Properties

Label 400.2.q.g.349.1
Level $400$
Weight $2$
Character 400.349
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(149,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 349.1
Root \(-1.39563 + 0.228522i\) of defining polynomial
Character \(\chi\) \(=\) 400.349
Dual form 400.2.q.g.149.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40956 - 0.114638i) q^{2} +(-1.42313 + 1.42313i) q^{3} +(1.97372 + 0.323179i) q^{4} +(2.16913 - 1.84284i) q^{6} -0.690576 q^{7} +(-2.74502 - 0.681804i) q^{8} -1.05061i q^{9} +(-3.06057 + 3.06057i) q^{11} +(-3.26878 + 2.34893i) q^{12} +(2.33686 - 2.33686i) q^{13} +(0.973408 + 0.0791665i) q^{14} +(3.79111 + 1.27573i) q^{16} +5.28770i q^{17} +(-0.120440 + 1.48089i) q^{18} +(-5.38887 - 5.38887i) q^{19} +(0.982780 - 0.982780i) q^{21} +(4.66492 - 3.96320i) q^{22} +1.60841 q^{23} +(4.87682 - 2.93623i) q^{24} +(-3.56183 + 3.02605i) q^{26} +(-2.77424 - 2.77424i) q^{27} +(-1.36300 - 0.223180i) q^{28} +(-1.70319 - 1.70319i) q^{29} -4.69807 q^{31} +(-5.19755 - 2.23282i) q^{32} -8.71119i q^{33} +(0.606174 - 7.45333i) q^{34} +(0.339534 - 2.07360i) q^{36} +(-7.89871 - 7.89871i) q^{37} +(6.97817 + 8.21371i) q^{38} +6.65131i q^{39} -5.49891i q^{41} +(-1.49795 + 1.27262i) q^{42} +(-0.256166 - 0.256166i) q^{43} +(-7.02981 + 5.05159i) q^{44} +(-2.26715 - 0.184385i) q^{46} +4.60743i q^{47} +(-7.21078 + 3.57972i) q^{48} -6.52310 q^{49} +(-7.52510 - 7.52510i) q^{51} +(5.36752 - 3.85707i) q^{52} +(-4.99318 - 4.99318i) q^{53} +(3.59243 + 4.22850i) q^{54} +(1.89565 + 0.470837i) q^{56} +15.3382 q^{57} +(2.20549 + 2.59600i) q^{58} +(-1.46478 + 1.46478i) q^{59} +(9.33004 + 9.33004i) q^{61} +(6.62221 + 0.538579i) q^{62} +0.725523i q^{63} +(7.07029 + 3.74313i) q^{64} +(-0.998637 + 12.2789i) q^{66} +(-1.94797 + 1.94797i) q^{67} +(-1.70888 + 10.4364i) q^{68} +(-2.28897 + 2.28897i) q^{69} -2.32246i q^{71} +(-0.716307 + 2.88394i) q^{72} +1.29733 q^{73} +(10.2282 + 12.0392i) q^{74} +(-8.89454 - 12.3777i) q^{76} +(2.11356 - 2.11356i) q^{77} +(0.762495 - 9.37542i) q^{78} +5.01968 q^{79} +11.0480 q^{81} +(-0.630385 + 7.75103i) q^{82} +(-7.30477 + 7.30477i) q^{83} +(2.25734 - 1.62212i) q^{84} +(0.331715 + 0.390448i) q^{86} +4.84772 q^{87} +(10.4880 - 6.31463i) q^{88} -1.81564i q^{89} +(-1.61378 + 1.61378i) q^{91} +(3.17454 + 0.519803i) q^{92} +(6.68597 - 6.68597i) q^{93} +(0.528188 - 6.49445i) q^{94} +(10.5744 - 4.21920i) q^{96} -5.27038i q^{97} +(9.19470 + 0.747798i) q^{98} +(3.21546 + 3.21546i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 4 q^{4} - 12 q^{6} - 8 q^{7} + 8 q^{8} - 8 q^{11} - 20 q^{12} - 4 q^{14} + 16 q^{16} - 12 q^{18} + 8 q^{19} + 20 q^{22} - 24 q^{23} - 8 q^{24} - 16 q^{26} - 24 q^{27} - 20 q^{28} + 16 q^{29}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40956 0.114638i −0.996709 0.0810615i
\(3\) −1.42313 + 1.42313i −0.821645 + 0.821645i −0.986344 0.164699i \(-0.947335\pi\)
0.164699 + 0.986344i \(0.447335\pi\)
\(4\) 1.97372 + 0.323179i 0.986858 + 0.161590i
\(5\) 0 0
\(6\) 2.16913 1.84284i 0.885545 0.752338i
\(7\) −0.690576 −0.261013 −0.130507 0.991447i \(-0.541660\pi\)
−0.130507 + 0.991447i \(0.541660\pi\)
\(8\) −2.74502 0.681804i −0.970512 0.241054i
\(9\) 1.05061i 0.350202i
\(10\) 0 0
\(11\) −3.06057 + 3.06057i −0.922797 + 0.922797i −0.997226 0.0744292i \(-0.976287\pi\)
0.0744292 + 0.997226i \(0.476287\pi\)
\(12\) −3.26878 + 2.34893i −0.943617 + 0.678078i
\(13\) 2.33686 2.33686i 0.648128 0.648128i −0.304413 0.952540i \(-0.598460\pi\)
0.952540 + 0.304413i \(0.0984601\pi\)
\(14\) 0.973408 + 0.0791665i 0.260154 + 0.0211581i
\(15\) 0 0
\(16\) 3.79111 + 1.27573i 0.947778 + 0.318932i
\(17\) 5.28770i 1.28246i 0.767350 + 0.641228i \(0.221575\pi\)
−0.767350 + 0.641228i \(0.778425\pi\)
\(18\) −0.120440 + 1.48089i −0.0283879 + 0.349050i
\(19\) −5.38887 5.38887i −1.23629 1.23629i −0.961505 0.274787i \(-0.911393\pi\)
−0.274787 0.961505i \(-0.588607\pi\)
\(20\) 0 0
\(21\) 0.982780 0.982780i 0.214460 0.214460i
\(22\) 4.66492 3.96320i 0.994564 0.844957i
\(23\) 1.60841 0.335376 0.167688 0.985840i \(-0.446370\pi\)
0.167688 + 0.985840i \(0.446370\pi\)
\(24\) 4.87682 2.93623i 0.995477 0.599355i
\(25\) 0 0
\(26\) −3.56183 + 3.02605i −0.698533 + 0.593457i
\(27\) −2.77424 2.77424i −0.533903 0.533903i
\(28\) −1.36300 0.223180i −0.257583 0.0421770i
\(29\) −1.70319 1.70319i −0.316274 0.316274i 0.531060 0.847334i \(-0.321794\pi\)
−0.847334 + 0.531060i \(0.821794\pi\)
\(30\) 0 0
\(31\) −4.69807 −0.843798 −0.421899 0.906643i \(-0.638636\pi\)
−0.421899 + 0.906643i \(0.638636\pi\)
\(32\) −5.19755 2.23282i −0.918805 0.394711i
\(33\) 8.71119i 1.51642i
\(34\) 0.606174 7.45333i 0.103958 1.27824i
\(35\) 0 0
\(36\) 0.339534 2.07360i 0.0565890 0.345600i
\(37\) −7.89871 7.89871i −1.29854 1.29854i −0.929356 0.369185i \(-0.879637\pi\)
−0.369185 0.929356i \(-0.620363\pi\)
\(38\) 6.97817 + 8.21371i 1.13201 + 1.33244i
\(39\) 6.65131i 1.06506i
\(40\) 0 0
\(41\) 5.49891i 0.858785i −0.903118 0.429392i \(-0.858728\pi\)
0.903118 0.429392i \(-0.141272\pi\)
\(42\) −1.49795 + 1.27262i −0.231139 + 0.196370i
\(43\) −0.256166 0.256166i −0.0390650 0.0390650i 0.687304 0.726369i \(-0.258794\pi\)
−0.726369 + 0.687304i \(0.758794\pi\)
\(44\) −7.02981 + 5.05159i −1.05978 + 0.761555i
\(45\) 0 0
\(46\) −2.26715 0.184385i −0.334272 0.0271861i
\(47\) 4.60743i 0.672063i 0.941851 + 0.336032i \(0.109085\pi\)
−0.941851 + 0.336032i \(0.890915\pi\)
\(48\) −7.21078 + 3.57972i −1.04079 + 0.516688i
\(49\) −6.52310 −0.931872
\(50\) 0 0
\(51\) −7.52510 7.52510i −1.05372 1.05372i
\(52\) 5.36752 3.85707i 0.744341 0.534879i
\(53\) −4.99318 4.99318i −0.685866 0.685866i 0.275449 0.961316i \(-0.411173\pi\)
−0.961316 + 0.275449i \(0.911173\pi\)
\(54\) 3.59243 + 4.22850i 0.488867 + 0.575425i
\(55\) 0 0
\(56\) 1.89565 + 0.470837i 0.253316 + 0.0629183i
\(57\) 15.3382 2.03159
\(58\) 2.20549 + 2.59600i 0.289596 + 0.340871i
\(59\) −1.46478 + 1.46478i −0.190698 + 0.190698i −0.795998 0.605300i \(-0.793053\pi\)
0.605300 + 0.795998i \(0.293053\pi\)
\(60\) 0 0
\(61\) 9.33004 + 9.33004i 1.19459 + 1.19459i 0.975764 + 0.218825i \(0.0702224\pi\)
0.218825 + 0.975764i \(0.429778\pi\)
\(62\) 6.62221 + 0.538579i 0.841021 + 0.0683996i
\(63\) 0.725523i 0.0914074i
\(64\) 7.07029 + 3.74313i 0.883786 + 0.467891i
\(65\) 0 0
\(66\) −0.998637 + 12.2789i −0.122924 + 1.51143i
\(67\) −1.94797 + 1.94797i −0.237982 + 0.237982i −0.816014 0.578032i \(-0.803821\pi\)
0.578032 + 0.816014i \(0.303821\pi\)
\(68\) −1.70888 + 10.4364i −0.207232 + 1.26560i
\(69\) −2.28897 + 2.28897i −0.275560 + 0.275560i
\(70\) 0 0
\(71\) 2.32246i 0.275625i −0.990458 0.137813i \(-0.955993\pi\)
0.990458 0.137813i \(-0.0440072\pi\)
\(72\) −0.716307 + 2.88394i −0.0844176 + 0.339875i
\(73\) 1.29733 0.151841 0.0759206 0.997114i \(-0.475810\pi\)
0.0759206 + 0.997114i \(0.475810\pi\)
\(74\) 10.2282 + 12.0392i 1.18901 + 1.39953i
\(75\) 0 0
\(76\) −8.89454 12.3777i −1.02027 1.41982i
\(77\) 2.11356 2.11356i 0.240862 0.240862i
\(78\) 0.762495 9.37542i 0.0863356 1.06156i
\(79\) 5.01968 0.564758 0.282379 0.959303i \(-0.408876\pi\)
0.282379 + 0.959303i \(0.408876\pi\)
\(80\) 0 0
\(81\) 11.0480 1.22756
\(82\) −0.630385 + 7.75103i −0.0696144 + 0.855959i
\(83\) −7.30477 + 7.30477i −0.801802 + 0.801802i −0.983377 0.181575i \(-0.941881\pi\)
0.181575 + 0.983377i \(0.441881\pi\)
\(84\) 2.25734 1.62212i 0.246296 0.176987i
\(85\) 0 0
\(86\) 0.331715 + 0.390448i 0.0357698 + 0.0421031i
\(87\) 4.84772 0.519730
\(88\) 10.4880 6.31463i 1.11803 0.673141i
\(89\) 1.81564i 0.192458i −0.995359 0.0962290i \(-0.969322\pi\)
0.995359 0.0962290i \(-0.0306781\pi\)
\(90\) 0 0
\(91\) −1.61378 + 1.61378i −0.169170 + 0.169170i
\(92\) 3.17454 + 0.519803i 0.330969 + 0.0541933i
\(93\) 6.68597 6.68597i 0.693303 0.693303i
\(94\) 0.528188 6.49445i 0.0544785 0.669851i
\(95\) 0 0
\(96\) 10.5744 4.21920i 1.07924 0.430620i
\(97\) 5.27038i 0.535126i −0.963540 0.267563i \(-0.913782\pi\)
0.963540 0.267563i \(-0.0862183\pi\)
\(98\) 9.19470 + 0.747798i 0.928805 + 0.0755390i
\(99\) 3.21546 + 3.21546i 0.323165 + 0.323165i
\(100\) 0 0
\(101\) −13.4502 + 13.4502i −1.33834 + 1.33834i −0.440675 + 0.897667i \(0.645261\pi\)
−0.897667 + 0.440675i \(0.854739\pi\)
\(102\) 9.74441 + 11.4697i 0.964840 + 1.13567i
\(103\) 2.64310 0.260432 0.130216 0.991486i \(-0.458433\pi\)
0.130216 + 0.991486i \(0.458433\pi\)
\(104\) −8.00800 + 4.82145i −0.785249 + 0.472782i
\(105\) 0 0
\(106\) 6.46578 + 7.61060i 0.628012 + 0.739207i
\(107\) 6.28120 + 6.28120i 0.607227 + 0.607227i 0.942220 0.334994i \(-0.108734\pi\)
−0.334994 + 0.942220i \(0.608734\pi\)
\(108\) −4.57899 6.37215i −0.440614 0.613160i
\(109\) 6.89216 + 6.89216i 0.660149 + 0.660149i 0.955415 0.295266i \(-0.0954083\pi\)
−0.295266 + 0.955415i \(0.595408\pi\)
\(110\) 0 0
\(111\) 22.4818 2.13388
\(112\) −2.61805 0.880987i −0.247382 0.0832454i
\(113\) 6.46108i 0.607807i 0.952703 + 0.303904i \(0.0982901\pi\)
−0.952703 + 0.303904i \(0.901710\pi\)
\(114\) −21.6200 1.75834i −2.02490 0.164684i
\(115\) 0 0
\(116\) −2.81117 3.91204i −0.261011 0.363224i
\(117\) −2.45512 2.45512i −0.226976 0.226976i
\(118\) 2.23261 1.89677i 0.205528 0.174612i
\(119\) 3.65156i 0.334738i
\(120\) 0 0
\(121\) 7.73420i 0.703109i
\(122\) −12.0817 14.2208i −1.09382 1.28749i
\(123\) 7.82566 + 7.82566i 0.705616 + 0.705616i
\(124\) −9.27265 1.51832i −0.832709 0.136349i
\(125\) 0 0
\(126\) 0.0831728 1.02267i 0.00740962 0.0911065i
\(127\) 16.6123i 1.47411i 0.675834 + 0.737054i \(0.263784\pi\)
−0.675834 + 0.737054i \(0.736216\pi\)
\(128\) −9.53688 6.08669i −0.842949 0.537993i
\(129\) 0.729117 0.0641951
\(130\) 0 0
\(131\) −11.7719 11.7719i −1.02851 1.02851i −0.999581 0.0289318i \(-0.990789\pi\)
−0.0289318 0.999581i \(-0.509211\pi\)
\(132\) 2.81528 17.1934i 0.245038 1.49650i
\(133\) 3.72143 + 3.72143i 0.322689 + 0.322689i
\(134\) 2.96909 2.52247i 0.256490 0.217908i
\(135\) 0 0
\(136\) 3.60518 14.5149i 0.309141 1.24464i
\(137\) −8.41495 −0.718937 −0.359469 0.933157i \(-0.617042\pi\)
−0.359469 + 0.933157i \(0.617042\pi\)
\(138\) 3.48885 2.96404i 0.296991 0.252316i
\(139\) 1.51845 1.51845i 0.128793 0.128793i −0.639772 0.768565i \(-0.720971\pi\)
0.768565 + 0.639772i \(0.220971\pi\)
\(140\) 0 0
\(141\) −6.55698 6.55698i −0.552198 0.552198i
\(142\) −0.266243 + 3.27364i −0.0223426 + 0.274718i
\(143\) 14.3042i 1.19618i
\(144\) 1.34029 3.98296i 0.111691 0.331914i
\(145\) 0 0
\(146\) −1.82867 0.148724i −0.151342 0.0123085i
\(147\) 9.28324 9.28324i 0.765668 0.765668i
\(148\) −13.0371 18.1425i −1.07164 1.49131i
\(149\) 2.61440 2.61440i 0.214180 0.214180i −0.591860 0.806040i \(-0.701606\pi\)
0.806040 + 0.591860i \(0.201606\pi\)
\(150\) 0 0
\(151\) 12.7143i 1.03467i 0.855782 + 0.517337i \(0.173077\pi\)
−0.855782 + 0.517337i \(0.826923\pi\)
\(152\) 11.1184 + 18.4667i 0.901823 + 1.49785i
\(153\) 5.55529 0.449119
\(154\) −3.22148 + 2.73689i −0.259594 + 0.220545i
\(155\) 0 0
\(156\) −2.14957 + 13.1278i −0.172103 + 1.05107i
\(157\) −7.17831 + 7.17831i −0.572891 + 0.572891i −0.932935 0.360044i \(-0.882762\pi\)
0.360044 + 0.932935i \(0.382762\pi\)
\(158\) −7.07554 0.575448i −0.562900 0.0457802i
\(159\) 14.2119 1.12708
\(160\) 0 0
\(161\) −1.11073 −0.0875376
\(162\) −15.5729 1.26653i −1.22352 0.0995080i
\(163\) 7.05476 7.05476i 0.552572 0.552572i −0.374611 0.927182i \(-0.622224\pi\)
0.927182 + 0.374611i \(0.122224\pi\)
\(164\) 1.77713 10.8533i 0.138771 0.847499i
\(165\) 0 0
\(166\) 11.1339 9.45910i 0.864159 0.734168i
\(167\) −3.90586 −0.302244 −0.151122 0.988515i \(-0.548289\pi\)
−0.151122 + 0.988515i \(0.548289\pi\)
\(168\) −3.36782 + 2.02769i −0.259833 + 0.156440i
\(169\) 2.07819i 0.159861i
\(170\) 0 0
\(171\) −5.66158 + 5.66158i −0.432952 + 0.432952i
\(172\) −0.422812 0.588387i −0.0322391 0.0448641i
\(173\) −8.20139 + 8.20139i −0.623540 + 0.623540i −0.946435 0.322895i \(-0.895344\pi\)
0.322895 + 0.946435i \(0.395344\pi\)
\(174\) −6.83315 0.555735i −0.518020 0.0421301i
\(175\) 0 0
\(176\) −15.5074 + 7.69851i −1.16892 + 0.580297i
\(177\) 4.16914i 0.313372i
\(178\) −0.208142 + 2.55926i −0.0156009 + 0.191825i
\(179\) 3.10363 + 3.10363i 0.231976 + 0.231976i 0.813517 0.581541i \(-0.197550\pi\)
−0.581541 + 0.813517i \(0.697550\pi\)
\(180\) 0 0
\(181\) −1.91041 + 1.91041i −0.141999 + 0.141999i −0.774533 0.632534i \(-0.782015\pi\)
0.632534 + 0.774533i \(0.282015\pi\)
\(182\) 2.45972 2.08972i 0.182326 0.154900i
\(183\) −26.5557 −1.96306
\(184\) −4.41511 1.09662i −0.325486 0.0808437i
\(185\) 0 0
\(186\) −10.1907 + 8.65780i −0.747221 + 0.634821i
\(187\) −16.1834 16.1834i −1.18345 1.18345i
\(188\) −1.48903 + 9.09376i −0.108598 + 0.663231i
\(189\) 1.91583 + 1.91583i 0.139356 + 0.139356i
\(190\) 0 0
\(191\) 5.61041 0.405955 0.202977 0.979183i \(-0.434938\pi\)
0.202977 + 0.979183i \(0.434938\pi\)
\(192\) −15.3889 + 4.73498i −1.11060 + 0.341718i
\(193\) 3.90696i 0.281229i 0.990064 + 0.140615i \(0.0449079\pi\)
−0.990064 + 0.140615i \(0.955092\pi\)
\(194\) −0.604187 + 7.42891i −0.0433781 + 0.533365i
\(195\) 0 0
\(196\) −12.8748 2.10813i −0.919625 0.150581i
\(197\) −0.608436 0.608436i −0.0433493 0.0433493i 0.685100 0.728449i \(-0.259759\pi\)
−0.728449 + 0.685100i \(0.759759\pi\)
\(198\) −4.16376 4.90099i −0.295906 0.348298i
\(199\) 15.5282i 1.10076i −0.834913 0.550382i \(-0.814482\pi\)
0.834913 0.550382i \(-0.185518\pi\)
\(200\) 0 0
\(201\) 5.54443i 0.391074i
\(202\) 20.5007 17.4169i 1.44243 1.22545i
\(203\) 1.17618 + 1.17618i 0.0825517 + 0.0825517i
\(204\) −12.4205 17.2844i −0.869606 1.21015i
\(205\) 0 0
\(206\) −3.72560 0.303000i −0.259575 0.0211110i
\(207\) 1.68980i 0.117449i
\(208\) 11.8405 5.87809i 0.820990 0.407572i
\(209\) 32.9861 2.28169
\(210\) 0 0
\(211\) 2.14501 + 2.14501i 0.147669 + 0.147669i 0.777076 0.629407i \(-0.216702\pi\)
−0.629407 + 0.777076i \(0.716702\pi\)
\(212\) −8.24143 11.4688i −0.566024 0.787681i
\(213\) 3.30516 + 3.30516i 0.226466 + 0.226466i
\(214\) −8.13366 9.57380i −0.556006 0.654451i
\(215\) 0 0
\(216\) 5.72387 + 9.50685i 0.389460 + 0.646859i
\(217\) 3.24437 0.220242
\(218\) −8.92480 10.5050i −0.604464 0.711489i
\(219\) −1.84627 + 1.84627i −0.124760 + 0.124760i
\(220\) 0 0
\(221\) 12.3566 + 12.3566i 0.831196 + 0.831196i
\(222\) −31.6895 2.57728i −2.12686 0.172976i
\(223\) 2.34794i 0.157230i −0.996905 0.0786148i \(-0.974950\pi\)
0.996905 0.0786148i \(-0.0250497\pi\)
\(224\) 3.58930 + 1.54193i 0.239820 + 0.103025i
\(225\) 0 0
\(226\) 0.740688 9.10728i 0.0492698 0.605807i
\(227\) 13.1881 13.1881i 0.875325 0.875325i −0.117722 0.993047i \(-0.537559\pi\)
0.993047 + 0.117722i \(0.0375591\pi\)
\(228\) 30.2732 + 4.95697i 2.00489 + 0.328283i
\(229\) −9.37860 + 9.37860i −0.619755 + 0.619755i −0.945469 0.325713i \(-0.894396\pi\)
0.325713 + 0.945469i \(0.394396\pi\)
\(230\) 0 0
\(231\) 6.01574i 0.395807i
\(232\) 3.51405 + 5.83653i 0.230709 + 0.383187i
\(233\) −16.3435 −1.07070 −0.535350 0.844630i \(-0.679820\pi\)
−0.535350 + 0.844630i \(0.679820\pi\)
\(234\) 3.17918 + 3.74208i 0.207830 + 0.244628i
\(235\) 0 0
\(236\) −3.36444 + 2.41767i −0.219006 + 0.157377i
\(237\) −7.14367 + 7.14367i −0.464031 + 0.464031i
\(238\) −0.418609 + 5.14709i −0.0271344 + 0.333637i
\(239\) −19.3818 −1.25371 −0.626854 0.779137i \(-0.715658\pi\)
−0.626854 + 0.779137i \(0.715658\pi\)
\(240\) 0 0
\(241\) 7.15965 0.461193 0.230597 0.973049i \(-0.425932\pi\)
0.230597 + 0.973049i \(0.425932\pi\)
\(242\) −0.886636 + 10.9018i −0.0569951 + 0.700795i
\(243\) −7.40009 + 7.40009i −0.474716 + 0.474716i
\(244\) 15.3996 + 21.4301i 0.985857 + 1.37192i
\(245\) 0 0
\(246\) −10.1336 11.9279i −0.646096 0.760493i
\(247\) −25.1861 −1.60255
\(248\) 12.8963 + 3.20316i 0.818916 + 0.203401i
\(249\) 20.7913i 1.31759i
\(250\) 0 0
\(251\) 10.4372 10.4372i 0.658787 0.658787i −0.296306 0.955093i \(-0.595755\pi\)
0.955093 + 0.296306i \(0.0957548\pi\)
\(252\) −0.234474 + 1.43198i −0.0147705 + 0.0902061i
\(253\) −4.92264 + 4.92264i −0.309484 + 0.309484i
\(254\) 1.90441 23.4161i 0.119493 1.46926i
\(255\) 0 0
\(256\) 12.7450 + 9.67285i 0.796565 + 0.604553i
\(257\) 5.72152i 0.356899i −0.983949 0.178449i \(-0.942892\pi\)
0.983949 0.178449i \(-0.0571081\pi\)
\(258\) −1.02773 0.0835847i −0.0639839 0.00520376i
\(259\) 5.45466 + 5.45466i 0.338936 + 0.338936i
\(260\) 0 0
\(261\) −1.78938 + 1.78938i −0.110760 + 0.110760i
\(262\) 15.2436 + 17.9427i 0.941756 + 1.10850i
\(263\) 27.1378 1.67339 0.836695 0.547669i \(-0.184485\pi\)
0.836695 + 0.547669i \(0.184485\pi\)
\(264\) −5.93932 + 23.9124i −0.365540 + 1.47171i
\(265\) 0 0
\(266\) −4.81895 5.67219i −0.295469 0.347784i
\(267\) 2.58390 + 2.58390i 0.158132 + 0.158132i
\(268\) −4.47428 + 3.21519i −0.273310 + 0.196399i
\(269\) −13.0770 13.0770i −0.797320 0.797320i 0.185352 0.982672i \(-0.440657\pi\)
−0.982672 + 0.185352i \(0.940657\pi\)
\(270\) 0 0
\(271\) 6.55264 0.398044 0.199022 0.979995i \(-0.436223\pi\)
0.199022 + 0.979995i \(0.436223\pi\)
\(272\) −6.74567 + 20.0463i −0.409016 + 1.21548i
\(273\) 4.59324i 0.277995i
\(274\) 11.8614 + 0.964675i 0.716571 + 0.0582782i
\(275\) 0 0
\(276\) −5.25753 + 3.77804i −0.316466 + 0.227411i
\(277\) 10.2851 + 10.2851i 0.617973 + 0.617973i 0.945011 0.327038i \(-0.106051\pi\)
−0.327038 + 0.945011i \(0.606051\pi\)
\(278\) −2.31442 + 1.96627i −0.138809 + 0.117929i
\(279\) 4.93582i 0.295500i
\(280\) 0 0
\(281\) 29.9714i 1.78794i −0.448124 0.893971i \(-0.647908\pi\)
0.448124 0.893971i \(-0.352092\pi\)
\(282\) 8.49078 + 9.99414i 0.505618 + 0.595142i
\(283\) −19.1176 19.1176i −1.13642 1.13642i −0.989087 0.147334i \(-0.952931\pi\)
−0.147334 0.989087i \(-0.547069\pi\)
\(284\) 0.750570 4.58387i 0.0445381 0.272003i
\(285\) 0 0
\(286\) 1.63981 20.1627i 0.0969643 1.19224i
\(287\) 3.79741i 0.224154i
\(288\) −2.34582 + 5.46058i −0.138228 + 0.321768i
\(289\) −10.9598 −0.644695
\(290\) 0 0
\(291\) 7.50044 + 7.50044i 0.439684 + 0.439684i
\(292\) 2.56056 + 0.419271i 0.149846 + 0.0245360i
\(293\) 7.27952 + 7.27952i 0.425274 + 0.425274i 0.887015 0.461741i \(-0.152775\pi\)
−0.461741 + 0.887015i \(0.652775\pi\)
\(294\) −14.1495 + 12.0211i −0.825215 + 0.701082i
\(295\) 0 0
\(296\) 16.2968 + 27.0675i 0.947230 + 1.57327i
\(297\) 16.9815 0.985369
\(298\) −3.98486 + 3.38544i −0.230837 + 0.196113i
\(299\) 3.75862 3.75862i 0.217366 0.217366i
\(300\) 0 0
\(301\) 0.176902 + 0.176902i 0.0101965 + 0.0101965i
\(302\) 1.45755 17.9216i 0.0838723 1.03127i
\(303\) 38.2827i 2.19928i
\(304\) −13.5551 27.3046i −0.777437 1.56602i
\(305\) 0 0
\(306\) −7.83052 0.636850i −0.447641 0.0364063i
\(307\) 7.03304 7.03304i 0.401397 0.401397i −0.477328 0.878725i \(-0.658395\pi\)
0.878725 + 0.477328i \(0.158395\pi\)
\(308\) 4.85462 3.48850i 0.276618 0.198776i
\(309\) −3.76147 + 3.76147i −0.213983 + 0.213983i
\(310\) 0 0
\(311\) 14.2833i 0.809929i −0.914332 0.404964i \(-0.867284\pi\)
0.914332 0.404964i \(-0.132716\pi\)
\(312\) 4.53489 18.2580i 0.256738 1.03366i
\(313\) −18.4579 −1.04330 −0.521652 0.853158i \(-0.674684\pi\)
−0.521652 + 0.853158i \(0.674684\pi\)
\(314\) 10.9412 9.29534i 0.617445 0.524567i
\(315\) 0 0
\(316\) 9.90743 + 1.62226i 0.557336 + 0.0912590i
\(317\) −7.21807 + 7.21807i −0.405407 + 0.405407i −0.880133 0.474726i \(-0.842547\pi\)
0.474726 + 0.880133i \(0.342547\pi\)
\(318\) −20.0325 1.62923i −1.12337 0.0913626i
\(319\) 10.4255 0.583714
\(320\) 0 0
\(321\) −17.8780 −0.997850
\(322\) 1.56564 + 0.127332i 0.0872495 + 0.00709593i
\(323\) 28.4948 28.4948i 1.58549 1.58549i
\(324\) 21.8057 + 3.57050i 1.21143 + 0.198361i
\(325\) 0 0
\(326\) −10.7529 + 9.13536i −0.595545 + 0.505961i
\(327\) −19.6169 −1.08482
\(328\) −3.74917 + 15.0946i −0.207014 + 0.833461i
\(329\) 3.18178i 0.175417i
\(330\) 0 0
\(331\) −15.4847 + 15.4847i −0.851116 + 0.851116i −0.990271 0.139155i \(-0.955561\pi\)
0.139155 + 0.990271i \(0.455561\pi\)
\(332\) −16.7783 + 12.0568i −0.920828 + 0.661702i
\(333\) −8.29844 + 8.29844i −0.454752 + 0.454752i
\(334\) 5.50554 + 0.447761i 0.301250 + 0.0245004i
\(335\) 0 0
\(336\) 4.97959 2.47207i 0.271659 0.134862i
\(337\) 26.0210i 1.41746i 0.705482 + 0.708728i \(0.250731\pi\)
−0.705482 + 0.708728i \(0.749269\pi\)
\(338\) 0.238240 2.92933i 0.0129586 0.159335i
\(339\) −9.19497 9.19497i −0.499402 0.499402i
\(340\) 0 0
\(341\) 14.3788 14.3788i 0.778654 0.778654i
\(342\) 8.62937 7.33131i 0.466623 0.396432i
\(343\) 9.33873 0.504244
\(344\) 0.528527 + 0.877837i 0.0284963 + 0.0473298i
\(345\) 0 0
\(346\) 12.5005 10.6202i 0.672034 0.570943i
\(347\) 12.8554 + 12.8554i 0.690115 + 0.690115i 0.962257 0.272142i \(-0.0877321\pi\)
−0.272142 + 0.962257i \(0.587732\pi\)
\(348\) 9.56802 + 1.56668i 0.512900 + 0.0839830i
\(349\) 20.0227 + 20.0227i 1.07179 + 1.07179i 0.997216 + 0.0745736i \(0.0237596\pi\)
0.0745736 + 0.997216i \(0.476240\pi\)
\(350\) 0 0
\(351\) −12.9660 −0.692075
\(352\) 22.7412 9.07376i 1.21211 0.483633i
\(353\) 13.7062i 0.729510i 0.931104 + 0.364755i \(0.118847\pi\)
−0.931104 + 0.364755i \(0.881153\pi\)
\(354\) −0.477943 + 5.87665i −0.0254024 + 0.312340i
\(355\) 0 0
\(356\) 0.586778 3.58357i 0.0310992 0.189929i
\(357\) 5.19665 + 5.19665i 0.275036 + 0.275036i
\(358\) −4.01896 4.73055i −0.212409 0.250017i
\(359\) 32.3506i 1.70740i 0.520764 + 0.853700i \(0.325647\pi\)
−0.520764 + 0.853700i \(0.674353\pi\)
\(360\) 0 0
\(361\) 39.0799i 2.05684i
\(362\) 2.91184 2.47383i 0.153043 0.130021i
\(363\) 11.0068 + 11.0068i 0.577706 + 0.577706i
\(364\) −3.70668 + 2.66360i −0.194283 + 0.139611i
\(365\) 0 0
\(366\) 37.4319 + 3.04431i 1.95660 + 0.159128i
\(367\) 16.3714i 0.854582i −0.904114 0.427291i \(-0.859468\pi\)
0.904114 0.427291i \(-0.140532\pi\)
\(368\) 6.09765 + 2.05189i 0.317862 + 0.106962i
\(369\) −5.77718 −0.300748
\(370\) 0 0
\(371\) 3.44817 + 3.44817i 0.179020 + 0.179020i
\(372\) 15.3570 11.0354i 0.796222 0.572161i
\(373\) 15.5321 + 15.5321i 0.804222 + 0.804222i 0.983752 0.179530i \(-0.0574578\pi\)
−0.179530 + 0.983752i \(0.557458\pi\)
\(374\) 20.9562 + 24.6667i 1.08362 + 1.27548i
\(375\) 0 0
\(376\) 3.14136 12.6475i 0.162004 0.652245i
\(377\) −7.96022 −0.409972
\(378\) −2.48084 2.92010i −0.127601 0.150194i
\(379\) −24.9538 + 24.9538i −1.28179 + 1.28179i −0.342145 + 0.939647i \(0.611153\pi\)
−0.939647 + 0.342145i \(0.888847\pi\)
\(380\) 0 0
\(381\) −23.6416 23.6416i −1.21119 1.21119i
\(382\) −7.90820 0.643168i −0.404619 0.0329073i
\(383\) 6.24887i 0.319302i 0.987174 + 0.159651i \(0.0510369\pi\)
−0.987174 + 0.159651i \(0.948963\pi\)
\(384\) 22.2344 4.91008i 1.13464 0.250566i
\(385\) 0 0
\(386\) 0.447888 5.50710i 0.0227969 0.280304i
\(387\) −0.269130 + 0.269130i −0.0136806 + 0.0136806i
\(388\) 1.70328 10.4022i 0.0864707 0.528093i
\(389\) −2.10802 + 2.10802i −0.106881 + 0.106881i −0.758525 0.651644i \(-0.774080\pi\)
0.651644 + 0.758525i \(0.274080\pi\)
\(390\) 0 0
\(391\) 8.50478i 0.430105i
\(392\) 17.9061 + 4.44748i 0.904393 + 0.224632i
\(393\) 33.5058 1.69015
\(394\) 0.787876 + 0.927377i 0.0396926 + 0.0467206i
\(395\) 0 0
\(396\) 5.30723 + 7.38556i 0.266698 + 0.371139i
\(397\) 23.4977 23.4977i 1.17932 1.17932i 0.199397 0.979919i \(-0.436102\pi\)
0.979919 0.199397i \(-0.0638983\pi\)
\(398\) −1.78013 + 21.8879i −0.0892296 + 1.09714i
\(399\) −10.5922 −0.530271
\(400\) 0 0
\(401\) −20.9893 −1.04816 −0.524078 0.851670i \(-0.675590\pi\)
−0.524078 + 0.851670i \(0.675590\pi\)
\(402\) −0.635604 + 7.81520i −0.0317011 + 0.389787i
\(403\) −10.9787 + 10.9787i −0.546889 + 0.546889i
\(404\) −30.8936 + 22.2000i −1.53702 + 1.10449i
\(405\) 0 0
\(406\) −1.52306 1.79273i −0.0755883 0.0889718i
\(407\) 48.3492 2.39658
\(408\) 15.5259 + 25.7872i 0.768647 + 1.27666i
\(409\) 18.4025i 0.909944i 0.890506 + 0.454972i \(0.150351\pi\)
−0.890506 + 0.454972i \(0.849649\pi\)
\(410\) 0 0
\(411\) 11.9756 11.9756i 0.590711 0.590711i
\(412\) 5.21672 + 0.854193i 0.257009 + 0.0420831i
\(413\) 1.01154 1.01154i 0.0497746 0.0497746i
\(414\) −0.193716 + 2.38188i −0.00952063 + 0.117063i
\(415\) 0 0
\(416\) −17.3637 + 6.92815i −0.851326 + 0.339680i
\(417\) 4.32190i 0.211644i
\(418\) −46.4958 3.78147i −2.27419 0.184958i
\(419\) −14.9331 14.9331i −0.729530 0.729530i 0.240996 0.970526i \(-0.422526\pi\)
−0.970526 + 0.240996i \(0.922526\pi\)
\(420\) 0 0
\(421\) −16.2680 + 16.2680i −0.792854 + 0.792854i −0.981957 0.189103i \(-0.939442\pi\)
0.189103 + 0.981957i \(0.439442\pi\)
\(422\) −2.77762 3.26942i −0.135212 0.159153i
\(423\) 4.84060 0.235358
\(424\) 10.3020 + 17.1108i 0.500310 + 0.830972i
\(425\) 0 0
\(426\) −4.27993 5.03772i −0.207363 0.244078i
\(427\) −6.44310 6.44310i −0.311804 0.311804i
\(428\) 10.3674 + 14.4273i 0.501125 + 0.697368i
\(429\) −20.3568 20.3568i −0.982836 0.982836i
\(430\) 0 0
\(431\) 7.05425 0.339791 0.169896 0.985462i \(-0.445657\pi\)
0.169896 + 0.985462i \(0.445657\pi\)
\(432\) −6.97829 14.0566i −0.335743 0.676301i
\(433\) 14.3192i 0.688139i −0.938944 0.344069i \(-0.888194\pi\)
0.938944 0.344069i \(-0.111806\pi\)
\(434\) −4.57314 0.371930i −0.219518 0.0178532i
\(435\) 0 0
\(436\) 11.3758 + 15.8306i 0.544800 + 0.758146i
\(437\) −8.66750 8.66750i −0.414623 0.414623i
\(438\) 2.81409 2.39078i 0.134462 0.114236i
\(439\) 25.9047i 1.23637i −0.786034 0.618183i \(-0.787869\pi\)
0.786034 0.618183i \(-0.212131\pi\)
\(440\) 0 0
\(441\) 6.85321i 0.326344i
\(442\) −16.0008 18.8339i −0.761082 0.895838i
\(443\) −11.1389 11.1389i −0.529224 0.529224i 0.391117 0.920341i \(-0.372089\pi\)
−0.920341 + 0.391117i \(0.872089\pi\)
\(444\) 44.3727 + 7.26565i 2.10584 + 0.344813i
\(445\) 0 0
\(446\) −0.269164 + 3.30956i −0.0127453 + 0.156712i
\(447\) 7.44127i 0.351960i
\(448\) −4.88257 2.58492i −0.230680 0.122126i
\(449\) −12.6659 −0.597740 −0.298870 0.954294i \(-0.596610\pi\)
−0.298870 + 0.954294i \(0.596610\pi\)
\(450\) 0 0
\(451\) 16.8298 + 16.8298i 0.792484 + 0.792484i
\(452\) −2.08809 + 12.7523i −0.0982153 + 0.599820i
\(453\) −18.0941 18.0941i −0.850135 0.850135i
\(454\) −20.1013 + 17.0775i −0.943399 + 0.801489i
\(455\) 0 0
\(456\) −42.1036 10.4576i −1.97168 0.489722i
\(457\) −16.9442 −0.792617 −0.396308 0.918117i \(-0.629709\pi\)
−0.396308 + 0.918117i \(0.629709\pi\)
\(458\) 14.2948 12.1446i 0.667954 0.567478i
\(459\) 14.6694 14.6694i 0.684708 0.684708i
\(460\) 0 0
\(461\) −13.1888 13.1888i −0.614264 0.614264i 0.329790 0.944054i \(-0.393022\pi\)
−0.944054 + 0.329790i \(0.893022\pi\)
\(462\) 0.689634 8.47954i 0.0320847 0.394504i
\(463\) 14.0955i 0.655074i −0.944838 0.327537i \(-0.893781\pi\)
0.944838 0.327537i \(-0.106219\pi\)
\(464\) −4.28417 8.62978i −0.198888 0.400627i
\(465\) 0 0
\(466\) 23.0372 + 1.87360i 1.06718 + 0.0867927i
\(467\) −12.0918 + 12.0918i −0.559540 + 0.559540i −0.929177 0.369636i \(-0.879482\pi\)
0.369636 + 0.929177i \(0.379482\pi\)
\(468\) −4.05226 5.63915i −0.187316 0.260670i
\(469\) 1.34522 1.34522i 0.0621165 0.0621165i
\(470\) 0 0
\(471\) 20.4313i 0.941427i
\(472\) 5.01953 3.02215i 0.231043 0.139106i
\(473\) 1.56803 0.0720981
\(474\) 10.8884 9.25048i 0.500119 0.424889i
\(475\) 0 0
\(476\) 1.18011 7.20715i 0.0540902 0.330339i
\(477\) −5.24587 + 5.24587i −0.240192 + 0.240192i
\(478\) 27.3199 + 2.22190i 1.24958 + 0.101627i
\(479\) −14.2523 −0.651202 −0.325601 0.945507i \(-0.605567\pi\)
−0.325601 + 0.945507i \(0.605567\pi\)
\(480\) 0 0
\(481\) −36.9163 −1.68324
\(482\) −10.0919 0.820770i −0.459676 0.0373850i
\(483\) 1.58071 1.58071i 0.0719248 0.0719248i
\(484\) 2.49953 15.2651i 0.113615 0.693869i
\(485\) 0 0
\(486\) 11.2792 9.58253i 0.511635 0.434672i
\(487\) 26.0424 1.18010 0.590048 0.807368i \(-0.299109\pi\)
0.590048 + 0.807368i \(0.299109\pi\)
\(488\) −19.2499 31.9724i −0.871402 1.44732i
\(489\) 20.0797i 0.908036i
\(490\) 0 0
\(491\) 3.46798 3.46798i 0.156508 0.156508i −0.624509 0.781017i \(-0.714701\pi\)
0.781017 + 0.624509i \(0.214701\pi\)
\(492\) 12.9165 + 17.9747i 0.582323 + 0.810364i
\(493\) 9.00595 9.00595i 0.405608 0.405608i
\(494\) 35.5013 + 2.88729i 1.59728 + 0.129905i
\(495\) 0 0
\(496\) −17.8109 5.99346i −0.799733 0.269114i
\(497\) 1.60383i 0.0719418i
\(498\) −2.38348 + 29.3066i −0.106806 + 1.31326i
\(499\) 5.30274 + 5.30274i 0.237383 + 0.237383i 0.815766 0.578383i \(-0.196316\pi\)
−0.578383 + 0.815766i \(0.696316\pi\)
\(500\) 0 0
\(501\) 5.55855 5.55855i 0.248338 0.248338i
\(502\) −15.9083 + 13.5153i −0.710021 + 0.603217i
\(503\) −28.8492 −1.28632 −0.643161 0.765731i \(-0.722378\pi\)
−0.643161 + 0.765731i \(0.722378\pi\)
\(504\) 0.494665 1.99158i 0.0220341 0.0887119i
\(505\) 0 0
\(506\) 7.50308 6.37444i 0.333553 0.283378i
\(507\) −2.95754 2.95754i −0.131349 0.131349i
\(508\) −5.36876 + 32.7881i −0.238200 + 1.45473i
\(509\) −12.9968 12.9968i −0.576072 0.576072i 0.357747 0.933819i \(-0.383545\pi\)
−0.933819 + 0.357747i \(0.883545\pi\)
\(510\) 0 0
\(511\) −0.895906 −0.0396326
\(512\) −16.8560 15.0955i −0.744937 0.667134i
\(513\) 29.9001i 1.32012i
\(514\) −0.655906 + 8.06482i −0.0289308 + 0.355724i
\(515\) 0 0
\(516\) 1.43907 + 0.235635i 0.0633515 + 0.0103733i
\(517\) −14.1014 14.1014i −0.620178 0.620178i
\(518\) −7.06336 8.31399i −0.310346 0.365296i
\(519\) 23.3433i 1.02466i
\(520\) 0 0
\(521\) 13.9833i 0.612618i 0.951932 + 0.306309i \(0.0990941\pi\)
−0.951932 + 0.306309i \(0.900906\pi\)
\(522\) 2.72737 2.31711i 0.119374 0.101417i
\(523\) −6.30689 6.30689i −0.275781 0.275781i 0.555641 0.831422i \(-0.312473\pi\)
−0.831422 + 0.555641i \(0.812473\pi\)
\(524\) −19.4299 27.0388i −0.848800 1.18119i
\(525\) 0 0
\(526\) −38.2524 3.11104i −1.66788 0.135648i
\(527\) 24.8420i 1.08213i
\(528\) 11.1131 33.0251i 0.483636 1.43723i
\(529\) −20.4130 −0.887523
\(530\) 0 0
\(531\) 1.53890 + 1.53890i 0.0667827 + 0.0667827i
\(532\) 6.14235 + 8.54773i 0.266305 + 0.370591i
\(533\) −12.8502 12.8502i −0.556602 0.556602i
\(534\) −3.34595 3.93838i −0.144793 0.170430i
\(535\) 0 0
\(536\) 6.67535 4.01908i 0.288331 0.173598i
\(537\) −8.83375 −0.381204
\(538\) 16.9337 + 19.9320i 0.730064 + 0.859328i
\(539\) 19.9644 19.9644i 0.859929 0.859929i
\(540\) 0 0
\(541\) 3.89317 + 3.89317i 0.167381 + 0.167381i 0.785827 0.618446i \(-0.212238\pi\)
−0.618446 + 0.785827i \(0.712238\pi\)
\(542\) −9.23633 0.751184i −0.396735 0.0322661i
\(543\) 5.43752i 0.233346i
\(544\) 11.8065 27.4831i 0.506199 1.17833i
\(545\) 0 0
\(546\) −0.526561 + 6.47444i −0.0225347 + 0.277080i
\(547\) −27.8376 + 27.8376i −1.19025 + 1.19025i −0.213251 + 0.976997i \(0.568405\pi\)
−0.976997 + 0.213251i \(0.931595\pi\)
\(548\) −16.6087 2.71953i −0.709489 0.116173i
\(549\) 9.80220 9.80220i 0.418348 0.418348i
\(550\) 0 0
\(551\) 18.3565i 0.782014i
\(552\) 7.84391 4.72265i 0.333859 0.201009i
\(553\) −3.46647 −0.147409
\(554\) −13.3184 15.6766i −0.565845 0.666033i
\(555\) 0 0
\(556\) 3.48772 2.50625i 0.147912 0.106289i
\(557\) 1.50454 1.50454i 0.0637492 0.0637492i −0.674513 0.738263i \(-0.735647\pi\)
0.738263 + 0.674513i \(0.235647\pi\)
\(558\) 0.565834 6.95733i 0.0239537 0.294527i
\(559\) −1.19725 −0.0506382
\(560\) 0 0
\(561\) 46.0622 1.94475
\(562\) −3.43587 + 42.2465i −0.144933 + 1.78206i
\(563\) 6.66663 6.66663i 0.280965 0.280965i −0.552529 0.833494i \(-0.686337\pi\)
0.833494 + 0.552529i \(0.186337\pi\)
\(564\) −10.8225 15.0607i −0.455711 0.634170i
\(565\) 0 0
\(566\) 24.7557 + 29.1389i 1.04056 + 1.22480i
\(567\) −7.62952 −0.320410
\(568\) −1.58346 + 6.37520i −0.0664405 + 0.267497i
\(569\) 8.38187i 0.351386i 0.984445 + 0.175693i \(0.0562167\pi\)
−0.984445 + 0.175693i \(0.943783\pi\)
\(570\) 0 0
\(571\) 28.4129 28.4129i 1.18904 1.18904i 0.211708 0.977333i \(-0.432097\pi\)
0.977333 0.211708i \(-0.0679027\pi\)
\(572\) −4.62283 + 28.2325i −0.193290 + 1.18046i
\(573\) −7.98435 + 7.98435i −0.333551 + 0.333551i
\(574\) 0.435329 5.35268i 0.0181703 0.223416i
\(575\) 0 0
\(576\) 3.93256 7.42809i 0.163857 0.309504i
\(577\) 23.2045i 0.966014i −0.875616 0.483007i \(-0.839545\pi\)
0.875616 0.483007i \(-0.160455\pi\)
\(578\) 15.4485 + 1.25642i 0.642574 + 0.0522600i
\(579\) −5.56012 5.56012i −0.231071 0.231071i
\(580\) 0 0
\(581\) 5.04450 5.04450i 0.209281 0.209281i
\(582\) −9.71248 11.4322i −0.402595 0.473878i
\(583\) 30.5640 1.26583
\(584\) −3.56120 0.884526i −0.147364 0.0366019i
\(585\) 0 0
\(586\) −9.42640 11.0954i −0.389401 0.458348i
\(587\) 11.0197 + 11.0197i 0.454832 + 0.454832i 0.896955 0.442123i \(-0.145774\pi\)
−0.442123 + 0.896955i \(0.645774\pi\)
\(588\) 21.3226 15.3223i 0.879330 0.631882i
\(589\) 25.3173 + 25.3173i 1.04318 + 1.04318i
\(590\) 0 0
\(591\) 1.73177 0.0712354
\(592\) −19.8683 40.0215i −0.816582 1.64487i
\(593\) 6.98847i 0.286982i −0.989652 0.143491i \(-0.954167\pi\)
0.989652 0.143491i \(-0.0458328\pi\)
\(594\) −23.9365 1.94674i −0.982126 0.0798755i
\(595\) 0 0
\(596\) 6.00500 4.31516i 0.245975 0.176756i
\(597\) 22.0987 + 22.0987i 0.904438 + 0.904438i
\(598\) −5.72888 + 4.86711i −0.234271 + 0.199031i
\(599\) 39.9642i 1.63289i 0.577420 + 0.816447i \(0.304059\pi\)
−0.577420 + 0.816447i \(0.695941\pi\)
\(600\) 0 0
\(601\) 21.0830i 0.859993i −0.902831 0.429997i \(-0.858515\pi\)
0.902831 0.429997i \(-0.141485\pi\)
\(602\) −0.229075 0.269634i −0.00933638 0.0109895i
\(603\) 2.04655 + 2.04655i 0.0833418 + 0.0833418i
\(604\) −4.10899 + 25.0944i −0.167193 + 1.02108i
\(605\) 0 0
\(606\) −4.38867 + 53.9618i −0.178277 + 2.19205i
\(607\) 22.3189i 0.905897i −0.891537 0.452949i \(-0.850372\pi\)
0.891537 0.452949i \(-0.149628\pi\)
\(608\) 15.9765 + 40.0413i 0.647934 + 1.62389i
\(609\) −3.34772 −0.135656
\(610\) 0 0
\(611\) 10.7669 + 10.7669i 0.435583 + 0.435583i
\(612\) 10.9646 + 1.79536i 0.443217 + 0.0725729i
\(613\) −10.6045 10.6045i −0.428312 0.428312i 0.459741 0.888053i \(-0.347942\pi\)
−0.888053 + 0.459741i \(0.847942\pi\)
\(614\) −10.7197 + 9.10724i −0.432614 + 0.367538i
\(615\) 0 0
\(616\) −7.24279 + 4.36073i −0.291820 + 0.175699i
\(617\) −33.7636 −1.35927 −0.679635 0.733550i \(-0.737862\pi\)
−0.679635 + 0.733550i \(0.737862\pi\)
\(618\) 5.73323 4.87081i 0.230624 0.195933i
\(619\) −4.86777 + 4.86777i −0.195652 + 0.195652i −0.798133 0.602481i \(-0.794179\pi\)
0.602481 + 0.798133i \(0.294179\pi\)
\(620\) 0 0
\(621\) −4.46211 4.46211i −0.179058 0.179058i
\(622\) −1.63741 + 20.1331i −0.0656541 + 0.807263i
\(623\) 1.25384i 0.0502341i
\(624\) −8.48526 + 25.2159i −0.339682 + 1.00944i
\(625\) 0 0
\(626\) 26.0176 + 2.11599i 1.03987 + 0.0845718i
\(627\) −46.9435 + 46.9435i −1.87474 + 1.87474i
\(628\) −16.4878 + 11.8481i −0.657936 + 0.472789i
\(629\) 41.7661 41.7661i 1.66532 1.66532i
\(630\) 0 0
\(631\) 16.1348i 0.642315i −0.947026 0.321157i \(-0.895928\pi\)
0.947026 0.321157i \(-0.104072\pi\)
\(632\) −13.7791 3.42244i −0.548105 0.136137i
\(633\) −6.10526 −0.242662
\(634\) 11.0018 9.34683i 0.436936 0.371210i
\(635\) 0 0
\(636\) 28.0503 + 4.59299i 1.11227 + 0.182124i
\(637\) −15.2436 + 15.2436i −0.603972 + 0.603972i
\(638\) −14.6953 1.19516i −0.581793 0.0473167i
\(639\) −2.43999 −0.0965245
\(640\) 0 0
\(641\) 20.3125 0.802296 0.401148 0.916013i \(-0.368611\pi\)
0.401148 + 0.916013i \(0.368611\pi\)
\(642\) 25.2000 + 2.04950i 0.994566 + 0.0808873i
\(643\) −7.78443 + 7.78443i −0.306988 + 0.306988i −0.843740 0.536752i \(-0.819651\pi\)
0.536752 + 0.843740i \(0.319651\pi\)
\(644\) −2.19226 0.358964i −0.0863871 0.0141452i
\(645\) 0 0
\(646\) −43.4317 + 36.8985i −1.70880 + 1.45175i
\(647\) 21.7693 0.855840 0.427920 0.903817i \(-0.359246\pi\)
0.427920 + 0.903817i \(0.359246\pi\)
\(648\) −30.3271 7.53260i −1.19136 0.295908i
\(649\) 8.96611i 0.351951i
\(650\) 0 0
\(651\) −4.61717 + 4.61717i −0.180961 + 0.180961i
\(652\) 16.2040 11.6441i 0.634600 0.456020i
\(653\) 26.3118 26.3118i 1.02966 1.02966i 0.0301152 0.999546i \(-0.490413\pi\)
0.999546 0.0301152i \(-0.00958743\pi\)
\(654\) 27.6512 + 2.24885i 1.08125 + 0.0879369i
\(655\) 0 0
\(656\) 7.01511 20.8470i 0.273894 0.813937i
\(657\) 1.36298i 0.0531751i
\(658\) −0.364754 + 4.48491i −0.0142196 + 0.174840i
\(659\) 20.2389 + 20.2389i 0.788397 + 0.788397i 0.981231 0.192835i \(-0.0617681\pi\)
−0.192835 + 0.981231i \(0.561768\pi\)
\(660\) 0 0
\(661\) 6.81905 6.81905i 0.265230 0.265230i −0.561945 0.827175i \(-0.689947\pi\)
0.827175 + 0.561945i \(0.189947\pi\)
\(662\) 23.6017 20.0515i 0.917308 0.779322i
\(663\) −35.1702 −1.36590
\(664\) 25.0322 15.0713i 0.971436 0.584881i
\(665\) 0 0
\(666\) 12.6485 10.7458i 0.490118 0.416392i
\(667\) −2.73942 2.73942i −0.106071 0.106071i
\(668\) −7.70905 1.26229i −0.298272 0.0488395i
\(669\) 3.34143 + 3.34143i 0.129187 + 0.129187i
\(670\) 0 0
\(671\) −57.1105 −2.20473
\(672\) −7.30242 + 2.91368i −0.281697 + 0.112398i
\(673\) 8.19512i 0.315899i −0.987447 0.157949i \(-0.949512\pi\)
0.987447 0.157949i \(-0.0504883\pi\)
\(674\) 2.98301 36.6782i 0.114901 1.41279i
\(675\) 0 0
\(676\) −0.671628 + 4.10176i −0.0258318 + 0.157760i
\(677\) −12.8834 12.8834i −0.495151 0.495151i 0.414774 0.909925i \(-0.363861\pi\)
−0.909925 + 0.414774i \(0.863861\pi\)
\(678\) 11.9068 + 14.0150i 0.457276 + 0.538241i
\(679\) 3.63960i 0.139675i
\(680\) 0 0
\(681\) 37.5368i 1.43841i
\(682\) −21.9161 + 18.6194i −0.839211 + 0.712973i
\(683\) 15.0673 + 15.0673i 0.576535 + 0.576535i 0.933947 0.357412i \(-0.116341\pi\)
−0.357412 + 0.933947i \(0.616341\pi\)
\(684\) −13.0041 + 9.34465i −0.497223 + 0.357302i
\(685\) 0 0
\(686\) −13.1635 1.07058i −0.502585 0.0408748i
\(687\) 26.6940i 1.01844i
\(688\) −0.644356 1.29795i −0.0245659 0.0494840i
\(689\) −23.3367 −0.889058
\(690\) 0 0
\(691\) −5.23733 5.23733i −0.199237 0.199237i 0.600436 0.799673i \(-0.294994\pi\)
−0.799673 + 0.600436i \(0.794994\pi\)
\(692\) −18.8377 + 13.5367i −0.716104 + 0.514588i
\(693\) −2.22052 2.22052i −0.0843504 0.0843504i
\(694\) −16.6467 19.5942i −0.631902 0.743786i
\(695\) 0 0
\(696\) −13.3071 3.30519i −0.504404 0.125283i
\(697\) 29.0766 1.10135
\(698\) −25.9278 30.5185i −0.981381 1.15514i
\(699\) 23.2590 23.2590i 0.879736 0.879736i
\(700\) 0 0
\(701\) 21.7664 + 21.7664i 0.822106 + 0.822106i 0.986410 0.164303i \(-0.0525376\pi\)
−0.164303 + 0.986410i \(0.552538\pi\)
\(702\) 18.2764 + 1.48640i 0.689798 + 0.0561007i
\(703\) 85.1304i 3.21075i
\(704\) −33.0952 + 10.1830i −1.24732 + 0.383786i
\(705\) 0 0
\(706\) 1.57126 19.3198i 0.0591352 0.727109i
\(707\) 9.28836 9.28836i 0.349325 0.349325i
\(708\) 1.34738 8.22870i 0.0506376 0.309253i
\(709\) 23.9643 23.9643i 0.899997 0.899997i −0.0954387 0.995435i \(-0.530425\pi\)
0.995435 + 0.0954387i \(0.0304254\pi\)
\(710\) 0 0
\(711\) 5.27371i 0.197779i
\(712\) −1.23791 + 4.98398i −0.0463928 + 0.186783i
\(713\) −7.55640 −0.282990
\(714\) −6.72926 7.92073i −0.251836 0.296426i
\(715\) 0 0
\(716\) 5.12266 + 7.12872i 0.191443 + 0.266413i
\(717\) 27.5829 27.5829i 1.03010 1.03010i
\(718\) 3.70862 45.6001i 0.138405 1.70178i
\(719\) 44.4408 1.65736 0.828681 0.559721i \(-0.189092\pi\)
0.828681 + 0.559721i \(0.189092\pi\)
\(720\) 0 0
\(721\) −1.82526 −0.0679762
\(722\) 4.48006 55.0855i 0.166730 2.05007i
\(723\) −10.1891 + 10.1891i −0.378937 + 0.378937i
\(724\) −4.38800 + 3.15320i −0.163079 + 0.117188i
\(725\) 0 0
\(726\) −14.2529 16.7765i −0.528975 0.622635i
\(727\) −46.6543 −1.73031 −0.865155 0.501504i \(-0.832780\pi\)
−0.865155 + 0.501504i \(0.832780\pi\)
\(728\) 5.53014 3.32958i 0.204960 0.123402i
\(729\) 12.0815i 0.447464i
\(730\) 0 0
\(731\) 1.35453 1.35453i 0.0500992 0.0500992i
\(732\) −52.4135 8.58226i −1.93726 0.317210i
\(733\) −19.4202 + 19.4202i −0.717303 + 0.717303i −0.968052 0.250749i \(-0.919323\pi\)
0.250749 + 0.968052i \(0.419323\pi\)
\(734\) −1.87679 + 23.0765i −0.0692737 + 0.851769i
\(735\) 0 0
\(736\) −8.35977 3.59128i −0.308145 0.132376i
\(737\) 11.9238i 0.439219i
\(738\) 8.14328 + 0.662287i 0.299758 + 0.0243791i
\(739\) 20.5243 + 20.5243i 0.754999 + 0.754999i 0.975408 0.220409i \(-0.0707392\pi\)
−0.220409 + 0.975408i \(0.570739\pi\)
\(740\) 0 0
\(741\) 35.8431 35.8431i 1.31673 1.31673i
\(742\) −4.46511 5.25570i −0.163919 0.192943i
\(743\) −12.9245 −0.474154 −0.237077 0.971491i \(-0.576189\pi\)
−0.237077 + 0.971491i \(0.576189\pi\)
\(744\) −22.9116 + 13.7946i −0.839982 + 0.505735i
\(745\) 0 0
\(746\) −20.1129 23.6740i −0.736384 0.866767i
\(747\) 7.67443 + 7.67443i 0.280793 + 0.280793i
\(748\) −26.7113 37.1716i −0.976662 1.35913i
\(749\) −4.33765 4.33765i −0.158494 0.158494i
\(750\) 0 0
\(751\) −52.2694 −1.90734 −0.953668 0.300861i \(-0.902726\pi\)
−0.953668 + 0.300861i \(0.902726\pi\)
\(752\) −5.87783 + 17.4673i −0.214342 + 0.636966i
\(753\) 29.7069i 1.08258i
\(754\) 11.2204 + 0.912546i 0.408623 + 0.0332330i
\(755\) 0 0
\(756\) 3.16214 + 4.40045i 0.115006 + 0.160043i
\(757\) 34.4514 + 34.4514i 1.25216 + 1.25216i 0.954751 + 0.297407i \(0.0961218\pi\)
0.297407 + 0.954751i \(0.403878\pi\)
\(758\) 38.0346 32.3132i 1.38148 1.17367i
\(759\) 14.0111i 0.508572i
\(760\) 0 0
\(761\) 47.7467i 1.73082i 0.501067 + 0.865408i \(0.332941\pi\)
−0.501067 + 0.865408i \(0.667059\pi\)
\(762\) 30.6139 + 36.0344i 1.10903 + 1.30539i
\(763\) −4.75956 4.75956i −0.172308 0.172308i
\(764\) 11.0733 + 1.81317i 0.400620 + 0.0655980i
\(765\) 0 0
\(766\) 0.716360 8.80815i 0.0258831 0.318251i
\(767\) 6.84595i 0.247193i
\(768\) −31.9036 + 4.37213i −1.15122 + 0.157766i
\(769\) 17.9108 0.645882 0.322941 0.946419i \(-0.395329\pi\)
0.322941 + 0.946419i \(0.395329\pi\)
\(770\) 0 0
\(771\) 8.14247 + 8.14247i 0.293244 + 0.293244i
\(772\) −1.26265 + 7.71124i −0.0454437 + 0.277534i
\(773\) 3.73170 + 3.73170i 0.134220 + 0.134220i 0.771025 0.636805i \(-0.219744\pi\)
−0.636805 + 0.771025i \(0.719744\pi\)
\(774\) 0.410207 0.348502i 0.0147446 0.0125266i
\(775\) 0 0
\(776\) −3.59336 + 14.4673i −0.128994 + 0.519346i
\(777\) −15.5254 −0.556971
\(778\) 3.21304 2.72972i 0.115193 0.0978652i
\(779\) −29.6329 + 29.6329i −1.06171 + 1.06171i
\(780\) 0 0
\(781\) 7.10805 + 7.10805i 0.254346 + 0.254346i
\(782\) 0.974974 11.9880i 0.0348650 0.428690i
\(783\) 9.45012i 0.337720i
\(784\) −24.7298 8.32170i −0.883208 0.297204i
\(785\) 0 0
\(786\) −47.2285 3.84105i −1.68458 0.137006i
\(787\) 2.40160 2.40160i 0.0856076 0.0856076i −0.663006 0.748614i \(-0.730720\pi\)
0.748614 + 0.663006i \(0.230720\pi\)
\(788\) −1.00425 1.39751i −0.0357748 0.0497843i
\(789\) −38.6207 + 38.6207i −1.37493 + 1.37493i
\(790\) 0 0
\(791\) 4.46187i 0.158646i
\(792\) −6.63419 11.0188i −0.235736 0.391536i
\(793\) 43.6060 1.54849
\(794\) −35.8151 + 30.4277i −1.27103 + 1.07984i
\(795\) 0 0
\(796\) 5.01839 30.6482i 0.177872 1.08630i
\(797\) 35.4972 35.4972i 1.25738 1.25738i 0.305035 0.952341i \(-0.401332\pi\)
0.952341 0.305035i \(-0.0986682\pi\)
\(798\) 14.9303 + 1.21427i 0.528526 + 0.0429846i
\(799\) −24.3627 −0.861892
\(800\) 0 0
\(801\) −1.90753 −0.0673992
\(802\) 29.5857 + 2.40618i 1.04471 + 0.0849652i
\(803\) −3.97058 + 3.97058i −0.140119 + 0.140119i
\(804\) 1.79184 10.9431i 0.0631935 0.385934i
\(805\) 0 0
\(806\) 16.7337 14.2166i 0.589421 0.500757i
\(807\) 37.2206 1.31023
\(808\) 46.0914 27.7506i 1.62149 0.976264i
\(809\) 11.9182i 0.419021i −0.977806 0.209510i \(-0.932813\pi\)
0.977806 0.209510i \(-0.0671870\pi\)
\(810\) 0 0
\(811\) −22.1494 + 22.1494i −0.777772 + 0.777772i −0.979452 0.201680i \(-0.935360\pi\)
0.201680 + 0.979452i \(0.435360\pi\)
\(812\) 1.94133 + 2.70156i 0.0681273 + 0.0948063i
\(813\) −9.32527 + 9.32527i −0.327051 + 0.327051i
\(814\) −68.1510 5.54267i −2.38869 0.194270i
\(815\) 0 0
\(816\) −18.9285 38.1285i −0.662630 1.33476i
\(817\) 2.76090i 0.0965915i
\(818\) 2.10963 25.9394i 0.0737615 0.906949i
\(819\) 1.69545 + 1.69545i 0.0592436 + 0.0592436i
\(820\) 0 0
\(821\) 13.3909 13.3909i 0.467344 0.467344i −0.433709 0.901053i \(-0.642795\pi\)
0.901053 + 0.433709i \(0.142795\pi\)
\(822\) −18.2531 + 15.5074i −0.636652 + 0.540884i
\(823\) 43.9496 1.53199 0.765994 0.642848i \(-0.222247\pi\)
0.765994 + 0.642848i \(0.222247\pi\)
\(824\) −7.25536 1.80207i −0.252752 0.0627782i
\(825\) 0 0
\(826\) −1.54179 + 1.30986i −0.0536456 + 0.0455760i
\(827\) −1.79096 1.79096i −0.0622777 0.0622777i 0.675282 0.737560i \(-0.264022\pi\)
−0.737560 + 0.675282i \(0.764022\pi\)
\(828\) 0.546109 3.33519i 0.0189786 0.115906i
\(829\) −13.4979 13.4979i −0.468801 0.468801i 0.432725 0.901526i \(-0.357552\pi\)
−0.901526 + 0.432725i \(0.857552\pi\)
\(830\) 0 0
\(831\) −29.2742 −1.01551
\(832\) 25.2694 7.77509i 0.876060 0.269553i
\(833\) 34.4923i 1.19509i
\(834\) 0.495456 6.09198i 0.0171562 0.210948i
\(835\) 0 0
\(836\) 65.1051 + 10.6604i 2.25171 + 0.368698i
\(837\) 13.0336 + 13.0336i 0.450507 + 0.450507i
\(838\) 19.3372 + 22.7610i 0.667993 + 0.786266i
\(839\) 14.5332i 0.501741i −0.968021 0.250870i \(-0.919283\pi\)
0.968021 0.250870i \(-0.0807168\pi\)
\(840\) 0 0
\(841\) 23.1983i 0.799941i
\(842\) 24.7956 21.0658i 0.854515 0.725975i
\(843\) 42.6532 + 42.6532i 1.46905 + 1.46905i
\(844\) 3.54042 + 4.92686i 0.121866 + 0.169590i
\(845\) 0 0
\(846\) −6.82311 0.554918i −0.234583 0.0190785i
\(847\) 5.34105i 0.183521i
\(848\) −12.5598 25.2996i −0.431304 0.868793i
\(849\) 54.4136 1.86747
\(850\) 0 0
\(851\) −12.7043 12.7043i −0.435499 0.435499i
\(852\) 5.45529 + 7.59161i 0.186895 + 0.260084i
\(853\) 11.5836 + 11.5836i 0.396615 + 0.396615i 0.877037 0.480423i \(-0.159517\pi\)
−0.480423 + 0.877037i \(0.659517\pi\)
\(854\) 8.34331 + 9.82056i 0.285502 + 0.336053i
\(855\) 0 0
\(856\) −12.9595 21.5246i −0.442946 0.735695i
\(857\) −15.6443 −0.534399 −0.267200 0.963641i \(-0.586098\pi\)
−0.267200 + 0.963641i \(0.586098\pi\)
\(858\) 26.3605 + 31.0278i 0.899932 + 1.05927i
\(859\) −12.0947 + 12.0947i −0.412665 + 0.412665i −0.882666 0.470001i \(-0.844254\pi\)
0.470001 + 0.882666i \(0.344254\pi\)
\(860\) 0 0
\(861\) −5.40422 5.40422i −0.184175 0.184175i
\(862\) −9.94338 0.808687i −0.338673 0.0275440i
\(863\) 9.28120i 0.315936i −0.987444 0.157968i \(-0.949506\pi\)
0.987444 0.157968i \(-0.0504942\pi\)
\(864\) 8.22488 + 20.6137i 0.279816 + 0.701291i
\(865\) 0 0
\(866\) −1.64153 + 20.1838i −0.0557816 + 0.685874i
\(867\) 15.5973 15.5973i 0.529711 0.529711i
\(868\) 6.40347 + 1.04851i 0.217348 + 0.0355889i
\(869\) −15.3631 + 15.3631i −0.521157 + 0.521157i
\(870\) 0 0
\(871\) 9.10425i 0.308486i
\(872\) −14.2200 23.6182i −0.481551 0.799814i
\(873\) −5.53709 −0.187402
\(874\) 11.2237 + 13.2110i 0.379648 + 0.446868i
\(875\) 0 0
\(876\) −4.24070 + 3.04734i −0.143280 + 0.102960i
\(877\) −2.97610 + 2.97610i −0.100496 + 0.100496i −0.755567 0.655071i \(-0.772639\pi\)
0.655071 + 0.755567i \(0.272639\pi\)
\(878\) −2.96968 + 36.5143i −0.100222 + 1.23230i
\(879\) −20.7194 −0.698849
\(880\) 0 0
\(881\) 29.3318 0.988214 0.494107 0.869401i \(-0.335495\pi\)
0.494107 + 0.869401i \(0.335495\pi\)
\(882\) 0.785641 9.66001i 0.0264539 0.325270i
\(883\) −35.5597 + 35.5597i −1.19668 + 1.19668i −0.221525 + 0.975155i \(0.571103\pi\)
−0.975155 + 0.221525i \(0.928897\pi\)
\(884\) 20.3950 + 28.3818i 0.685960 + 0.954585i
\(885\) 0 0
\(886\) 14.4240 + 16.9778i 0.484583 + 0.570382i
\(887\) −4.51671 −0.151656 −0.0758282 0.997121i \(-0.524160\pi\)
−0.0758282 + 0.997121i \(0.524160\pi\)
\(888\) −61.7131 15.3282i −2.07096 0.514380i
\(889\) 11.4721i 0.384762i
\(890\) 0 0
\(891\) −33.8133 + 33.8133i −1.13279 + 1.13279i
\(892\) 0.758805 4.63416i 0.0254067 0.155163i
\(893\) 24.8289 24.8289i 0.830867 0.830867i
\(894\) 0.853055 10.4889i 0.0285304 0.350802i
\(895\) 0 0
\(896\) 6.58594 + 4.20332i 0.220021 + 0.140423i
\(897\) 10.6980i 0.357196i
\(898\) 17.8533 + 1.45200i 0.595773 + 0.0484537i
\(899\) 8.00169 + 8.00169i 0.266871 + 0.266871i
\(900\) 0 0
\(901\) 26.4025 26.4025i 0.879594 0.879594i
\(902\) −21.7933 25.6519i −0.725636 0.854116i
\(903\) −0.503511 −0.0167558
\(904\) 4.40519 17.7358i 0.146514 0.589884i
\(905\) 0 0
\(906\) 23.4304 + 27.5790i 0.778424 + 0.916251i
\(907\) 5.06769 + 5.06769i 0.168270 + 0.168270i 0.786218 0.617949i \(-0.212036\pi\)
−0.617949 + 0.786218i \(0.712036\pi\)
\(908\) 30.2917 21.7674i 1.00526 0.722378i
\(909\) 14.1308 + 14.1308i 0.468690 + 0.468690i
\(910\) 0 0
\(911\) 36.7140 1.21639 0.608194 0.793788i \(-0.291894\pi\)
0.608194 + 0.793788i \(0.291894\pi\)
\(912\) 58.1486 + 19.5673i 1.92549 + 0.647938i
\(913\) 44.7135i 1.47980i
\(914\) 23.8839 + 1.94246i 0.790008 + 0.0642507i
\(915\) 0 0
\(916\) −21.5417 + 15.4797i −0.711757 + 0.511465i
\(917\) 8.12937 + 8.12937i 0.268456 + 0.268456i
\(918\) −22.3590 + 18.9957i −0.737958 + 0.626951i
\(919\) 21.5651i 0.711365i −0.934607 0.355683i \(-0.884248\pi\)
0.934607 0.355683i \(-0.115752\pi\)
\(920\) 0 0
\(921\) 20.0179i 0.659612i
\(922\) 17.0785 + 20.1023i 0.562449 + 0.662035i
\(923\) −5.42725 5.42725i −0.178640 0.178640i
\(924\) −1.94416 + 11.8734i −0.0639582 + 0.390605i
\(925\) 0 0
\(926\) −1.61589 + 19.8685i −0.0531013 + 0.652918i
\(927\) 2.77685i 0.0912038i
\(928\) 5.04949 + 12.6553i 0.165758 + 0.415431i
\(929\) 45.6603 1.49807 0.749033 0.662532i \(-0.230518\pi\)
0.749033 + 0.662532i \(0.230518\pi\)
\(930\) 0 0
\(931\) 35.1522 + 35.1522i 1.15207 + 1.15207i
\(932\) −32.2575 5.28189i −1.05663 0.173014i
\(933\) 20.3269 + 20.3269i 0.665474 + 0.665474i
\(934\) 18.4303 15.6579i 0.603056 0.512342i
\(935\) 0 0
\(936\) 5.06544 + 8.41326i 0.165569 + 0.274996i
\(937\) −2.29807 −0.0750746 −0.0375373 0.999295i \(-0.511951\pi\)
−0.0375373 + 0.999295i \(0.511951\pi\)
\(938\) −2.05038 + 1.74195i −0.0669473 + 0.0568768i
\(939\) 26.2681 26.2681i 0.857226 0.857226i
\(940\) 0 0
\(941\) −24.1999 24.1999i −0.788894 0.788894i 0.192419 0.981313i \(-0.438367\pi\)
−0.981313 + 0.192419i \(0.938367\pi\)
\(942\) −2.34222 + 28.7992i −0.0763135 + 0.938329i
\(943\) 8.84448i 0.288016i
\(944\) −7.42179 + 3.68447i −0.241559 + 0.119919i
\(945\) 0 0
\(946\) −2.21023 0.179756i −0.0718609 0.00584439i
\(947\) 24.5182 24.5182i 0.796733 0.796733i −0.185846 0.982579i \(-0.559502\pi\)
0.982579 + 0.185846i \(0.0595025\pi\)
\(948\) −16.4083 + 11.7909i −0.532915 + 0.382950i
\(949\) 3.03168 3.03168i 0.0984125 0.0984125i
\(950\) 0 0
\(951\) 20.5445i 0.666202i
\(952\) −2.48965 + 10.0236i −0.0806900 + 0.324867i
\(953\) −32.3462 −1.04780 −0.523898 0.851781i \(-0.675523\pi\)
−0.523898 + 0.851781i \(0.675523\pi\)
\(954\) 7.99574 6.79298i 0.258872 0.219931i
\(955\) 0 0
\(956\) −38.2543 6.26381i −1.23723 0.202586i
\(957\) −14.8368 + 14.8368i −0.479605 + 0.479605i
\(958\) 20.0894 + 1.63385i 0.649059 + 0.0527874i
\(959\) 5.81116 0.187652
\(960\) 0 0
\(961\) −8.92816 −0.288005
\(962\) 52.0358 + 4.23203i 1.67770 + 0.136446i
\(963\) 6.59907 6.59907i 0.212652 0.212652i
\(964\) 14.1311 + 2.31385i 0.455132 + 0.0745240i
\(965\) 0 0
\(966\) −2.40932 + 2.04690i −0.0775185 + 0.0658578i
\(967\) −14.6983 −0.472665 −0.236333 0.971672i \(-0.575946\pi\)
−0.236333 + 0.971672i \(0.575946\pi\)
\(968\) −5.27321 + 21.2305i −0.169487 + 0.682376i
\(969\) 81.1036i 2.60542i
\(970\) 0 0
\(971\) 29.1065 29.1065i 0.934073 0.934073i −0.0638845 0.997957i \(-0.520349\pi\)
0.997957 + 0.0638845i \(0.0203489\pi\)
\(972\) −16.9972 + 12.2141i −0.545186 + 0.391768i
\(973\) −1.04860 + 1.04860i −0.0336167 + 0.0336167i
\(974\) −36.7084 2.98546i −1.17621 0.0956604i
\(975\) 0 0
\(976\) 23.4686 + 47.2738i 0.751212 + 1.51320i
\(977\) 17.3533i 0.555180i −0.960700 0.277590i \(-0.910464\pi\)
0.960700 0.277590i \(-0.0895357\pi\)
\(978\) 2.30190 28.3035i 0.0736068 0.905048i
\(979\) 5.55691 + 5.55691i 0.177600 + 0.177600i
\(980\) 0 0
\(981\) 7.24094 7.24094i 0.231186 0.231186i
\(982\) −5.28589 + 4.49076i −0.168680 + 0.143306i
\(983\) −27.5174 −0.877668 −0.438834 0.898568i \(-0.644608\pi\)
−0.438834 + 0.898568i \(0.644608\pi\)
\(984\) −16.1461 26.8172i −0.514717 0.854901i
\(985\) 0 0
\(986\) −13.7269 + 11.6620i −0.437152 + 0.371394i
\(987\) 4.52809 + 4.52809i 0.144131 + 0.144131i
\(988\) −49.7101 8.13961i −1.58149 0.258955i
\(989\) −0.412020 0.412020i −0.0131015 0.0131015i
\(990\) 0 0
\(991\) 6.96363 0.221207 0.110604 0.993865i \(-0.464722\pi\)
0.110604 + 0.993865i \(0.464722\pi\)
\(992\) 24.4184 + 10.4899i 0.775286 + 0.333056i
\(993\) 44.0735i 1.39863i
\(994\) 0.183861 2.26070i 0.00583171 0.0717050i
\(995\) 0 0
\(996\) 6.71931 41.0361i 0.212909 1.30028i
\(997\) 15.7051 + 15.7051i 0.497385 + 0.497385i 0.910623 0.413238i \(-0.135602\pi\)
−0.413238 + 0.910623i \(0.635602\pi\)
\(998\) −6.86663 8.08242i −0.217359 0.255845i
\(999\) 43.8259i 1.38659i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.q.g.349.1 16
4.3 odd 2 1600.2.q.h.849.7 16
5.2 odd 4 80.2.l.a.61.5 yes 16
5.3 odd 4 400.2.l.h.301.4 16
5.4 even 2 400.2.q.h.349.8 16
15.2 even 4 720.2.t.c.541.4 16
16.5 even 4 400.2.q.h.149.8 16
16.11 odd 4 1600.2.q.g.49.2 16
20.3 even 4 1600.2.l.i.401.7 16
20.7 even 4 320.2.l.a.81.2 16
20.19 odd 2 1600.2.q.g.849.2 16
40.27 even 4 640.2.l.a.161.7 16
40.37 odd 4 640.2.l.b.161.2 16
60.47 odd 4 2880.2.t.c.721.3 16
80.27 even 4 320.2.l.a.241.2 16
80.37 odd 4 80.2.l.a.21.5 16
80.43 even 4 1600.2.l.i.1201.7 16
80.53 odd 4 400.2.l.h.101.4 16
80.59 odd 4 1600.2.q.h.49.7 16
80.67 even 4 640.2.l.a.481.7 16
80.69 even 4 inner 400.2.q.g.149.1 16
80.77 odd 4 640.2.l.b.481.2 16
160.27 even 8 5120.2.a.t.1.7 8
160.37 odd 8 5120.2.a.v.1.2 8
160.107 even 8 5120.2.a.u.1.2 8
160.117 odd 8 5120.2.a.s.1.7 8
240.107 odd 4 2880.2.t.c.2161.2 16
240.197 even 4 720.2.t.c.181.4 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.5 16 80.37 odd 4
80.2.l.a.61.5 yes 16 5.2 odd 4
320.2.l.a.81.2 16 20.7 even 4
320.2.l.a.241.2 16 80.27 even 4
400.2.l.h.101.4 16 80.53 odd 4
400.2.l.h.301.4 16 5.3 odd 4
400.2.q.g.149.1 16 80.69 even 4 inner
400.2.q.g.349.1 16 1.1 even 1 trivial
400.2.q.h.149.8 16 16.5 even 4
400.2.q.h.349.8 16 5.4 even 2
640.2.l.a.161.7 16 40.27 even 4
640.2.l.a.481.7 16 80.67 even 4
640.2.l.b.161.2 16 40.37 odd 4
640.2.l.b.481.2 16 80.77 odd 4
720.2.t.c.181.4 16 240.197 even 4
720.2.t.c.541.4 16 15.2 even 4
1600.2.l.i.401.7 16 20.3 even 4
1600.2.l.i.1201.7 16 80.43 even 4
1600.2.q.g.49.2 16 16.11 odd 4
1600.2.q.g.849.2 16 20.19 odd 2
1600.2.q.h.49.7 16 80.59 odd 4
1600.2.q.h.849.7 16 4.3 odd 2
2880.2.t.c.721.3 16 60.47 odd 4
2880.2.t.c.2161.2 16 240.107 odd 4
5120.2.a.s.1.7 8 160.117 odd 8
5120.2.a.t.1.7 8 160.27 even 8
5120.2.a.u.1.2 8 160.107 even 8
5120.2.a.v.1.2 8 160.37 odd 8