Properties

Label 400.2.q.g.149.3
Level $400$
Weight $2$
Character 400.149
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(149,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.149"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.q (of order \(4\), degree \(2\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 149.3
Root \(-0.296075 + 1.38287i\) of defining polynomial
Character \(\chi\) \(=\) 400.149
Dual form 400.2.q.g.349.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.889181 + 1.09971i) q^{2} +(0.120009 + 0.120009i) q^{3} +(-0.418713 - 1.95568i) q^{4} +(-0.238684 + 0.0252650i) q^{6} +2.66881 q^{7} +(2.52299 + 1.27849i) q^{8} -2.97120i q^{9} +(-3.49714 - 3.49714i) q^{11} +(0.184450 - 0.284948i) q^{12} +(-2.94072 - 2.94072i) q^{13} +(-2.37306 + 2.93491i) q^{14} +(-3.64936 + 1.63774i) q^{16} +1.85116i q^{17} +(3.26745 + 2.64193i) q^{18} +(3.44856 - 3.44856i) q^{19} +(0.320281 + 0.320281i) q^{21} +(6.95543 - 0.736240i) q^{22} +0.707288 q^{23} +(0.149351 + 0.456211i) q^{24} +(5.84877 - 0.619099i) q^{26} +(0.716597 - 0.716597i) q^{27} +(-1.11747 - 5.21934i) q^{28} +(3.49909 - 3.49909i) q^{29} +6.84272 q^{31} +(1.44391 - 5.46947i) q^{32} -0.839377i q^{33} +(-2.03573 - 1.64601i) q^{34} +(-5.81070 + 1.24408i) q^{36} +(0.0975060 - 0.0975060i) q^{37} +(0.726013 + 6.85881i) q^{38} -0.705826i q^{39} +10.2052i q^{41} +(-0.637004 + 0.0674276i) q^{42} +(4.43844 - 4.43844i) q^{43} +(-5.37499 + 8.30359i) q^{44} +(-0.628908 + 0.777810i) q^{46} -1.89428i q^{47} +(-0.634498 - 0.241413i) q^{48} +0.122561 q^{49} +(-0.222155 + 0.222155i) q^{51} +(-4.51979 + 6.98243i) q^{52} +(-7.43897 + 7.43897i) q^{53} +(0.150862 + 1.42523i) q^{54} +(6.73338 + 3.41205i) q^{56} +0.827717 q^{57} +(0.736651 + 6.95931i) q^{58} +(-0.959574 - 0.959574i) q^{59} +(6.49825 - 6.49825i) q^{61} +(-6.08442 + 7.52499i) q^{62} -7.92956i q^{63} +(4.73092 + 6.45123i) q^{64} +(0.923069 + 0.746358i) q^{66} +(3.49691 + 3.49691i) q^{67} +(3.62027 - 0.775103i) q^{68} +(0.0848809 + 0.0848809i) q^{69} -7.86777i q^{71} +(3.79865 - 7.49629i) q^{72} -15.6564 q^{73} +(0.0205276 + 0.193929i) q^{74} +(-8.18824 - 5.30033i) q^{76} +(-9.33322 - 9.33322i) q^{77} +(0.776202 + 0.627607i) q^{78} +6.70212 q^{79} -8.74159 q^{81} +(-11.2228 - 9.07431i) q^{82} +(3.87327 + 3.87327i) q^{83} +(0.492261 - 0.760473i) q^{84} +(0.934407 + 8.82755i) q^{86} +0.839845 q^{87} +(-4.35218 - 13.2943i) q^{88} +10.5055i q^{89} +(-7.84824 - 7.84824i) q^{91} +(-0.296151 - 1.38323i) q^{92} +(0.821187 + 0.821187i) q^{93} +(2.08316 + 1.68436i) q^{94} +(0.829667 - 0.483103i) q^{96} +4.79937i q^{97} +(-0.108979 + 0.134781i) q^{98} +(-10.3907 + 10.3907i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{2} + 4 q^{4} - 12 q^{6} - 8 q^{7} + 8 q^{8} - 8 q^{11} - 20 q^{12} - 4 q^{14} + 16 q^{16} - 12 q^{18} + 8 q^{19} + 20 q^{22} - 24 q^{23} - 8 q^{24} - 16 q^{26} - 24 q^{27} - 20 q^{28} + 16 q^{29}+ \cdots + 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.889181 + 1.09971i −0.628746 + 0.777611i
\(3\) 0.120009 + 0.120009i 0.0692872 + 0.0692872i 0.740901 0.671614i \(-0.234399\pi\)
−0.671614 + 0.740901i \(0.734399\pi\)
\(4\) −0.418713 1.95568i −0.209357 0.977839i
\(5\) 0 0
\(6\) −0.238684 + 0.0252650i −0.0974425 + 0.0103144i
\(7\) 2.66881 1.00872 0.504358 0.863495i \(-0.331729\pi\)
0.504358 + 0.863495i \(0.331729\pi\)
\(8\) 2.52299 + 1.27849i 0.892010 + 0.452015i
\(9\) 2.97120i 0.990399i
\(10\) 0 0
\(11\) −3.49714 3.49714i −1.05443 1.05443i −0.998431 0.0559977i \(-0.982166\pi\)
−0.0559977 0.998431i \(-0.517834\pi\)
\(12\) 0.184450 0.284948i 0.0532460 0.0822574i
\(13\) −2.94072 2.94072i −0.815610 0.815610i 0.169858 0.985468i \(-0.445669\pi\)
−0.985468 + 0.169858i \(0.945669\pi\)
\(14\) −2.37306 + 2.93491i −0.634227 + 0.784389i
\(15\) 0 0
\(16\) −3.64936 + 1.63774i −0.912340 + 0.409434i
\(17\) 1.85116i 0.448971i 0.974477 + 0.224486i \(0.0720702\pi\)
−0.974477 + 0.224486i \(0.927930\pi\)
\(18\) 3.26745 + 2.64193i 0.770144 + 0.622709i
\(19\) 3.44856 3.44856i 0.791155 0.791155i −0.190527 0.981682i \(-0.561020\pi\)
0.981682 + 0.190527i \(0.0610197\pi\)
\(20\) 0 0
\(21\) 0.320281 + 0.320281i 0.0698911 + 0.0698911i
\(22\) 6.95543 0.736240i 1.48290 0.156967i
\(23\) 0.707288 0.147480 0.0737399 0.997278i \(-0.476507\pi\)
0.0737399 + 0.997278i \(0.476507\pi\)
\(24\) 0.149351 + 0.456211i 0.0304860 + 0.0931237i
\(25\) 0 0
\(26\) 5.84877 0.619099i 1.14704 0.121415i
\(27\) 0.716597 0.716597i 0.137909 0.137909i
\(28\) −1.11747 5.21934i −0.211181 0.986363i
\(29\) 3.49909 3.49909i 0.649766 0.649766i −0.303171 0.952936i \(-0.598045\pi\)
0.952936 + 0.303171i \(0.0980452\pi\)
\(30\) 0 0
\(31\) 6.84272 1.22899 0.614494 0.788921i \(-0.289360\pi\)
0.614494 + 0.788921i \(0.289360\pi\)
\(32\) 1.44391 5.46947i 0.255250 0.966875i
\(33\) 0.839377i 0.146117i
\(34\) −2.03573 1.64601i −0.349125 0.282289i
\(35\) 0 0
\(36\) −5.81070 + 1.24408i −0.968451 + 0.207346i
\(37\) 0.0975060 0.0975060i 0.0160299 0.0160299i −0.699046 0.715076i \(-0.746392\pi\)
0.715076 + 0.699046i \(0.246392\pi\)
\(38\) 0.726013 + 6.85881i 0.117775 + 1.11265i
\(39\) 0.705826i 0.113023i
\(40\) 0 0
\(41\) 10.2052i 1.59379i 0.604117 + 0.796896i \(0.293526\pi\)
−0.604117 + 0.796896i \(0.706474\pi\)
\(42\) −0.637004 + 0.0674276i −0.0982918 + 0.0104043i
\(43\) 4.43844 4.43844i 0.676855 0.676855i −0.282432 0.959287i \(-0.591141\pi\)
0.959287 + 0.282432i \(0.0911412\pi\)
\(44\) −5.37499 + 8.30359i −0.810310 + 1.25181i
\(45\) 0 0
\(46\) −0.628908 + 0.777810i −0.0927274 + 0.114682i
\(47\) 1.89428i 0.276310i −0.990411 0.138155i \(-0.955883\pi\)
0.990411 0.138155i \(-0.0441172\pi\)
\(48\) −0.634498 0.241413i −0.0915820 0.0348449i
\(49\) 0.122561 0.0175087
\(50\) 0 0
\(51\) −0.222155 + 0.222155i −0.0311079 + 0.0311079i
\(52\) −4.51979 + 6.98243i −0.626782 + 0.968289i
\(53\) −7.43897 + 7.43897i −1.02182 + 1.02182i −0.0220650 + 0.999757i \(0.507024\pi\)
−0.999757 + 0.0220650i \(0.992976\pi\)
\(54\) 0.150862 + 1.42523i 0.0205298 + 0.193949i
\(55\) 0 0
\(56\) 6.73338 + 3.41205i 0.899786 + 0.455955i
\(57\) 0.827717 0.109634
\(58\) 0.736651 + 6.95931i 0.0967270 + 0.913802i
\(59\) −0.959574 0.959574i −0.124926 0.124926i 0.641880 0.766805i \(-0.278155\pi\)
−0.766805 + 0.641880i \(0.778155\pi\)
\(60\) 0 0
\(61\) 6.49825 6.49825i 0.832015 0.832015i −0.155777 0.987792i \(-0.549788\pi\)
0.987792 + 0.155777i \(0.0497881\pi\)
\(62\) −6.08442 + 7.52499i −0.772722 + 0.955674i
\(63\) 7.92956i 0.999031i
\(64\) 4.73092 + 6.45123i 0.591365 + 0.806404i
\(65\) 0 0
\(66\) 0.923069 + 0.746358i 0.113622 + 0.0918703i
\(67\) 3.49691 + 3.49691i 0.427216 + 0.427216i 0.887679 0.460463i \(-0.152317\pi\)
−0.460463 + 0.887679i \(0.652317\pi\)
\(68\) 3.62027 0.775103i 0.439022 0.0939951i
\(69\) 0.0848809 + 0.0848809i 0.0102185 + 0.0102185i
\(70\) 0 0
\(71\) 7.86777i 0.933733i −0.884328 0.466866i \(-0.845383\pi\)
0.884328 0.466866i \(-0.154617\pi\)
\(72\) 3.79865 7.49629i 0.447675 0.883446i
\(73\) −15.6564 −1.83244 −0.916220 0.400675i \(-0.868776\pi\)
−0.916220 + 0.400675i \(0.868776\pi\)
\(74\) 0.0205276 + 0.193929i 0.00238628 + 0.0225437i
\(75\) 0 0
\(76\) −8.18824 5.30033i −0.939256 0.607989i
\(77\) −9.33322 9.33322i −1.06362 1.06362i
\(78\) 0.776202 + 0.627607i 0.0878876 + 0.0710625i
\(79\) 6.70212 0.754047 0.377024 0.926204i \(-0.376948\pi\)
0.377024 + 0.926204i \(0.376948\pi\)
\(80\) 0 0
\(81\) −8.74159 −0.971288
\(82\) −11.2228 9.07431i −1.23935 1.00209i
\(83\) 3.87327 + 3.87327i 0.425147 + 0.425147i 0.886971 0.461825i \(-0.152805\pi\)
−0.461825 + 0.886971i \(0.652805\pi\)
\(84\) 0.492261 0.760473i 0.0537101 0.0829744i
\(85\) 0 0
\(86\) 0.934407 + 8.82755i 0.100760 + 0.951900i
\(87\) 0.839845 0.0900408
\(88\) −4.35218 13.2943i −0.463944 1.41718i
\(89\) 10.5055i 1.11358i 0.830653 + 0.556790i \(0.187967\pi\)
−0.830653 + 0.556790i \(0.812033\pi\)
\(90\) 0 0
\(91\) −7.84824 7.84824i −0.822719 0.822719i
\(92\) −0.296151 1.38323i −0.0308759 0.144212i
\(93\) 0.821187 + 0.821187i 0.0851531 + 0.0851531i
\(94\) 2.08316 + 1.68436i 0.214861 + 0.173729i
\(95\) 0 0
\(96\) 0.829667 0.483103i 0.0846776 0.0493065i
\(97\) 4.79937i 0.487303i 0.969863 + 0.243651i \(0.0783453\pi\)
−0.969863 + 0.243651i \(0.921655\pi\)
\(98\) −0.108979 + 0.134781i −0.0110085 + 0.0136150i
\(99\) −10.3907 + 10.3907i −1.04430 + 1.04430i
\(100\) 0 0
\(101\) 0.372979 + 0.372979i 0.0371128 + 0.0371128i 0.725420 0.688307i \(-0.241646\pi\)
−0.688307 + 0.725420i \(0.741646\pi\)
\(102\) −0.0467695 0.441842i −0.00463087 0.0437489i
\(103\) 10.3013 1.01502 0.507508 0.861647i \(-0.330567\pi\)
0.507508 + 0.861647i \(0.330567\pi\)
\(104\) −3.65972 11.1791i −0.358865 1.09620i
\(105\) 0 0
\(106\) −1.56610 14.7953i −0.152113 1.43705i
\(107\) −14.5069 + 14.5069i −1.40244 + 1.40244i −0.610165 + 0.792274i \(0.708897\pi\)
−0.792274 + 0.610165i \(0.791103\pi\)
\(108\) −1.70148 1.10138i −0.163725 0.105981i
\(109\) −0.796284 + 0.796284i −0.0762701 + 0.0762701i −0.744213 0.667943i \(-0.767175\pi\)
0.667943 + 0.744213i \(0.267175\pi\)
\(110\) 0 0
\(111\) 0.0234032 0.00222133
\(112\) −9.73945 + 4.37081i −0.920292 + 0.413003i
\(113\) 0.842524i 0.0792580i −0.999214 0.0396290i \(-0.987382\pi\)
0.999214 0.0396290i \(-0.0126176\pi\)
\(114\) −0.735990 + 0.910246i −0.0689318 + 0.0852524i
\(115\) 0 0
\(116\) −8.30822 5.37799i −0.771399 0.499334i
\(117\) −8.73747 + 8.73747i −0.807779 + 0.807779i
\(118\) 1.90849 0.202015i 0.175690 0.0185970i
\(119\) 4.94039i 0.452885i
\(120\) 0 0
\(121\) 13.4600i 1.22364i
\(122\) 1.36805 + 12.9243i 0.123858 + 1.17011i
\(123\) −1.22472 + 1.22472i −0.110429 + 0.110429i
\(124\) −2.86513 13.3822i −0.257297 1.20175i
\(125\) 0 0
\(126\) 8.72020 + 7.05082i 0.776857 + 0.628137i
\(127\) 21.1693i 1.87847i −0.343277 0.939234i \(-0.611537\pi\)
0.343277 0.939234i \(-0.388463\pi\)
\(128\) −11.3011 0.533685i −0.998887 0.0471715i
\(129\) 1.06530 0.0937947
\(130\) 0 0
\(131\) 4.67248 4.67248i 0.408237 0.408237i −0.472887 0.881123i \(-0.656788\pi\)
0.881123 + 0.472887i \(0.156788\pi\)
\(132\) −1.64155 + 0.351458i −0.142879 + 0.0305905i
\(133\) 9.20357 9.20357i 0.798051 0.798051i
\(134\) −6.95497 + 0.736191i −0.600818 + 0.0635973i
\(135\) 0 0
\(136\) −2.36669 + 4.67044i −0.202942 + 0.400487i
\(137\) 10.2840 0.878623 0.439312 0.898335i \(-0.355222\pi\)
0.439312 + 0.898335i \(0.355222\pi\)
\(138\) −0.168819 + 0.0178696i −0.0143708 + 0.00152117i
\(139\) −4.98588 4.98588i −0.422897 0.422897i 0.463303 0.886200i \(-0.346664\pi\)
−0.886200 + 0.463303i \(0.846664\pi\)
\(140\) 0 0
\(141\) 0.227331 0.227331i 0.0191447 0.0191447i
\(142\) 8.65225 + 6.99588i 0.726080 + 0.587081i
\(143\) 20.5683i 1.72001i
\(144\) 4.86604 + 10.8430i 0.405503 + 0.903580i
\(145\) 0 0
\(146\) 13.9214 17.2174i 1.15214 1.42493i
\(147\) 0.0147084 + 0.0147084i 0.00121313 + 0.00121313i
\(148\) −0.231518 0.149863i −0.0190306 0.0123187i
\(149\) −8.79493 8.79493i −0.720509 0.720509i 0.248200 0.968709i \(-0.420161\pi\)
−0.968709 + 0.248200i \(0.920161\pi\)
\(150\) 0 0
\(151\) 22.1838i 1.80529i 0.430385 + 0.902645i \(0.358378\pi\)
−0.430385 + 0.902645i \(0.641622\pi\)
\(152\) 13.1096 4.29172i 1.06333 0.348105i
\(153\) 5.50015 0.444661
\(154\) 18.5627 1.96489i 1.49583 0.158335i
\(155\) 0 0
\(156\) −1.38037 + 0.295539i −0.110518 + 0.0236620i
\(157\) −3.72187 3.72187i −0.297038 0.297038i 0.542815 0.839852i \(-0.317359\pi\)
−0.839852 + 0.542815i \(0.817359\pi\)
\(158\) −5.95940 + 7.37037i −0.474104 + 0.586355i
\(159\) −1.78549 −0.141598
\(160\) 0 0
\(161\) 1.88762 0.148765
\(162\) 7.77286 9.61319i 0.610694 0.755284i
\(163\) −2.11630 2.11630i −0.165761 0.165761i 0.619352 0.785113i \(-0.287395\pi\)
−0.785113 + 0.619352i \(0.787395\pi\)
\(164\) 19.9582 4.27307i 1.55847 0.333671i
\(165\) 0 0
\(166\) −7.70350 + 0.815425i −0.597908 + 0.0632892i
\(167\) 18.1604 1.40530 0.702648 0.711538i \(-0.252001\pi\)
0.702648 + 0.711538i \(0.252001\pi\)
\(168\) 0.398589 + 1.21754i 0.0307518 + 0.0939354i
\(169\) 4.29572i 0.330440i
\(170\) 0 0
\(171\) −10.2464 10.2464i −0.783559 0.783559i
\(172\) −10.5386 6.82172i −0.803560 0.520151i
\(173\) 8.53542 + 8.53542i 0.648936 + 0.648936i 0.952736 0.303800i \(-0.0982555\pi\)
−0.303800 + 0.952736i \(0.598255\pi\)
\(174\) −0.746774 + 0.923584i −0.0566128 + 0.0700167i
\(175\) 0 0
\(176\) 18.4897 + 7.03493i 1.39372 + 0.530278i
\(177\) 0.230315i 0.0173115i
\(178\) −11.5530 9.34128i −0.865931 0.700159i
\(179\) 2.42499 2.42499i 0.181252 0.181252i −0.610649 0.791901i \(-0.709091\pi\)
0.791901 + 0.610649i \(0.209091\pi\)
\(180\) 0 0
\(181\) 4.46593 + 4.46593i 0.331950 + 0.331950i 0.853327 0.521377i \(-0.174581\pi\)
−0.521377 + 0.853327i \(0.674581\pi\)
\(182\) 15.6093 1.65226i 1.15704 0.122474i
\(183\) 1.55970 0.115296
\(184\) 1.78448 + 0.904262i 0.131554 + 0.0666631i
\(185\) 0 0
\(186\) −1.63325 + 0.172881i −0.119756 + 0.0126763i
\(187\) 6.47376 6.47376i 0.473408 0.473408i
\(188\) −3.70461 + 0.793162i −0.270187 + 0.0578473i
\(189\) 1.91246 1.91246i 0.139111 0.139111i
\(190\) 0 0
\(191\) 7.75030 0.560792 0.280396 0.959884i \(-0.409534\pi\)
0.280396 + 0.959884i \(0.409534\pi\)
\(192\) −0.206453 + 1.34196i −0.0148994 + 0.0968475i
\(193\) 11.3388i 0.816181i 0.912941 + 0.408091i \(0.133805\pi\)
−0.912941 + 0.408091i \(0.866195\pi\)
\(194\) −5.27791 4.26751i −0.378932 0.306390i
\(195\) 0 0
\(196\) −0.0513179 0.239690i −0.00366557 0.0171207i
\(197\) −1.10001 + 1.10001i −0.0783725 + 0.0783725i −0.745206 0.666834i \(-0.767649\pi\)
0.666834 + 0.745206i \(0.267649\pi\)
\(198\) −2.18751 20.6659i −0.155460 1.46866i
\(199\) 14.2722i 1.01173i 0.862614 + 0.505864i \(0.168826\pi\)
−0.862614 + 0.505864i \(0.831174\pi\)
\(200\) 0 0
\(201\) 0.839321i 0.0592012i
\(202\) −0.741814 + 0.0785219i −0.0521939 + 0.00552478i
\(203\) 9.33843 9.33843i 0.655429 0.655429i
\(204\) 0.527483 + 0.341445i 0.0369312 + 0.0239059i
\(205\) 0 0
\(206\) −9.15971 + 11.3284i −0.638187 + 0.789287i
\(207\) 2.10149i 0.146064i
\(208\) 15.5479 + 5.91563i 1.07805 + 0.410175i
\(209\) −24.1203 −1.66843
\(210\) 0 0
\(211\) −12.4716 + 12.4716i −0.858577 + 0.858577i −0.991171 0.132593i \(-0.957670\pi\)
0.132593 + 0.991171i \(0.457670\pi\)
\(212\) 17.6630 + 11.4334i 1.21310 + 0.785252i
\(213\) 0.944203 0.944203i 0.0646957 0.0646957i
\(214\) −3.05409 28.8527i −0.208773 1.97233i
\(215\) 0 0
\(216\) 2.72413 0.891801i 0.185353 0.0606794i
\(217\) 18.2619 1.23970
\(218\) −0.167639 1.58372i −0.0113539 0.107263i
\(219\) −1.87890 1.87890i −0.126965 0.126965i
\(220\) 0 0
\(221\) 5.44374 5.44374i 0.366186 0.366186i
\(222\) −0.0208097 + 0.0257367i −0.00139665 + 0.00172733i
\(223\) 3.08673i 0.206703i −0.994645 0.103351i \(-0.967043\pi\)
0.994645 0.103351i \(-0.0329566\pi\)
\(224\) 3.85353 14.5970i 0.257475 0.975303i
\(225\) 0 0
\(226\) 0.926530 + 0.749157i 0.0616319 + 0.0498332i
\(227\) 8.31678 + 8.31678i 0.552004 + 0.552004i 0.927019 0.375015i \(-0.122362\pi\)
−0.375015 + 0.927019i \(0.622362\pi\)
\(228\) −0.346576 1.61875i −0.0229525 0.107204i
\(229\) 9.98910 + 9.98910i 0.660098 + 0.660098i 0.955403 0.295305i \(-0.0954212\pi\)
−0.295305 + 0.955403i \(0.595421\pi\)
\(230\) 0 0
\(231\) 2.24014i 0.147390i
\(232\) 13.3017 4.35461i 0.873301 0.285894i
\(233\) 13.9015 0.910718 0.455359 0.890308i \(-0.349511\pi\)
0.455359 + 0.890308i \(0.349511\pi\)
\(234\) −1.83947 17.3779i −0.120250 1.13603i
\(235\) 0 0
\(236\) −1.47483 + 2.27840i −0.0960034 + 0.148311i
\(237\) 0.804314 + 0.804314i 0.0522458 + 0.0522458i
\(238\) −5.43298 4.39290i −0.352168 0.284750i
\(239\) 10.7687 0.696569 0.348284 0.937389i \(-0.386764\pi\)
0.348284 + 0.937389i \(0.386764\pi\)
\(240\) 0 0
\(241\) −12.4707 −0.803305 −0.401653 0.915792i \(-0.631564\pi\)
−0.401653 + 0.915792i \(0.631564\pi\)
\(242\) −14.8021 11.9684i −0.951515 0.769358i
\(243\) −3.19886 3.19886i −0.205207 0.205207i
\(244\) −15.4294 9.98758i −0.987765 0.639390i
\(245\) 0 0
\(246\) −0.257836 2.43583i −0.0164390 0.155303i
\(247\) −20.2826 −1.29055
\(248\) 17.2641 + 8.74835i 1.09627 + 0.555521i
\(249\) 0.929654i 0.0589144i
\(250\) 0 0
\(251\) 3.69093 + 3.69093i 0.232969 + 0.232969i 0.813931 0.580962i \(-0.197323\pi\)
−0.580962 + 0.813931i \(0.697323\pi\)
\(252\) −15.5077 + 3.32021i −0.976892 + 0.209154i
\(253\) −2.47349 2.47349i −0.155507 0.155507i
\(254\) 23.2800 + 18.8233i 1.46072 + 1.18108i
\(255\) 0 0
\(256\) 10.6356 11.9534i 0.664727 0.747086i
\(257\) 3.11011i 0.194003i 0.995284 + 0.0970016i \(0.0309252\pi\)
−0.995284 + 0.0970016i \(0.969075\pi\)
\(258\) −0.947248 + 1.17152i −0.0589731 + 0.0729358i
\(259\) 0.260225 0.260225i 0.0161696 0.0161696i
\(260\) 0 0
\(261\) −10.3965 10.3965i −0.643527 0.643527i
\(262\) 0.983680 + 9.29305i 0.0607719 + 0.574126i
\(263\) −17.9512 −1.10692 −0.553458 0.832877i \(-0.686692\pi\)
−0.553458 + 0.832877i \(0.686692\pi\)
\(264\) 1.07314 2.11774i 0.0660469 0.130338i
\(265\) 0 0
\(266\) 1.93759 + 18.3049i 0.118801 + 1.12234i
\(267\) −1.26075 + 1.26075i −0.0771568 + 0.0771568i
\(268\) 5.37463 8.30304i 0.328308 0.507189i
\(269\) −1.62436 + 1.62436i −0.0990392 + 0.0990392i −0.754890 0.655851i \(-0.772310\pi\)
0.655851 + 0.754890i \(0.272310\pi\)
\(270\) 0 0
\(271\) 18.1808 1.10440 0.552201 0.833711i \(-0.313788\pi\)
0.552201 + 0.833711i \(0.313788\pi\)
\(272\) −3.03171 6.75553i −0.183824 0.409614i
\(273\) 1.88372i 0.114008i
\(274\) −9.14436 + 11.3094i −0.552431 + 0.683227i
\(275\) 0 0
\(276\) 0.130459 0.201541i 0.00785271 0.0121313i
\(277\) 13.8675 13.8675i 0.833218 0.833218i −0.154737 0.987956i \(-0.549453\pi\)
0.987956 + 0.154737i \(0.0494531\pi\)
\(278\) 9.91636 1.04966i 0.594744 0.0629543i
\(279\) 20.3310i 1.21719i
\(280\) 0 0
\(281\) 10.7377i 0.640556i −0.947324 0.320278i \(-0.896224\pi\)
0.947324 0.320278i \(-0.103776\pi\)
\(282\) 0.0478591 + 0.452136i 0.00284997 + 0.0269243i
\(283\) −16.3679 + 16.3679i −0.972971 + 0.972971i −0.999644 0.0266735i \(-0.991509\pi\)
0.0266735 + 0.999644i \(0.491509\pi\)
\(284\) −15.3868 + 3.29434i −0.913041 + 0.195483i
\(285\) 0 0
\(286\) −22.6191 18.2889i −1.33749 1.08145i
\(287\) 27.2359i 1.60768i
\(288\) −16.2509 4.29014i −0.957592 0.252799i
\(289\) 13.5732 0.798425
\(290\) 0 0
\(291\) −0.575968 + 0.575968i −0.0337638 + 0.0337638i
\(292\) 6.55553 + 30.6188i 0.383633 + 1.79183i
\(293\) −4.22052 + 4.22052i −0.246566 + 0.246566i −0.819560 0.572994i \(-0.805782\pi\)
0.572994 + 0.819560i \(0.305782\pi\)
\(294\) −0.0292534 + 0.00309651i −0.00170609 + 0.000180592i
\(295\) 0 0
\(296\) 0.370667 0.121346i 0.0215446 0.00705308i
\(297\) −5.01208 −0.290831
\(298\) 17.4921 1.85156i 1.01329 0.107258i
\(299\) −2.07994 2.07994i −0.120286 0.120286i
\(300\) 0 0
\(301\) 11.8454 11.8454i 0.682755 0.682755i
\(302\) −24.3957 19.7254i −1.40381 1.13507i
\(303\) 0.0895217i 0.00514289i
\(304\) −6.93721 + 18.2329i −0.397876 + 1.04573i
\(305\) 0 0
\(306\) −4.89063 + 6.04855i −0.279579 + 0.345773i
\(307\) −12.6363 12.6363i −0.721190 0.721190i 0.247658 0.968848i \(-0.420339\pi\)
−0.968848 + 0.247658i \(0.920339\pi\)
\(308\) −14.3448 + 22.1607i −0.817373 + 1.26272i
\(309\) 1.23625 + 1.23625i 0.0703276 + 0.0703276i
\(310\) 0 0
\(311\) 8.56815i 0.485855i 0.970044 + 0.242928i \(0.0781078\pi\)
−0.970044 + 0.242928i \(0.921892\pi\)
\(312\) 0.902392 1.78079i 0.0510879 0.100817i
\(313\) 19.1825 1.08426 0.542129 0.840295i \(-0.317618\pi\)
0.542129 + 0.840295i \(0.317618\pi\)
\(314\) 7.40239 0.783551i 0.417741 0.0442183i
\(315\) 0 0
\(316\) −2.80626 13.1072i −0.157865 0.737337i
\(317\) −9.41764 9.41764i −0.528947 0.528947i 0.391311 0.920258i \(-0.372022\pi\)
−0.920258 + 0.391311i \(0.872022\pi\)
\(318\) 1.58762 1.96351i 0.0890293 0.110108i
\(319\) −24.4737 −1.37026
\(320\) 0 0
\(321\) −3.48193 −0.194342
\(322\) −1.67844 + 2.07583i −0.0935356 + 0.115681i
\(323\) 6.38383 + 6.38383i 0.355206 + 0.355206i
\(324\) 3.66022 + 17.0957i 0.203345 + 0.949764i
\(325\) 0 0
\(326\) 4.20908 0.445536i 0.233120 0.0246760i
\(327\) −0.191122 −0.0105691
\(328\) −13.0473 + 25.7477i −0.720417 + 1.42168i
\(329\) 5.05549i 0.278718i
\(330\) 0 0
\(331\) 12.8579 + 12.8579i 0.706733 + 0.706733i 0.965847 0.259114i \(-0.0834305\pi\)
−0.259114 + 0.965847i \(0.583431\pi\)
\(332\) 5.95308 9.19666i 0.326718 0.504732i
\(333\) −0.289709 0.289709i −0.0158760 0.0158760i
\(334\) −16.1479 + 19.9711i −0.883574 + 1.09277i
\(335\) 0 0
\(336\) −1.69336 0.644285i −0.0923802 0.0351486i
\(337\) 3.31961i 0.180831i 0.995904 + 0.0904153i \(0.0288194\pi\)
−0.995904 + 0.0904153i \(0.971181\pi\)
\(338\) −4.72403 3.81967i −0.256954 0.207763i
\(339\) 0.101110 0.101110i 0.00549156 0.00549156i
\(340\) 0 0
\(341\) −23.9300 23.9300i −1.29588 1.29588i
\(342\) 20.3789 2.15713i 1.10196 0.116644i
\(343\) −18.3546 −0.991055
\(344\) 16.8726 5.52361i 0.909710 0.297813i
\(345\) 0 0
\(346\) −16.9760 + 1.79693i −0.912635 + 0.0966035i
\(347\) −17.8860 + 17.8860i −0.960171 + 0.960171i −0.999237 0.0390656i \(-0.987562\pi\)
0.0390656 + 0.999237i \(0.487562\pi\)
\(348\) −0.351654 1.64247i −0.0188506 0.0880455i
\(349\) 3.68796 3.68796i 0.197412 0.197412i −0.601478 0.798890i \(-0.705421\pi\)
0.798890 + 0.601478i \(0.205421\pi\)
\(350\) 0 0
\(351\) −4.21463 −0.224960
\(352\) −24.1771 + 14.0780i −1.28864 + 0.750358i
\(353\) 33.0951i 1.76148i −0.473604 0.880738i \(-0.657047\pi\)
0.473604 0.880738i \(-0.342953\pi\)
\(354\) 0.253279 + 0.204792i 0.0134616 + 0.0108846i
\(355\) 0 0
\(356\) 20.5454 4.39879i 1.08890 0.233135i
\(357\) −0.592891 + 0.592891i −0.0313791 + 0.0313791i
\(358\) 0.510524 + 4.82303i 0.0269820 + 0.254905i
\(359\) 6.52522i 0.344388i −0.985063 0.172194i \(-0.944914\pi\)
0.985063 0.172194i \(-0.0550856\pi\)
\(360\) 0 0
\(361\) 4.78519i 0.251852i
\(362\) −8.88224 + 0.940195i −0.466840 + 0.0494156i
\(363\) −1.61532 + 1.61532i −0.0847825 + 0.0847825i
\(364\) −12.0625 + 18.6348i −0.632246 + 0.976729i
\(365\) 0 0
\(366\) −1.38685 + 1.71521i −0.0724919 + 0.0896554i
\(367\) 11.0338i 0.575959i −0.957636 0.287980i \(-0.907016\pi\)
0.957636 0.287980i \(-0.0929836\pi\)
\(368\) −2.58115 + 1.15835i −0.134552 + 0.0603833i
\(369\) 30.3218 1.57849
\(370\) 0 0
\(371\) −19.8532 + 19.8532i −1.03073 + 1.03073i
\(372\) 1.26214 1.94982i 0.0654387 0.101093i
\(373\) 6.84468 6.84468i 0.354404 0.354404i −0.507341 0.861745i \(-0.669372\pi\)
0.861745 + 0.507341i \(0.169372\pi\)
\(374\) 1.36290 + 12.8756i 0.0704737 + 0.665781i
\(375\) 0 0
\(376\) 2.42183 4.77925i 0.124896 0.246471i
\(377\) −20.5797 −1.05991
\(378\) 0.402623 + 3.80367i 0.0207087 + 0.195640i
\(379\) 10.1072 + 10.1072i 0.519171 + 0.519171i 0.917321 0.398150i \(-0.130347\pi\)
−0.398150 + 0.917321i \(0.630347\pi\)
\(380\) 0 0
\(381\) 2.54050 2.54050i 0.130154 0.130154i
\(382\) −6.89143 + 8.52307i −0.352596 + 0.436078i
\(383\) 29.5283i 1.50883i −0.656400 0.754413i \(-0.727922\pi\)
0.656400 0.754413i \(-0.272078\pi\)
\(384\) −1.29219 1.42028i −0.0659417 0.0724784i
\(385\) 0 0
\(386\) −12.4693 10.0822i −0.634671 0.513171i
\(387\) −13.1875 13.1875i −0.670356 0.670356i
\(388\) 9.38604 2.00956i 0.476504 0.102020i
\(389\) −0.990949 0.990949i −0.0502431 0.0502431i 0.681539 0.731782i \(-0.261311\pi\)
−0.731782 + 0.681539i \(0.761311\pi\)
\(390\) 0 0
\(391\) 1.30930i 0.0662142i
\(392\) 0.309220 + 0.156693i 0.0156180 + 0.00791420i
\(393\) 1.12148 0.0565711
\(394\) −0.231581 2.18780i −0.0116669 0.110220i
\(395\) 0 0
\(396\) 24.6716 + 15.9701i 1.23979 + 0.802530i
\(397\) 17.0024 + 17.0024i 0.853326 + 0.853326i 0.990541 0.137216i \(-0.0438153\pi\)
−0.137216 + 0.990541i \(0.543815\pi\)
\(398\) −15.6952 12.6905i −0.786730 0.636119i
\(399\) 2.20902 0.110589
\(400\) 0 0
\(401\) 26.7791 1.33728 0.668642 0.743585i \(-0.266876\pi\)
0.668642 + 0.743585i \(0.266876\pi\)
\(402\) −0.923008 0.746309i −0.0460354 0.0372225i
\(403\) −20.1225 20.1225i −1.00238 1.00238i
\(404\) 0.573256 0.885599i 0.0285206 0.0440602i
\(405\) 0 0
\(406\) 1.96598 + 18.5731i 0.0975701 + 0.921767i
\(407\) −0.681985 −0.0338048
\(408\) −0.844518 + 0.276471i −0.0418099 + 0.0136874i
\(409\) 13.1970i 0.652550i −0.945275 0.326275i \(-0.894206\pi\)
0.945275 0.326275i \(-0.105794\pi\)
\(410\) 0 0
\(411\) 1.23417 + 1.23417i 0.0608773 + 0.0608773i
\(412\) −4.31328 20.1460i −0.212500 0.992523i
\(413\) −2.56092 2.56092i −0.126015 0.126015i
\(414\) 2.31103 + 1.86861i 0.113581 + 0.0918371i
\(415\) 0 0
\(416\) −20.3304 + 11.8381i −0.996777 + 0.580409i
\(417\) 1.19670i 0.0586026i
\(418\) 21.4473 26.5252i 1.04902 1.29739i
\(419\) 9.92468 9.92468i 0.484852 0.484852i −0.421825 0.906677i \(-0.638610\pi\)
0.906677 + 0.421825i \(0.138610\pi\)
\(420\) 0 0
\(421\) 15.7930 + 15.7930i 0.769702 + 0.769702i 0.978054 0.208352i \(-0.0668100\pi\)
−0.208352 + 0.978054i \(0.566810\pi\)
\(422\) −2.62559 24.8045i −0.127812 1.20747i
\(423\) −5.62829 −0.273657
\(424\) −28.2791 + 9.25777i −1.37335 + 0.449597i
\(425\) 0 0
\(426\) 0.198779 + 1.87791i 0.00963089 + 0.0909852i
\(427\) 17.3426 17.3426i 0.839268 0.839268i
\(428\) 34.4452 + 22.2967i 1.66497 + 1.07775i
\(429\) −2.46838 + 2.46838i −0.119174 + 0.119174i
\(430\) 0 0
\(431\) −0.285215 −0.0137383 −0.00686917 0.999976i \(-0.502187\pi\)
−0.00686917 + 0.999976i \(0.502187\pi\)
\(432\) −1.44152 + 3.78871i −0.0693552 + 0.182285i
\(433\) 18.1101i 0.870318i 0.900354 + 0.435159i \(0.143308\pi\)
−0.900354 + 0.435159i \(0.856692\pi\)
\(434\) −16.2382 + 20.0828i −0.779457 + 0.964004i
\(435\) 0 0
\(436\) 1.89069 + 1.22386i 0.0905476 + 0.0586123i
\(437\) 2.43913 2.43913i 0.116679 0.116679i
\(438\) 3.73693 0.395559i 0.178558 0.0189005i
\(439\) 11.5931i 0.553308i 0.960970 + 0.276654i \(0.0892256\pi\)
−0.960970 + 0.276654i \(0.910774\pi\)
\(440\) 0 0
\(441\) 0.364153i 0.0173406i
\(442\) 1.14605 + 10.8270i 0.0545120 + 0.514988i
\(443\) −22.6855 + 22.6855i −1.07782 + 1.07782i −0.0811145 + 0.996705i \(0.525848\pi\)
−0.996705 + 0.0811145i \(0.974152\pi\)
\(444\) −0.00979922 0.0457691i −0.000465050 0.00217211i
\(445\) 0 0
\(446\) 3.39450 + 2.74466i 0.160734 + 0.129963i
\(447\) 2.11094i 0.0998440i
\(448\) 12.6259 + 17.2171i 0.596520 + 0.813433i
\(449\) −12.1999 −0.575747 −0.287873 0.957669i \(-0.592948\pi\)
−0.287873 + 0.957669i \(0.592948\pi\)
\(450\) 0 0
\(451\) 35.6892 35.6892i 1.68054 1.68054i
\(452\) −1.64771 + 0.352776i −0.0775016 + 0.0165932i
\(453\) −2.66225 + 2.66225i −0.125083 + 0.125083i
\(454\) −16.5411 + 1.75090i −0.776315 + 0.0821738i
\(455\) 0 0
\(456\) 2.08832 + 1.05823i 0.0977945 + 0.0495561i
\(457\) −1.70660 −0.0798314 −0.0399157 0.999203i \(-0.512709\pi\)
−0.0399157 + 0.999203i \(0.512709\pi\)
\(458\) −19.8672 + 2.10297i −0.928334 + 0.0982652i
\(459\) 1.32653 + 1.32653i 0.0619172 + 0.0619172i
\(460\) 0 0
\(461\) −4.74710 + 4.74710i −0.221094 + 0.221094i −0.808959 0.587865i \(-0.799969\pi\)
0.587865 + 0.808959i \(0.299969\pi\)
\(462\) 2.46350 + 1.99189i 0.114612 + 0.0926711i
\(463\) 11.1761i 0.519398i 0.965690 + 0.259699i \(0.0836234\pi\)
−0.965690 + 0.259699i \(0.916377\pi\)
\(464\) −7.03886 + 18.5000i −0.326771 + 0.858843i
\(465\) 0 0
\(466\) −12.3610 + 15.2876i −0.572610 + 0.708184i
\(467\) 2.06471 + 2.06471i 0.0955435 + 0.0955435i 0.753263 0.657719i \(-0.228479\pi\)
−0.657719 + 0.753263i \(0.728479\pi\)
\(468\) 20.7462 + 13.4292i 0.958992 + 0.620764i
\(469\) 9.33260 + 9.33260i 0.430940 + 0.430940i
\(470\) 0 0
\(471\) 0.893315i 0.0411618i
\(472\) −1.19419 3.64780i −0.0549668 0.167904i
\(473\) −31.0437 −1.42739
\(474\) −1.59969 + 0.169329i −0.0734762 + 0.00777754i
\(475\) 0 0
\(476\) 9.66181 2.06861i 0.442848 0.0948144i
\(477\) 22.1026 + 22.1026i 1.01201 + 1.01201i
\(478\) −9.57532 + 11.8424i −0.437965 + 0.541659i
\(479\) 41.6214 1.90173 0.950864 0.309608i \(-0.100198\pi\)
0.950864 + 0.309608i \(0.100198\pi\)
\(480\) 0 0
\(481\) −0.573477 −0.0261483
\(482\) 11.0887 13.7141i 0.505075 0.624659i
\(483\) 0.226531 + 0.226531i 0.0103075 + 0.0103075i
\(484\) 26.3235 5.63589i 1.19652 0.256177i
\(485\) 0 0
\(486\) 6.36217 0.673443i 0.288594 0.0305480i
\(487\) 8.25627 0.374127 0.187064 0.982348i \(-0.440103\pi\)
0.187064 + 0.982348i \(0.440103\pi\)
\(488\) 24.7029 8.08704i 1.11825 0.366083i
\(489\) 0.507950i 0.0229703i
\(490\) 0 0
\(491\) 4.28512 + 4.28512i 0.193385 + 0.193385i 0.797157 0.603772i \(-0.206336\pi\)
−0.603772 + 0.797157i \(0.706336\pi\)
\(492\) 2.90797 + 1.88235i 0.131101 + 0.0848630i
\(493\) 6.47737 + 6.47737i 0.291726 + 0.291726i
\(494\) 18.0349 22.3049i 0.811427 1.00354i
\(495\) 0 0
\(496\) −24.9715 + 11.2066i −1.12125 + 0.503190i
\(497\) 20.9976i 0.941871i
\(498\) −1.02235 0.826631i −0.0458125 0.0370422i
\(499\) 15.1287 15.1287i 0.677253 0.677253i −0.282125 0.959378i \(-0.591039\pi\)
0.959378 + 0.282125i \(0.0910392\pi\)
\(500\) 0 0
\(501\) 2.17941 + 2.17941i 0.0973689 + 0.0973689i
\(502\) −7.34084 + 0.777037i −0.327638 + 0.0346808i
\(503\) −18.6439 −0.831291 −0.415646 0.909527i \(-0.636444\pi\)
−0.415646 + 0.909527i \(0.636444\pi\)
\(504\) 10.1379 20.0062i 0.451577 0.891146i
\(505\) 0 0
\(506\) 4.91950 0.520734i 0.218698 0.0231495i
\(507\) −0.515524 + 0.515524i −0.0228952 + 0.0228952i
\(508\) −41.4003 + 8.86385i −1.83684 + 0.393270i
\(509\) −11.6243 + 11.6243i −0.515239 + 0.515239i −0.916127 0.400888i \(-0.868702\pi\)
0.400888 + 0.916127i \(0.368702\pi\)
\(510\) 0 0
\(511\) −41.7839 −1.84841
\(512\) 3.68821 + 22.3248i 0.162997 + 0.986627i
\(513\) 4.94246i 0.218215i
\(514\) −3.42021 2.76545i −0.150859 0.121979i
\(515\) 0 0
\(516\) −0.446057 2.08339i −0.0196365 0.0917162i
\(517\) −6.62459 + 6.62459i −0.291349 + 0.291349i
\(518\) 0.0547842 + 0.517559i 0.00240708 + 0.0227402i
\(519\) 2.04865i 0.0899259i
\(520\) 0 0
\(521\) 36.9052i 1.61684i −0.588603 0.808422i \(-0.700322\pi\)
0.588603 0.808422i \(-0.299678\pi\)
\(522\) 20.6775 2.18873i 0.905028 0.0957983i
\(523\) 6.04158 6.04158i 0.264180 0.264180i −0.562570 0.826750i \(-0.690187\pi\)
0.826750 + 0.562570i \(0.190187\pi\)
\(524\) −11.0943 7.18144i −0.484657 0.313723i
\(525\) 0 0
\(526\) 15.9618 19.7410i 0.695969 0.860750i
\(527\) 12.6669i 0.551780i
\(528\) 1.37468 + 3.06319i 0.0598252 + 0.133308i
\(529\) −22.4997 −0.978250
\(530\) 0 0
\(531\) −2.85108 + 2.85108i −0.123726 + 0.123726i
\(532\) −21.8529 14.1456i −0.947443 0.613288i
\(533\) 30.0108 30.0108i 1.29991 1.29991i
\(534\) −0.265421 2.50750i −0.0114859 0.108510i
\(535\) 0 0
\(536\) 4.35189 + 13.2934i 0.187973 + 0.574189i
\(537\) 0.582041 0.0251169
\(538\) −0.341971 3.23068i −0.0147434 0.139284i
\(539\) −0.428614 0.428614i −0.0184617 0.0184617i
\(540\) 0 0
\(541\) −28.4222 + 28.4222i −1.22197 + 1.22197i −0.255035 + 0.966932i \(0.582087\pi\)
−0.966932 + 0.255035i \(0.917913\pi\)
\(542\) −16.1660 + 19.9935i −0.694389 + 0.858795i
\(543\) 1.07190i 0.0459997i
\(544\) 10.1248 + 2.67290i 0.434099 + 0.114600i
\(545\) 0 0
\(546\) 2.07154 + 1.67497i 0.0886537 + 0.0716820i
\(547\) 23.3562 + 23.3562i 0.998640 + 0.998640i 0.999999 0.00135902i \(-0.000432589\pi\)
−0.00135902 + 0.999999i \(0.500433\pi\)
\(548\) −4.30605 20.1122i −0.183945 0.859152i
\(549\) −19.3076 19.3076i −0.824027 0.824027i
\(550\) 0 0
\(551\) 24.1337i 1.02813i
\(552\) 0.105634 + 0.322673i 0.00449608 + 0.0137339i
\(553\) 17.8867 0.760620
\(554\) 2.91948 + 27.5810i 0.124037 + 1.17180i
\(555\) 0 0
\(556\) −7.66312 + 11.8384i −0.324989 + 0.502061i
\(557\) −4.89520 4.89520i −0.207416 0.207416i 0.595752 0.803168i \(-0.296854\pi\)
−0.803168 + 0.595752i \(0.796854\pi\)
\(558\) 22.3582 + 18.0780i 0.946498 + 0.765302i
\(559\) −26.1044 −1.10410
\(560\) 0 0
\(561\) 1.55382 0.0656022
\(562\) 11.8083 + 9.54774i 0.498103 + 0.402747i
\(563\) −1.28613 1.28613i −0.0542040 0.0542040i 0.679485 0.733689i \(-0.262203\pi\)
−0.733689 + 0.679485i \(0.762203\pi\)
\(564\) −0.539773 0.349400i −0.0227285 0.0147124i
\(565\) 0 0
\(566\) −3.44587 32.5539i −0.144841 1.36834i
\(567\) −23.3297 −0.979754
\(568\) 10.0589 19.8503i 0.422061 0.832899i
\(569\) 11.4799i 0.481261i −0.970617 0.240631i \(-0.922646\pi\)
0.970617 0.240631i \(-0.0773543\pi\)
\(570\) 0 0
\(571\) 28.7069 + 28.7069i 1.20134 + 1.20134i 0.973758 + 0.227587i \(0.0730835\pi\)
0.227587 + 0.973758i \(0.426917\pi\)
\(572\) 40.2249 8.61221i 1.68189 0.360094i
\(573\) 0.930105 + 0.930105i 0.0388557 + 0.0388557i
\(574\) −29.9515 24.2176i −1.25015 1.01082i
\(575\) 0 0
\(576\) 19.1679 14.0565i 0.798661 0.585687i
\(577\) 20.3419i 0.846842i −0.905933 0.423421i \(-0.860829\pi\)
0.905933 0.423421i \(-0.139171\pi\)
\(578\) −12.0691 + 14.9266i −0.502007 + 0.620864i
\(579\) −1.36075 + 1.36075i −0.0565509 + 0.0565509i
\(580\) 0 0
\(581\) 10.3370 + 10.3370i 0.428852 + 0.428852i
\(582\) −0.121256 1.14554i −0.00502623 0.0474840i
\(583\) 52.0303 2.15488
\(584\) −39.5008 20.0165i −1.63456 0.828290i
\(585\) 0 0
\(586\) −0.888530 8.39415i −0.0367048 0.346759i
\(587\) 25.8136 25.8136i 1.06544 1.06544i 0.0677360 0.997703i \(-0.478422\pi\)
0.997703 0.0677360i \(-0.0215775\pi\)
\(588\) 0.0226063 0.0349236i 0.000932270 0.00144022i
\(589\) 23.5975 23.5975i 0.972320 0.972320i
\(590\) 0 0
\(591\) −0.264022 −0.0108604
\(592\) −0.196145 + 0.515524i −0.00806152 + 0.0211879i
\(593\) 4.02945i 0.165470i −0.996572 0.0827349i \(-0.973635\pi\)
0.996572 0.0827349i \(-0.0263655\pi\)
\(594\) 4.45665 5.51183i 0.182859 0.226153i
\(595\) 0 0
\(596\) −13.5175 + 20.8826i −0.553699 + 0.855385i
\(597\) −1.71279 + 1.71279i −0.0700997 + 0.0700997i
\(598\) 4.13677 0.437882i 0.169165 0.0179063i
\(599\) 31.6701i 1.29400i −0.762489 0.647002i \(-0.776023\pi\)
0.762489 0.647002i \(-0.223977\pi\)
\(600\) 0 0
\(601\) 19.4667i 0.794065i −0.917805 0.397032i \(-0.870040\pi\)
0.917805 0.397032i \(-0.129960\pi\)
\(602\) 2.49376 + 23.5591i 0.101638 + 0.960197i
\(603\) 10.3900 10.3900i 0.423114 0.423114i
\(604\) 43.3843 9.28864i 1.76528 0.377949i
\(605\) 0 0
\(606\) −0.0984477 0.0796010i −0.00399916 0.00323357i
\(607\) 13.6128i 0.552528i 0.961082 + 0.276264i \(0.0890965\pi\)
−0.961082 + 0.276264i \(0.910904\pi\)
\(608\) −13.8824 23.8412i −0.563006 0.966890i
\(609\) 2.24139 0.0908257
\(610\) 0 0
\(611\) −5.57057 + 5.57057i −0.225361 + 0.225361i
\(612\) −2.30298 10.7565i −0.0930926 0.434807i
\(613\) −11.1480 + 11.1480i −0.450265 + 0.450265i −0.895442 0.445177i \(-0.853141\pi\)
0.445177 + 0.895442i \(0.353141\pi\)
\(614\) 25.1321 2.66026i 1.01425 0.107360i
\(615\) 0 0
\(616\) −11.6152 35.4800i −0.467988 1.42953i
\(617\) 1.96695 0.0791863 0.0395932 0.999216i \(-0.487394\pi\)
0.0395932 + 0.999216i \(0.487394\pi\)
\(618\) −2.45876 + 0.260262i −0.0989057 + 0.0104693i
\(619\) −7.84144 7.84144i −0.315174 0.315174i 0.531736 0.846910i \(-0.321540\pi\)
−0.846910 + 0.531736i \(0.821540\pi\)
\(620\) 0 0
\(621\) 0.506840 0.506840i 0.0203388 0.0203388i
\(622\) −9.42246 7.61864i −0.377806 0.305480i
\(623\) 28.0372i 1.12329i
\(624\) 1.15596 + 2.57581i 0.0462753 + 0.103115i
\(625\) 0 0
\(626\) −17.0567 + 21.0951i −0.681723 + 0.843131i
\(627\) −2.89464 2.89464i −0.115601 0.115601i
\(628\) −5.72039 + 8.83718i −0.228268 + 0.352642i
\(629\) 0.180499 + 0.180499i 0.00719696 + 0.00719696i
\(630\) 0 0
\(631\) 0.220729i 0.00878708i −0.999990 0.00439354i \(-0.998601\pi\)
0.999990 0.00439354i \(-0.00139851\pi\)
\(632\) 16.9093 + 8.56860i 0.672618 + 0.340840i
\(633\) −2.99339 −0.118977
\(634\) 18.7306 1.98266i 0.743888 0.0787414i
\(635\) 0 0
\(636\) 0.747606 + 3.49184i 0.0296445 + 0.138460i
\(637\) −0.360418 0.360418i −0.0142803 0.0142803i
\(638\) 21.7615 26.9139i 0.861547 1.06553i
\(639\) −23.3767 −0.924767
\(640\) 0 0
\(641\) −19.2037 −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(642\) 3.09606 3.82910i 0.122192 0.151122i
\(643\) 7.17110 + 7.17110i 0.282801 + 0.282801i 0.834225 0.551424i \(-0.185915\pi\)
−0.551424 + 0.834225i \(0.685915\pi\)
\(644\) −0.790371 3.69158i −0.0311450 0.145469i
\(645\) 0 0
\(646\) −12.6967 + 1.34396i −0.499546 + 0.0528775i
\(647\) −26.4735 −1.04078 −0.520391 0.853928i \(-0.674214\pi\)
−0.520391 + 0.853928i \(0.674214\pi\)
\(648\) −22.0549 11.1760i −0.866399 0.439037i
\(649\) 6.71153i 0.263451i
\(650\) 0 0
\(651\) 2.19159 + 2.19159i 0.0858953 + 0.0858953i
\(652\) −3.25268 + 5.02492i −0.127385 + 0.196791i
\(653\) −10.5746 10.5746i −0.413815 0.413815i 0.469250 0.883065i \(-0.344524\pi\)
−0.883065 + 0.469250i \(0.844524\pi\)
\(654\) 0.169942 0.210179i 0.00664527 0.00821863i
\(655\) 0 0
\(656\) −16.7135 37.2426i −0.652553 1.45408i
\(657\) 46.5182i 1.81485i
\(658\) 5.55956 + 4.49525i 0.216734 + 0.175243i
\(659\) −24.1291 + 24.1291i −0.939937 + 0.939937i −0.998296 0.0583584i \(-0.981413\pi\)
0.0583584 + 0.998296i \(0.481413\pi\)
\(660\) 0 0
\(661\) 23.4294 + 23.4294i 0.911299 + 0.911299i 0.996374 0.0850756i \(-0.0271132\pi\)
−0.0850756 + 0.996374i \(0.527113\pi\)
\(662\) −25.5729 + 2.70692i −0.993919 + 0.105207i
\(663\) 1.30659 0.0507439
\(664\) 4.82027 + 14.7241i 0.187063 + 0.571408i
\(665\) 0 0
\(666\) 0.576200 0.0609914i 0.0223273 0.00236337i
\(667\) 2.47487 2.47487i 0.0958273 0.0958273i
\(668\) −7.60401 35.5159i −0.294208 1.37415i
\(669\) 0.370435 0.370435i 0.0143218 0.0143218i
\(670\) 0 0
\(671\) −45.4506 −1.75460
\(672\) 2.21423 1.28931i 0.0854157 0.0497363i
\(673\) 41.8069i 1.61154i 0.592230 + 0.805769i \(0.298248\pi\)
−0.592230 + 0.805769i \(0.701752\pi\)
\(674\) −3.65060 2.95173i −0.140616 0.113697i
\(675\) 0 0
\(676\) 8.40105 1.79867i 0.323117 0.0691798i
\(677\) 22.7350 22.7350i 0.873776 0.873776i −0.119106 0.992882i \(-0.538003\pi\)
0.992882 + 0.119106i \(0.0380027\pi\)
\(678\) 0.0212864 + 0.201097i 0.000817499 + 0.00772310i
\(679\) 12.8086i 0.491550i
\(680\) 0 0
\(681\) 1.99617i 0.0764936i
\(682\) 47.5940 5.03788i 1.82247 0.192911i
\(683\) 34.4402 34.4402i 1.31782 1.31782i 0.402315 0.915501i \(-0.368206\pi\)
0.915501 0.402315i \(-0.131794\pi\)
\(684\) −15.7483 + 24.3289i −0.602151 + 0.930238i
\(685\) 0 0
\(686\) 16.3206 20.1847i 0.623122 0.770655i
\(687\) 2.39756i 0.0914727i
\(688\) −8.92845 + 23.4664i −0.340394 + 0.894649i
\(689\) 43.7519 1.66682
\(690\) 0 0
\(691\) 16.0991 16.0991i 0.612438 0.612438i −0.331143 0.943581i \(-0.607434\pi\)
0.943581 + 0.331143i \(0.107434\pi\)
\(692\) 13.1186 20.2664i 0.498696 0.770414i
\(693\) −27.7308 + 27.7308i −1.05341 + 1.05341i
\(694\) −3.76547 35.5733i −0.142935 1.35034i
\(695\) 0 0
\(696\) 2.11892 + 1.07373i 0.0803174 + 0.0406998i
\(697\) −18.8915 −0.715567
\(698\) 0.776413 + 7.33495i 0.0293877 + 0.277632i
\(699\) 1.66830 + 1.66830i 0.0631010 + 0.0631010i
\(700\) 0 0
\(701\) −30.0507 + 30.0507i −1.13500 + 1.13500i −0.145666 + 0.989334i \(0.546533\pi\)
−0.989334 + 0.145666i \(0.953467\pi\)
\(702\) 3.74757 4.63486i 0.141443 0.174931i
\(703\) 0.672512i 0.0253643i
\(704\) 6.01617 39.1056i 0.226743 1.47385i
\(705\) 0 0
\(706\) 36.3950 + 29.4276i 1.36974 + 1.10752i
\(707\) 0.995412 + 0.995412i 0.0374363 + 0.0374363i
\(708\) −0.450422 + 0.0964358i −0.0169279 + 0.00362428i
\(709\) 12.9188 + 12.9188i 0.485176 + 0.485176i 0.906780 0.421604i \(-0.138533\pi\)
−0.421604 + 0.906780i \(0.638533\pi\)
\(710\) 0 0
\(711\) 19.9133i 0.746807i
\(712\) −13.4312 + 26.5052i −0.503355 + 0.993325i
\(713\) 4.83977 0.181251
\(714\) −0.124819 1.17919i −0.00467123 0.0441302i
\(715\) 0 0
\(716\) −5.75788 3.72713i −0.215182 0.139289i
\(717\) 1.29234 + 1.29234i 0.0482633 + 0.0482633i
\(718\) 7.17584 + 5.80211i 0.267800 + 0.216533i
\(719\) −17.0356 −0.635319 −0.317659 0.948205i \(-0.602897\pi\)
−0.317659 + 0.948205i \(0.602897\pi\)
\(720\) 0 0
\(721\) 27.4922 1.02386
\(722\) 5.26231 + 4.25490i 0.195843 + 0.158351i
\(723\) −1.49659 1.49659i −0.0556588 0.0556588i
\(724\) 6.86398 10.6039i 0.255098 0.394090i
\(725\) 0 0
\(726\) −0.340068 3.21270i −0.0126211 0.119234i
\(727\) 31.7051 1.17588 0.587939 0.808905i \(-0.299939\pi\)
0.587939 + 0.808905i \(0.299939\pi\)
\(728\) −9.76710 29.8349i −0.361993 1.10576i
\(729\) 25.4570i 0.942852i
\(730\) 0 0
\(731\) 8.21624 + 8.21624i 0.303888 + 0.303888i
\(732\) −0.653065 3.05026i −0.0241380 0.112741i
\(733\) −3.87657 3.87657i −0.143184 0.143184i 0.631881 0.775065i \(-0.282283\pi\)
−0.775065 + 0.631881i \(0.782283\pi\)
\(734\) 12.1339 + 9.81105i 0.447872 + 0.362132i
\(735\) 0 0
\(736\) 1.02126 3.86849i 0.0376442 0.142595i
\(737\) 24.4584i 0.900937i
\(738\) −26.9616 + 33.3451i −0.992469 + 1.22745i
\(739\) −11.3024 + 11.3024i −0.415766 + 0.415766i −0.883742 0.467975i \(-0.844984\pi\)
0.467975 + 0.883742i \(0.344984\pi\)
\(740\) 0 0
\(741\) −2.43409 2.43409i −0.0894184 0.0894184i
\(742\) −4.17962 39.4859i −0.153439 1.44957i
\(743\) 30.7210 1.12704 0.563521 0.826102i \(-0.309446\pi\)
0.563521 + 0.826102i \(0.309446\pi\)
\(744\) 1.02196 + 3.12172i 0.0374670 + 0.114448i
\(745\) 0 0
\(746\) 1.44098 + 13.6133i 0.0527582 + 0.498419i
\(747\) 11.5082 11.5082i 0.421065 0.421065i
\(748\) −15.3712 9.94995i −0.562028 0.363806i
\(749\) −38.7163 + 38.7163i −1.41466 + 1.41466i
\(750\) 0 0
\(751\) 16.4695 0.600981 0.300491 0.953785i \(-0.402850\pi\)
0.300491 + 0.953785i \(0.402850\pi\)
\(752\) 3.10234 + 6.91292i 0.113131 + 0.252088i
\(753\) 0.885888i 0.0322836i
\(754\) 18.2991 22.6317i 0.666415 0.824198i
\(755\) 0 0
\(756\) −4.54093 2.93939i −0.165152 0.106905i
\(757\) −21.9737 + 21.9737i −0.798649 + 0.798649i −0.982883 0.184233i \(-0.941020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(758\) −20.1021 + 2.12783i −0.730140 + 0.0772861i
\(759\) 0.593681i 0.0215493i
\(760\) 0 0
\(761\) 5.91749i 0.214509i 0.994232 + 0.107254i \(0.0342060\pi\)
−0.994232 + 0.107254i \(0.965794\pi\)
\(762\) 0.534842 + 5.05277i 0.0193753 + 0.183043i
\(763\) −2.12513 + 2.12513i −0.0769349 + 0.0769349i
\(764\) −3.24515 15.1571i −0.117406 0.548365i
\(765\) 0 0
\(766\) 32.4725 + 26.2560i 1.17328 + 0.948668i
\(767\) 5.64368i 0.203782i
\(768\) 2.71088 0.158140i 0.0978206 0.00570640i
\(769\) −10.7206 −0.386596 −0.193298 0.981140i \(-0.561918\pi\)
−0.193298 + 0.981140i \(0.561918\pi\)
\(770\) 0 0
\(771\) −0.373240 + 0.373240i −0.0134419 + 0.0134419i
\(772\) 22.1750 4.74769i 0.798094 0.170873i
\(773\) −16.8329 + 16.8329i −0.605438 + 0.605438i −0.941750 0.336312i \(-0.890820\pi\)
0.336312 + 0.941750i \(0.390820\pi\)
\(774\) 26.2284 2.77631i 0.942760 0.0997922i
\(775\) 0 0
\(776\) −6.13596 + 12.1088i −0.220268 + 0.434679i
\(777\) 0.0624587 0.00224069
\(778\) 1.97089 0.208621i 0.0706597 0.00747941i
\(779\) 35.1934 + 35.1934i 1.26094 + 1.26094i
\(780\) 0 0
\(781\) −27.5147 + 27.5147i −0.984554 + 0.984554i
\(782\) −1.43985 1.16421i −0.0514889 0.0416319i
\(783\) 5.01488i 0.179217i
\(784\) −0.447269 + 0.200723i −0.0159739 + 0.00716867i
\(785\) 0 0
\(786\) −0.997198 + 1.23330i −0.0355689 + 0.0439903i
\(787\) −25.4619 25.4619i −0.907619 0.907619i 0.0884603 0.996080i \(-0.471805\pi\)
−0.996080 + 0.0884603i \(0.971805\pi\)
\(788\) 2.61186 + 1.69068i 0.0930436 + 0.0602280i
\(789\) −2.15430 2.15430i −0.0766951 0.0766951i
\(790\) 0 0
\(791\) 2.24854i 0.0799489i
\(792\) −39.5000 + 12.9312i −1.40357 + 0.459489i
\(793\) −38.2191 −1.35720
\(794\) −33.8159 + 3.57945i −1.20008 + 0.127030i
\(795\) 0 0
\(796\) 27.9118 5.97594i 0.989307 0.211812i
\(797\) 7.14518 + 7.14518i 0.253095 + 0.253095i 0.822238 0.569143i \(-0.192725\pi\)
−0.569143 + 0.822238i \(0.692725\pi\)
\(798\) −1.96422 + 2.42928i −0.0695326 + 0.0859955i
\(799\) 3.50662 0.124055
\(800\) 0 0
\(801\) 31.2139 1.10289
\(802\) −23.8115 + 29.4492i −0.840812 + 1.03989i
\(803\) 54.7526 + 54.7526i 1.93218 + 1.93218i
\(804\) 1.64144 0.351435i 0.0578892 0.0123941i
\(805\) 0 0
\(806\) 40.0215 4.23632i 1.40970 0.149218i
\(807\) −0.389876 −0.0137243
\(808\) 0.464171 + 1.41787i 0.0163295 + 0.0498806i
\(809\) 12.4413i 0.437412i 0.975791 + 0.218706i \(0.0701835\pi\)
−0.975791 + 0.218706i \(0.929817\pi\)
\(810\) 0 0
\(811\) −30.6494 30.6494i −1.07624 1.07624i −0.996843 0.0794022i \(-0.974699\pi\)
−0.0794022 0.996843i \(-0.525301\pi\)
\(812\) −22.1731 14.3528i −0.778123 0.503686i
\(813\) 2.18185 + 2.18185i 0.0765210 + 0.0765210i
\(814\) 0.606409 0.749984i 0.0212546 0.0262869i
\(815\) 0 0
\(816\) 0.446892 1.17456i 0.0156444 0.0411177i
\(817\) 30.6125i 1.07099i
\(818\) 14.5129 + 11.7345i 0.507430 + 0.410288i
\(819\) −23.3187 + 23.3187i −0.814820 + 0.814820i
\(820\) 0 0
\(821\) 8.84907 + 8.84907i 0.308835 + 0.308835i 0.844457 0.535623i \(-0.179923\pi\)
−0.535623 + 0.844457i \(0.679923\pi\)
\(822\) −2.45463 + 0.259826i −0.0856152 + 0.00906247i
\(823\) −11.7501 −0.409583 −0.204792 0.978806i \(-0.565652\pi\)
−0.204792 + 0.978806i \(0.565652\pi\)
\(824\) 25.9900 + 13.1701i 0.905405 + 0.458802i
\(825\) 0 0
\(826\) 5.09339 0.539141i 0.177222 0.0187591i
\(827\) 3.40407 3.40407i 0.118371 0.118371i −0.645440 0.763811i \(-0.723326\pi\)
0.763811 + 0.645440i \(0.223326\pi\)
\(828\) −4.10984 + 0.879922i −0.142827 + 0.0305794i
\(829\) −24.8718 + 24.8718i −0.863834 + 0.863834i −0.991781 0.127947i \(-0.959161\pi\)
0.127947 + 0.991781i \(0.459161\pi\)
\(830\) 0 0
\(831\) 3.32845 0.115463
\(832\) 5.05896 32.8836i 0.175388 1.14003i
\(833\) 0.226880i 0.00786092i
\(834\) 1.31602 + 1.06408i 0.0455700 + 0.0368462i
\(835\) 0 0
\(836\) 10.0995 + 47.1715i 0.349297 + 1.63146i
\(837\) 4.90347 4.90347i 0.169489 0.169489i
\(838\) 2.08940 + 19.7391i 0.0721773 + 0.681875i
\(839\) 3.26196i 0.112615i 0.998413 + 0.0563076i \(0.0179328\pi\)
−0.998413 + 0.0563076i \(0.982067\pi\)
\(840\) 0 0
\(841\) 4.51268i 0.155610i
\(842\) −31.4104 + 3.32483i −1.08248 + 0.114581i
\(843\) 1.28862 1.28862i 0.0443823 0.0443823i
\(844\) 29.6124 + 19.1683i 1.01930 + 0.659802i
\(845\) 0 0
\(846\) 5.00457 6.18947i 0.172061 0.212798i
\(847\) 35.9223i 1.23430i
\(848\) 14.9644 39.3306i 0.513880 1.35062i
\(849\) −3.92859 −0.134829
\(850\) 0 0
\(851\) 0.0689649 0.0689649i 0.00236409 0.00236409i
\(852\) −2.24191 1.45121i −0.0768065 0.0497175i
\(853\) 4.02276 4.02276i 0.137737 0.137737i −0.634877 0.772613i \(-0.718949\pi\)
0.772613 + 0.634877i \(0.218949\pi\)
\(854\) 3.65107 + 34.4925i 0.124937 + 1.18031i
\(855\) 0 0
\(856\) −55.1478 + 18.0538i −1.88491 + 0.617067i
\(857\) −44.6563 −1.52543 −0.762714 0.646736i \(-0.776134\pi\)
−0.762714 + 0.646736i \(0.776134\pi\)
\(858\) −0.519658 4.90932i −0.0177408 0.167602i
\(859\) −5.22864 5.22864i −0.178399 0.178399i 0.612259 0.790658i \(-0.290261\pi\)
−0.790658 + 0.612259i \(0.790261\pi\)
\(860\) 0 0
\(861\) −3.26855 + 3.26855i −0.111392 + 0.111392i
\(862\) 0.253608 0.313653i 0.00863793 0.0106831i
\(863\) 36.9653i 1.25831i −0.777278 0.629157i \(-0.783400\pi\)
0.777278 0.629157i \(-0.216600\pi\)
\(864\) −2.88470 4.95411i −0.0981396 0.168542i
\(865\) 0 0
\(866\) −19.9159 16.1032i −0.676769 0.547209i
\(867\) 1.62891 + 1.62891i 0.0553206 + 0.0553206i
\(868\) −7.64651 35.7145i −0.259539 1.21223i
\(869\) −23.4383 23.4383i −0.795089 0.795089i
\(870\) 0 0
\(871\) 20.5669i 0.696883i
\(872\) −3.02705 + 0.990971i −0.102509 + 0.0335585i
\(873\) 14.2599 0.482624
\(874\) 0.513501 + 4.85116i 0.0173694 + 0.164093i
\(875\) 0 0
\(876\) −2.88781 + 4.46126i −0.0975701 + 0.150732i
\(877\) 9.40192 + 9.40192i 0.317480 + 0.317480i 0.847799 0.530318i \(-0.177928\pi\)
−0.530318 + 0.847799i \(0.677928\pi\)
\(878\) −12.7490 10.3084i −0.430258 0.347890i
\(879\) −1.01300 −0.0341677
\(880\) 0 0
\(881\) −10.3069 −0.347248 −0.173624 0.984812i \(-0.555548\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(882\) 0.400462 + 0.323798i 0.0134842 + 0.0109028i
\(883\) −34.3375 34.3375i −1.15555 1.15555i −0.985422 0.170128i \(-0.945582\pi\)
−0.170128 0.985422i \(-0.554418\pi\)
\(884\) −12.9256 8.36684i −0.434734 0.281407i
\(885\) 0 0
\(886\) −4.77589 45.1189i −0.160449 1.51580i
\(887\) 6.79523 0.228161 0.114081 0.993471i \(-0.463608\pi\)
0.114081 + 0.993471i \(0.463608\pi\)
\(888\) 0.0590459 + 0.0299208i 0.00198145 + 0.00100407i
\(889\) 56.4968i 1.89484i
\(890\) 0 0
\(891\) 30.5706 + 30.5706i 1.02415 + 1.02415i
\(892\) −6.03665 + 1.29245i −0.202122 + 0.0432745i
\(893\) −6.53256 6.53256i −0.218604 0.218604i
\(894\) 2.32142 + 1.87701i 0.0776398 + 0.0627766i
\(895\) 0 0
\(896\) −30.1606 1.42431i −1.00759 0.0475827i
\(897\) 0.499223i 0.0166686i
\(898\) 10.8479 13.4163i 0.361998 0.447707i
\(899\) 23.9433 23.9433i 0.798554 0.798554i
\(900\) 0 0
\(901\) −13.7707 13.7707i −0.458769 0.458769i
\(902\) 7.51351 + 70.9819i 0.250173 + 2.36344i
\(903\) 2.84310 0.0946123
\(904\) 1.07716 2.12568i 0.0358258 0.0706990i
\(905\) 0 0
\(906\) −0.560473 5.29492i −0.0186205 0.175912i
\(907\) 3.82391 3.82391i 0.126971 0.126971i −0.640766 0.767737i \(-0.721383\pi\)
0.767737 + 0.640766i \(0.221383\pi\)
\(908\) 12.7826 19.7473i 0.424206 0.655337i
\(909\) 1.10819 1.10819i 0.0367565 0.0367565i
\(910\) 0 0
\(911\) −18.9169 −0.626743 −0.313372 0.949631i \(-0.601459\pi\)
−0.313372 + 0.949631i \(0.601459\pi\)
\(912\) −3.02064 + 1.35558i −0.100023 + 0.0448878i
\(913\) 27.0908i 0.896574i
\(914\) 1.51748 1.87676i 0.0501937 0.0620777i
\(915\) 0 0
\(916\) 15.3529 23.7180i 0.507274 0.783666i
\(917\) 12.4700 12.4700i 0.411795 0.411795i
\(918\) −2.63832 + 0.279270i −0.0870777 + 0.00921727i
\(919\) 48.9075i 1.61331i 0.591022 + 0.806655i \(0.298724\pi\)
−0.591022 + 0.806655i \(0.701276\pi\)
\(920\) 0 0
\(921\) 3.03293i 0.0999384i
\(922\) −0.999388 9.44144i −0.0329131 0.310937i
\(923\) −23.1369 + 23.1369i −0.761562 + 0.761562i
\(924\) −4.38099 + 0.937976i −0.144124 + 0.0308571i
\(925\) 0 0
\(926\) −12.2905 9.93759i −0.403890 0.326570i
\(927\) 30.6071i 1.00527i
\(928\) −14.0858 24.1906i −0.462390 0.794095i
\(929\) −35.4660 −1.16360 −0.581801 0.813331i \(-0.697652\pi\)
−0.581801 + 0.813331i \(0.697652\pi\)
\(930\) 0 0
\(931\) 0.422660 0.422660i 0.0138521 0.0138521i
\(932\) −5.82074 27.1869i −0.190665 0.890536i
\(933\) −1.02825 + 1.02825i −0.0336635 + 0.0336635i
\(934\) −4.10649 + 0.434676i −0.134368 + 0.0142230i
\(935\) 0 0
\(936\) −33.2153 + 10.8737i −1.08568 + 0.355419i
\(937\) −56.4991 −1.84575 −0.922873 0.385105i \(-0.874165\pi\)
−0.922873 + 0.385105i \(0.874165\pi\)
\(938\) −18.5615 + 1.96476i −0.606055 + 0.0641516i
\(939\) 2.30207 + 2.30207i 0.0751252 + 0.0751252i
\(940\) 0 0
\(941\) −2.86034 + 2.86034i −0.0932445 + 0.0932445i −0.752190 0.658946i \(-0.771003\pi\)
0.658946 + 0.752190i \(0.271003\pi\)
\(942\) 0.982385 + 0.794319i 0.0320078 + 0.0258803i
\(943\) 7.21805i 0.235052i
\(944\) 5.07336 + 1.93030i 0.165124 + 0.0628259i
\(945\) 0 0
\(946\) 27.6035 34.1390i 0.897466 1.10995i
\(947\) 5.86681 + 5.86681i 0.190646 + 0.190646i 0.795975 0.605329i \(-0.206959\pi\)
−0.605329 + 0.795975i \(0.706959\pi\)
\(948\) 1.23620 1.90976i 0.0401500 0.0620260i
\(949\) 46.0411 + 46.0411i 1.49456 + 1.49456i
\(950\) 0 0
\(951\) 2.26040i 0.0732985i
\(952\) −6.31624 + 12.4645i −0.204711 + 0.403978i
\(953\) 25.0238 0.810599 0.405299 0.914184i \(-0.367167\pi\)
0.405299 + 0.914184i \(0.367167\pi\)
\(954\) −43.9597 + 4.65318i −1.42325 + 0.150652i
\(955\) 0 0
\(956\) −4.50899 21.0601i −0.145831 0.681132i
\(957\) −2.93706 2.93706i −0.0949416 0.0949416i
\(958\) −37.0089 + 45.7713i −1.19570 + 1.47880i
\(959\) 27.4461 0.886281
\(960\) 0 0
\(961\) 15.8228 0.510412
\(962\) 0.509925 0.630657i 0.0164406 0.0203332i
\(963\) 43.1030 + 43.1030i 1.38897 + 1.38897i
\(964\) 5.22163 + 24.3886i 0.168177 + 0.785504i
\(965\) 0 0
\(966\) −0.450545 + 0.0476907i −0.0144961 + 0.00153442i
\(967\) −16.6523 −0.535502 −0.267751 0.963488i \(-0.586280\pi\)
−0.267751 + 0.963488i \(0.586280\pi\)
\(968\) −17.2085 + 33.9595i −0.553103 + 1.09150i
\(969\) 1.53223i 0.0492224i
\(970\) 0 0
\(971\) −30.6552 30.6552i −0.983771 0.983771i 0.0160991 0.999870i \(-0.494875\pi\)
−0.999870 + 0.0160991i \(0.994875\pi\)
\(972\) −4.91654 + 7.59534i −0.157698 + 0.243621i
\(973\) −13.3064 13.3064i −0.426583 0.426583i
\(974\) −7.34132 + 9.07948i −0.235231 + 0.290925i
\(975\) 0 0
\(976\) −13.0720 + 34.3569i −0.418425 + 1.09974i
\(977\) 13.4307i 0.429687i −0.976648 0.214844i \(-0.931076\pi\)
0.976648 0.214844i \(-0.0689242\pi\)
\(978\) 0.558596 + 0.451659i 0.0178619 + 0.0144425i
\(979\) 36.7392 36.7392i 1.17419 1.17419i
\(980\) 0 0
\(981\) 2.36591 + 2.36591i 0.0755378 + 0.0755378i
\(982\) −8.52263 + 0.902130i −0.271968 + 0.0287881i
\(983\) 7.94549 0.253422 0.126711 0.991940i \(-0.459558\pi\)
0.126711 + 0.991940i \(0.459558\pi\)
\(984\) −4.65575 + 1.52416i −0.148420 + 0.0485884i
\(985\) 0 0
\(986\) −12.8828 + 1.36366i −0.410271 + 0.0434276i
\(987\) 0.606704 0.606704i 0.0193116 0.0193116i
\(988\) 8.49257 + 39.6662i 0.270185 + 1.26195i
\(989\) 3.13925 3.13925i 0.0998225 0.0998225i
\(990\) 0 0
\(991\) −25.0787 −0.796652 −0.398326 0.917244i \(-0.630409\pi\)
−0.398326 + 0.917244i \(0.630409\pi\)
\(992\) 9.88027 37.4260i 0.313699 1.18828i
\(993\) 3.08612i 0.0979350i
\(994\) 23.0912 + 18.6707i 0.732409 + 0.592198i
\(995\) 0 0
\(996\) 1.81810 0.389258i 0.0576088 0.0123341i
\(997\) −36.1819 + 36.1819i −1.14589 + 1.14589i −0.158539 + 0.987353i \(0.550678\pi\)
−0.987353 + 0.158539i \(0.949322\pi\)
\(998\) 3.18498 + 30.0893i 0.100819 + 0.952459i
\(999\) 0.139745i 0.00442134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.q.g.149.3 16
4.3 odd 2 1600.2.q.h.49.4 16
5.2 odd 4 400.2.l.h.101.2 16
5.3 odd 4 80.2.l.a.21.7 16
5.4 even 2 400.2.q.h.149.6 16
15.8 even 4 720.2.t.c.181.2 16
16.3 odd 4 1600.2.q.g.849.5 16
16.13 even 4 400.2.q.h.349.6 16
20.3 even 4 320.2.l.a.241.5 16
20.7 even 4 1600.2.l.i.1201.4 16
20.19 odd 2 1600.2.q.g.49.5 16
40.3 even 4 640.2.l.a.481.4 16
40.13 odd 4 640.2.l.b.481.5 16
60.23 odd 4 2880.2.t.c.2161.7 16
80.3 even 4 320.2.l.a.81.5 16
80.13 odd 4 80.2.l.a.61.7 yes 16
80.19 odd 4 1600.2.q.h.849.4 16
80.29 even 4 inner 400.2.q.g.349.3 16
80.43 even 4 640.2.l.a.161.4 16
80.53 odd 4 640.2.l.b.161.5 16
80.67 even 4 1600.2.l.i.401.4 16
80.77 odd 4 400.2.l.h.301.2 16
160.3 even 8 5120.2.a.t.1.5 8
160.13 odd 8 5120.2.a.s.1.5 8
160.83 even 8 5120.2.a.u.1.4 8
160.93 odd 8 5120.2.a.v.1.4 8
240.83 odd 4 2880.2.t.c.721.6 16
240.173 even 4 720.2.t.c.541.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.7 16 5.3 odd 4
80.2.l.a.61.7 yes 16 80.13 odd 4
320.2.l.a.81.5 16 80.3 even 4
320.2.l.a.241.5 16 20.3 even 4
400.2.l.h.101.2 16 5.2 odd 4
400.2.l.h.301.2 16 80.77 odd 4
400.2.q.g.149.3 16 1.1 even 1 trivial
400.2.q.g.349.3 16 80.29 even 4 inner
400.2.q.h.149.6 16 5.4 even 2
400.2.q.h.349.6 16 16.13 even 4
640.2.l.a.161.4 16 80.43 even 4
640.2.l.a.481.4 16 40.3 even 4
640.2.l.b.161.5 16 80.53 odd 4
640.2.l.b.481.5 16 40.13 odd 4
720.2.t.c.181.2 16 15.8 even 4
720.2.t.c.541.2 16 240.173 even 4
1600.2.l.i.401.4 16 80.67 even 4
1600.2.l.i.1201.4 16 20.7 even 4
1600.2.q.g.49.5 16 20.19 odd 2
1600.2.q.g.849.5 16 16.3 odd 4
1600.2.q.h.49.4 16 4.3 odd 2
1600.2.q.h.849.4 16 80.19 odd 4
2880.2.t.c.721.6 16 240.83 odd 4
2880.2.t.c.2161.7 16 60.23 odd 4
5120.2.a.s.1.5 8 160.13 odd 8
5120.2.a.t.1.5 8 160.3 even 8
5120.2.a.u.1.4 8 160.83 even 8
5120.2.a.v.1.4 8 160.93 odd 8