# Properties

 Label 400.3.p.j Level $400$ Weight $3$ Character orbit 400.p Analytic conductor $10.899$ Analytic rank $0$ Dimension $4$ CM no Inner twists $4$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [400,3,Mod(193,400)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(400, base_ring=CyclotomicField(4))

chi = DirichletCharacter(H, H._module([0, 0, 3]))

N = Newforms(chi, 3, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("400.193");

S:= CuspForms(chi, 3);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$400 = 2^{4} \cdot 5^{2}$$ Weight: $$k$$ $$=$$ $$3$$ Character orbit: $$[\chi]$$ $$=$$ 400.p (of order $$4$$, degree $$2$$, not minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$10.8992105744$$ Analytic rank: $$0$$ Dimension: $$4$$ Relative dimension: $$2$$ over $$\Q(i)$$ Coefficient field: $$\Q(i, \sqrt{6})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{4} + 9$$ x^4 + 9 Coefficient ring: $$\Z[a_1, \ldots, a_{19}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 25) Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a basis $$1,\beta_1,\beta_2,\beta_3$$ for the coefficient ring described below. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + \beta_1 q^{3} - 4 \beta_{3} q^{7} - 6 \beta_{2} q^{9}+O(q^{10})$$ q + b1 * q^3 - 4*b3 * q^7 - 6*b2 * q^9 $$q + \beta_1 q^{3} - 4 \beta_{3} q^{7} - 6 \beta_{2} q^{9} + 3 q^{11} - 6 \beta_1 q^{13} - 11 \beta_{3} q^{17} + 5 \beta_{2} q^{19} + 12 q^{21} - 14 \beta_1 q^{23} - 15 \beta_{3} q^{27} + 30 \beta_{2} q^{29} + 38 q^{31} + 3 \beta_1 q^{33} - 16 \beta_{3} q^{37} - 18 \beta_{2} q^{39} + 57 q^{41} - 4 \beta_1 q^{43} + 6 \beta_{3} q^{47} + \beta_{2} q^{49} + 33 q^{51} - 26 \beta_1 q^{53} + 5 \beta_{3} q^{57} + 90 \beta_{2} q^{59} - 28 q^{61} - 24 \beta_1 q^{63} - 39 \beta_{3} q^{67} - 42 \beta_{2} q^{69} - 42 q^{71} - 11 \beta_1 q^{73} - 12 \beta_{3} q^{77} - 80 \beta_{2} q^{79} - 9 q^{81} + 91 \beta_1 q^{83} + 30 \beta_{3} q^{87} + 15 \beta_{2} q^{89} - 72 q^{91} + 38 \beta_1 q^{93} + 44 \beta_{3} q^{97} - 18 \beta_{2} q^{99}+O(q^{100})$$ q + b1 * q^3 - 4*b3 * q^7 - 6*b2 * q^9 + 3 * q^11 - 6*b1 * q^13 - 11*b3 * q^17 + 5*b2 * q^19 + 12 * q^21 - 14*b1 * q^23 - 15*b3 * q^27 + 30*b2 * q^29 + 38 * q^31 + 3*b1 * q^33 - 16*b3 * q^37 - 18*b2 * q^39 + 57 * q^41 - 4*b1 * q^43 + 6*b3 * q^47 + b2 * q^49 + 33 * q^51 - 26*b1 * q^53 + 5*b3 * q^57 + 90*b2 * q^59 - 28 * q^61 - 24*b1 * q^63 - 39*b3 * q^67 - 42*b2 * q^69 - 42 * q^71 - 11*b1 * q^73 - 12*b3 * q^77 - 80*b2 * q^79 - 9 * q^81 + 91*b1 * q^83 + 30*b3 * q^87 + 15*b2 * q^89 - 72 * q^91 + 38*b1 * q^93 + 44*b3 * q^97 - 18*b2 * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$4 q+O(q^{10})$$ 4 * q $$4 q + 12 q^{11} + 48 q^{21} + 152 q^{31} + 228 q^{41} + 132 q^{51} - 112 q^{61} - 168 q^{71} - 36 q^{81} - 288 q^{91}+O(q^{100})$$ 4 * q + 12 * q^11 + 48 * q^21 + 152 * q^31 + 228 * q^41 + 132 * q^51 - 112 * q^61 - 168 * q^71 - 36 * q^81 - 288 * q^91

Basis of coefficient ring in terms of a root $$\nu$$ of $$x^{4} + 9$$ :

 $$\beta_{1}$$ $$=$$ $$\nu$$ v $$\beta_{2}$$ $$=$$ $$( \nu^{2} ) / 3$$ (v^2) / 3 $$\beta_{3}$$ $$=$$ $$( \nu^{3} ) / 3$$ (v^3) / 3
 $$\nu$$ $$=$$ $$\beta_1$$ b1 $$\nu^{2}$$ $$=$$ $$3\beta_{2}$$ 3*b2 $$\nu^{3}$$ $$=$$ $$3\beta_{3}$$ 3*b3

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/400\mathbb{Z}\right)^\times$$.

 $$n$$ $$101$$ $$177$$ $$351$$ $$\chi(n)$$ $$1$$ $$-\beta_{2}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
193.1
 −1.22474 − 1.22474i 1.22474 + 1.22474i −1.22474 + 1.22474i 1.22474 − 1.22474i
0 −1.22474 1.22474i 0 0 0 −4.89898 + 4.89898i 0 6.00000i 0
193.2 0 1.22474 + 1.22474i 0 0 0 4.89898 4.89898i 0 6.00000i 0
257.1 0 −1.22474 + 1.22474i 0 0 0 −4.89898 4.89898i 0 6.00000i 0
257.2 0 1.22474 1.22474i 0 0 0 4.89898 + 4.89898i 0 6.00000i 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner
5.c odd 4 2 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.3.p.j 4
4.b odd 2 1 25.3.c.a 4
5.b even 2 1 inner 400.3.p.j 4
5.c odd 4 2 inner 400.3.p.j 4
12.b even 2 1 225.3.g.e 4
20.d odd 2 1 25.3.c.a 4
20.e even 4 2 25.3.c.a 4
60.h even 2 1 225.3.g.e 4
60.l odd 4 2 225.3.g.e 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
25.3.c.a 4 4.b odd 2 1
25.3.c.a 4 20.d odd 2 1
25.3.c.a 4 20.e even 4 2
225.3.g.e 4 12.b even 2 1
225.3.g.e 4 60.h even 2 1
225.3.g.e 4 60.l odd 4 2
400.3.p.j 4 1.a even 1 1 trivial
400.3.p.j 4 5.b even 2 1 inner
400.3.p.j 4 5.c odd 4 2 inner

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{3}^{\mathrm{new}}(400, [\chi])$$:

 $$T_{3}^{4} + 9$$ T3^4 + 9 $$T_{7}^{4} + 2304$$ T7^4 + 2304

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{4}$$
$3$ $$T^{4} + 9$$
$5$ $$T^{4}$$
$7$ $$T^{4} + 2304$$
$11$ $$(T - 3)^{4}$$
$13$ $$T^{4} + 11664$$
$17$ $$T^{4} + 131769$$
$19$ $$(T^{2} + 25)^{2}$$
$23$ $$T^{4} + 345744$$
$29$ $$(T^{2} + 900)^{2}$$
$31$ $$(T - 38)^{4}$$
$37$ $$T^{4} + 589824$$
$41$ $$(T - 57)^{4}$$
$43$ $$T^{4} + 2304$$
$47$ $$T^{4} + 11664$$
$53$ $$T^{4} + 4112784$$
$59$ $$(T^{2} + 8100)^{2}$$
$61$ $$(T + 28)^{4}$$
$67$ $$T^{4} + 20820969$$
$71$ $$(T + 42)^{4}$$
$73$ $$T^{4} + 131769$$
$79$ $$(T^{2} + 6400)^{2}$$
$83$ $$T^{4} + 617174649$$
$89$ $$(T^{2} + 225)^{2}$$
$97$ $$T^{4} + 33732864$$