Properties

Label 400.3.b.e
Level $400$
Weight $3$
Character orbit 400.b
Analytic conductor $10.899$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,3,Mod(351,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 0, 0])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.351"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 400.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,0,0,0,0,0,12,0,0,0,-32] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(10.8992105744\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{-3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 2 \beta q^{7} + 6 q^{9} - 7 \beta q^{11} - 16 q^{13} + 3 q^{17} + 13 \beta q^{19} - 6 q^{21} - 26 \beta q^{23} - 15 \beta q^{27} + 12 q^{29} - 18 \beta q^{31} - 21 q^{33} - 50 q^{37} + \cdots - 42 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 12 q^{9} - 32 q^{13} + 6 q^{17} - 12 q^{21} + 24 q^{29} - 42 q^{33} - 100 q^{37} - 126 q^{41} + 74 q^{49} - 36 q^{53} + 78 q^{57} + 52 q^{61} - 156 q^{69} + 34 q^{73} - 84 q^{77} + 18 q^{81} + 198 q^{89}+ \cdots + 268 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
351.1
0.500000 + 0.866025i
0.500000 0.866025i
0 1.73205i 0 0 0 3.46410i 0 6.00000 0
351.2 0 1.73205i 0 0 0 3.46410i 0 6.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 400.3.b.e 2
3.b odd 2 1 3600.3.e.j 2
4.b odd 2 1 inner 400.3.b.e 2
5.b even 2 1 400.3.b.f yes 2
5.c odd 4 2 400.3.h.b 4
8.b even 2 1 1600.3.b.j 2
8.d odd 2 1 1600.3.b.j 2
12.b even 2 1 3600.3.e.j 2
15.d odd 2 1 3600.3.e.u 2
15.e even 4 2 3600.3.j.f 4
20.d odd 2 1 400.3.b.f yes 2
20.e even 4 2 400.3.h.b 4
40.e odd 2 1 1600.3.b.i 2
40.f even 2 1 1600.3.b.i 2
40.i odd 4 2 1600.3.h.h 4
40.k even 4 2 1600.3.h.h 4
60.h even 2 1 3600.3.e.u 2
60.l odd 4 2 3600.3.j.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
400.3.b.e 2 1.a even 1 1 trivial
400.3.b.e 2 4.b odd 2 1 inner
400.3.b.f yes 2 5.b even 2 1
400.3.b.f yes 2 20.d odd 2 1
400.3.h.b 4 5.c odd 4 2
400.3.h.b 4 20.e even 4 2
1600.3.b.i 2 40.e odd 2 1
1600.3.b.i 2 40.f even 2 1
1600.3.b.j 2 8.b even 2 1
1600.3.b.j 2 8.d odd 2 1
1600.3.h.h 4 40.i odd 4 2
1600.3.h.h 4 40.k even 4 2
3600.3.e.j 2 3.b odd 2 1
3600.3.e.j 2 12.b even 2 1
3600.3.e.u 2 15.d odd 2 1
3600.3.e.u 2 60.h even 2 1
3600.3.j.f 4 15.e even 4 2
3600.3.j.f 4 60.l odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{3}^{\mathrm{new}}(400, [\chi])\):

\( T_{3}^{2} + 3 \) Copy content Toggle raw display
\( T_{13} + 16 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 3 \) Copy content Toggle raw display
$5$ \( T^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 12 \) Copy content Toggle raw display
$11$ \( T^{2} + 147 \) Copy content Toggle raw display
$13$ \( (T + 16)^{2} \) Copy content Toggle raw display
$17$ \( (T - 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 507 \) Copy content Toggle raw display
$23$ \( T^{2} + 2028 \) Copy content Toggle raw display
$29$ \( (T - 12)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 972 \) Copy content Toggle raw display
$37$ \( (T + 50)^{2} \) Copy content Toggle raw display
$41$ \( (T + 63)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 3888 \) Copy content Toggle raw display
$47$ \( T^{2} + 192 \) Copy content Toggle raw display
$53$ \( (T + 18)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 3072 \) Copy content Toggle raw display
$61$ \( (T - 26)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 1083 \) Copy content Toggle raw display
$71$ \( T^{2} + 768 \) Copy content Toggle raw display
$73$ \( (T - 17)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 7500 \) Copy content Toggle raw display
$83$ \( T^{2} + 9747 \) Copy content Toggle raw display
$89$ \( (T - 99)^{2} \) Copy content Toggle raw display
$97$ \( (T - 134)^{2} \) Copy content Toggle raw display
show more
show less