Properties

Label 400.4
Level 400
Weight 4
Dimension 7373
Nonzero newspaces 14
Sturm bound 38400
Trace bound 3

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 14 \)
Sturm bound: \(38400\)
Trace bound: \(3\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(400))\).

Total New Old
Modular forms 14792 7558 7234
Cusp forms 14008 7373 6635
Eisenstein series 784 185 599

Trace form

\( 7373 q - 26 q^{2} - 16 q^{3} - 16 q^{4} - 40 q^{5} - 72 q^{6} - 42 q^{7} - 68 q^{8} - 13 q^{9} - 32 q^{10} + 32 q^{11} + 76 q^{12} + 174 q^{13} + 164 q^{14} - 12 q^{15} + 240 q^{16} - 216 q^{17} + 150 q^{18}+ \cdots - 2342 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(400))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
400.4.a \(\chi_{400}(1, \cdot)\) 400.4.a.a 1 1
400.4.a.b 1
400.4.a.c 1
400.4.a.d 1
400.4.a.e 1
400.4.a.f 1
400.4.a.g 1
400.4.a.h 1
400.4.a.i 1
400.4.a.j 1
400.4.a.k 1
400.4.a.l 1
400.4.a.m 1
400.4.a.n 1
400.4.a.o 1
400.4.a.p 1
400.4.a.q 1
400.4.a.r 1
400.4.a.s 1
400.4.a.t 1
400.4.a.u 1
400.4.a.v 2
400.4.a.w 2
400.4.a.x 2
400.4.c \(\chi_{400}(49, \cdot)\) 400.4.c.a 2 1
400.4.c.b 2
400.4.c.c 2
400.4.c.d 2
400.4.c.e 2
400.4.c.f 2
400.4.c.g 2
400.4.c.h 2
400.4.c.i 2
400.4.c.j 2
400.4.c.k 2
400.4.c.l 2
400.4.c.m 2
400.4.d \(\chi_{400}(201, \cdot)\) None 0 1
400.4.f \(\chi_{400}(249, \cdot)\) None 0 1
400.4.j \(\chi_{400}(43, \cdot)\) n/a 212 2
400.4.l \(\chi_{400}(101, \cdot)\) n/a 222 2
400.4.n \(\chi_{400}(143, \cdot)\) 400.4.n.a 2 2
400.4.n.b 4
400.4.n.c 4
400.4.n.d 8
400.4.n.e 8
400.4.n.f 12
400.4.n.g 16
400.4.o \(\chi_{400}(7, \cdot)\) None 0 2
400.4.q \(\chi_{400}(149, \cdot)\) n/a 212 2
400.4.s \(\chi_{400}(107, \cdot)\) n/a 212 2
400.4.u \(\chi_{400}(81, \cdot)\) n/a 176 4
400.4.w \(\chi_{400}(9, \cdot)\) None 0 4
400.4.y \(\chi_{400}(129, \cdot)\) n/a 176 4
400.4.bb \(\chi_{400}(41, \cdot)\) None 0 4
400.4.bd \(\chi_{400}(3, \cdot)\) n/a 1424 8
400.4.be \(\chi_{400}(21, \cdot)\) n/a 1424 8
400.4.bh \(\chi_{400}(23, \cdot)\) None 0 8
400.4.bi \(\chi_{400}(47, \cdot)\) n/a 360 8
400.4.bl \(\chi_{400}(29, \cdot)\) n/a 1424 8
400.4.bm \(\chi_{400}(67, \cdot)\) n/a 1424 8

"n/a" means that newforms for that character have not been added to the database yet

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(400))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(400)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 15}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 12}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 9}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 10}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(16))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(25))\)\(^{\oplus 5}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(50))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(80))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(100))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(200))\)\(^{\oplus 2}\)