 0.858596i \(-0.671337\pi\)
−0.512652 + 0.858596i \(0.671337\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 466.440 0.0157553
\(958\) 0 0
\(959\) −5401.70 −0.181887
\(960\) 0 0
\(961\) 79870.0 2.68101
\(962\) 0 0
\(963\) −16763.6 −0.560953
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 9034.04 0.300429 0.150215 0.988653i \(-0.452004\pi\)
0.150215 + 0.988653i \(0.452004\pi\)
\(968\) 0 0
\(969\) 5213.71 0.172847
\(970\) 0 0
\(971\) −36159.0 −1.19506 −0.597528 0.801848i \(-0.703850\pi\)
−0.597528 + 0.801848i \(0.703850\pi\)
\(972\) 0 0
\(973\) −6620.03 −0.218118
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 38584.0 1.26347 0.631736 0.775184i \(-0.282343\pi\)
0.631736 + 0.775184i \(0.282343\pi\)
\(978\) 0 0
\(979\) −1820.33 −0.0594258
\(980\) 0 0
\(981\) −26326.1 −0.856808
\(982\) 0 0
\(983\) 53046.3 1.72117 0.860587 0.509303i \(-0.170097\pi\)
0.860587 + 0.509303i \(0.170097\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −13380.5 −0.431516
\(988\) 0 0
\(989\) 17097.0 0.549699
\(990\) 0 0
\(991\) 16425.7 0.526517 0.263259 0.964725i \(-0.415203\pi\)
0.263259 + 0.964725i \(0.415203\pi\)
\(992\) 0 0
\(993\) −9346.19 −0.298683
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −20024.6 −0.636092 −0.318046 0.948075i \(-0.603027\pi\)
−0.318046 + 0.948075i \(0.603027\pi\)
\(998\) 0 0
\(999\) −35235.0 −1.11590
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.4.a.v.1.2 2
4.3 odd 2 200.4.a.l.1.1 2
5.2 odd 4 80.4.c.c.49.2 4
5.3 odd 4 80.4.c.c.49.3 4
5.4 even 2 400.4.a.x.1.1 2
8.3 odd 2 1600.4.a.ce.1.2 2
8.5 even 2 1600.4.a.cm.1.1 2
12.11 even 2 1800.4.a.bp.1.2 2
15.2 even 4 720.4.f.m.289.1 4
15.8 even 4 720.4.f.m.289.2 4
20.3 even 4 40.4.c.a.9.2 4
20.7 even 4 40.4.c.a.9.3 yes 4
20.19 odd 2 200.4.a.k.1.2 2
40.3 even 4 320.4.c.g.129.3 4
40.13 odd 4 320.4.c.h.129.2 4
40.19 odd 2 1600.4.a.cl.1.1 2
40.27 even 4 320.4.c.g.129.2 4
40.29 even 2 1600.4.a.cf.1.2 2
40.37 odd 4 320.4.c.h.129.3 4
60.23 odd 4 360.4.f.e.289.2 4
60.47 odd 4 360.4.f.e.289.1 4
60.59 even 2 1800.4.a.bk.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.4.c.a.9.2 4 20.3 even 4
40.4.c.a.9.3 yes 4 20.7 even 4
80.4.c.c.49.2 4 5.2 odd 4
80.4.c.c.49.3 4 5.3 odd 4
200.4.a.k.1.2 2 20.19 odd 2
200.4.a.l.1.1 2 4.3 odd 2
320.4.c.g.129.2 4 40.27 even 4
320.4.c.g.129.3 4 40.3 even 4
320.4.c.h.129.2 4 40.13 odd 4
320.4.c.h.129.3 4 40.37 odd 4
360.4.f.e.289.1 4 60.47 odd 4
360.4.f.e.289.2 4 60.23 odd 4
400.4.a.v.1.2 2 1.1 even 1 trivial
400.4.a.x.1.1 2 5.4 even 2
720.4.f.m.289.1 4 15.2 even 4
720.4.f.m.289.2 4 15.8 even 4
1600.4.a.ce.1.2 2 8.3 odd 2
1600.4.a.cf.1.2 2 40.29 even 2
1600.4.a.cl.1.1 2 40.19 odd 2
1600.4.a.cm.1.1 2 8.5 even 2
1800.4.a.bk.1.1 2 60.59 even 2
1800.4.a.bp.1.2 2 12.11 even 2