Defining parameters
Level: | \( N \) | \(=\) | \( 400 = 2^{4} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 400.n (of order \(4\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 20 \) |
Character field: | \(\Q(i)\) | ||
Newform subspaces: | \( 4 \) | ||
Sturm bound: | \(120\) | ||
Trace bound: | \(13\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(400, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 156 | 18 | 138 |
Cusp forms | 84 | 18 | 66 |
Eisenstein series | 72 | 0 | 72 |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(400, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
400.2.n.a | $2$ | $3.194$ | \(\Q(\sqrt{-1}) \) | \(\Q(\sqrt{-1}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-3iq^{9}+(5-5i)q^{13}+(5+5i)q^{17}+\cdots\) |
400.2.n.b | $4$ | $3.194$ | \(\Q(\zeta_{12})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\zeta_{12}^{2}q^{3}+\zeta_{12}^{3}q^{7}+3\zeta_{12}q^{9}+\cdots\) |
400.2.n.c | $4$ | $3.194$ | \(\Q(i, \sqrt{5})\) | \(\Q(\sqrt{-5}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q-\beta _{3}q^{3}+\beta _{2}q^{7}-7\beta _{1}q^{9}+10q^{21}+\cdots\) |
400.2.n.d | $8$ | $3.194$ | \(\Q(\zeta_{24})\) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\zeta_{24}q^{3}+4\zeta_{24}^{5}q^{7}-2\zeta_{24}^{3}q^{9}+\cdots\) |
Decomposition of \(S_{2}^{\mathrm{old}}(400, [\chi])\) into lower level spaces
\( S_{2}^{\mathrm{old}}(400, [\chi]) \simeq \) \(S_{2}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(40, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(80, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(100, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(200, [\chi])\)\(^{\oplus 2}\)