Defining parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.y (of order \(10\) and degree \(4\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 25 \) |
Character field: | \(\Q(\zeta_{10})\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(5\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 264 | 64 | 200 |
Cusp forms | 216 | 56 | 160 |
Eisenstein series | 48 | 8 | 40 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(400, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
400.2.y.a | $8$ | $3.194$ | \(\Q(\zeta_{20})\) | None | \(0\) | \(0\) | \(-10\) | \(0\) | \(q+(\zeta_{20}-\zeta_{20}^{2}-\zeta_{20}^{3}+\zeta_{20}^{5}+\zeta_{20}^{6}+\cdots)q^{3}+\cdots\) |
400.2.y.b | $8$ | $3.194$ | 8.0.58140625.2 | None | \(0\) | \(0\) | \(5\) | \(0\) | \(q+(\beta _{1}+\beta _{5}+\beta _{7})q^{3}+(-\beta _{3}+\beta _{4}+\beta _{5}+\cdots)q^{5}+\cdots\) |
400.2.y.c | $8$ | $3.194$ | 8.0.58140625.2 | None | \(0\) | \(5\) | \(0\) | \(0\) | \(q+(1+\beta _{3}+\beta _{7})q^{3}+(\beta _{3}-\beta _{4}-\beta _{5}+\cdots)q^{5}+\cdots\) |
400.2.y.d | $32$ | $3.194$ | None | \(0\) | \(0\) | \(2\) | \(0\) |
Decomposition of \(S_{2}^{\mathrm{old}}(400, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(25, [\chi])\)\(^{\oplus 5}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(50, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)