Properties

Label 400.2.l.h.301.2
Level $400$
Weight $2$
Character 400.301
Analytic conductor $3.194$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(101,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.101"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [16,0,0,-4,0,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(8\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4 x^{15} + 4 x^{14} + 7 x^{12} - 8 x^{11} - 28 x^{10} + 28 x^{9} + 17 x^{8} + 56 x^{7} + \cdots + 256 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 301.2
Root \(-0.296075 + 1.38287i\) of defining polynomial
Character \(\chi\) \(=\) 400.301
Dual form 400.2.l.h.101.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.09971 + 0.889181i) q^{2} +(0.120009 + 0.120009i) q^{3} +(0.418713 - 1.95568i) q^{4} +(-0.238684 - 0.0252650i) q^{6} -2.66881i q^{7} +(1.27849 + 2.52299i) q^{8} -2.97120i q^{9} +(-3.49714 + 3.49714i) q^{11} +(0.284948 - 0.184450i) q^{12} +(-2.94072 - 2.94072i) q^{13} +(2.37306 + 2.93491i) q^{14} +(-3.64936 - 1.63774i) q^{16} -1.85116 q^{17} +(2.64193 + 3.26745i) q^{18} +(-3.44856 - 3.44856i) q^{19} +(0.320281 - 0.320281i) q^{21} +(0.736240 - 6.95543i) q^{22} +0.707288i q^{23} +(-0.149351 + 0.456211i) q^{24} +(5.84877 + 0.619099i) q^{26} +(0.716597 - 0.716597i) q^{27} +(-5.21934 - 1.11747i) q^{28} +(-3.49909 - 3.49909i) q^{29} +6.84272 q^{31} +(5.46947 - 1.44391i) q^{32} -0.839377 q^{33} +(2.03573 - 1.64601i) q^{34} +(-5.81070 - 1.24408i) q^{36} +(0.0975060 - 0.0975060i) q^{37} +(6.85881 + 0.726013i) q^{38} -0.705826i q^{39} -10.2052i q^{41} +(-0.0674276 + 0.637004i) q^{42} +(-4.43844 + 4.43844i) q^{43} +(5.37499 + 8.30359i) q^{44} +(-0.628908 - 0.777810i) q^{46} +1.89428 q^{47} +(-0.241413 - 0.634498i) q^{48} -0.122561 q^{49} +(-0.222155 - 0.222155i) q^{51} +(-6.98243 + 4.51979i) q^{52} +(7.43897 - 7.43897i) q^{53} +(-0.150862 + 1.42523i) q^{54} +(6.73338 - 3.41205i) q^{56} -0.827717i q^{57} +(6.95931 + 0.736651i) q^{58} +(0.959574 - 0.959574i) q^{59} +(6.49825 + 6.49825i) q^{61} +(-7.52499 + 6.08442i) q^{62} -7.92956 q^{63} +(-4.73092 + 6.45123i) q^{64} +(0.923069 - 0.746358i) q^{66} +(-3.49691 - 3.49691i) q^{67} +(-0.775103 + 3.62027i) q^{68} +(-0.0848809 + 0.0848809i) q^{69} +7.86777i q^{71} +(7.49629 - 3.79865i) q^{72} -15.6564i q^{73} +(-0.0205276 + 0.193929i) q^{74} +(-8.18824 + 5.30033i) q^{76} +(9.33322 + 9.33322i) q^{77} +(0.627607 + 0.776202i) q^{78} -6.70212 q^{79} -8.74159 q^{81} +(9.07431 + 11.2228i) q^{82} +(3.87327 + 3.87327i) q^{83} +(-0.492261 - 0.760473i) q^{84} +(0.934407 - 8.82755i) q^{86} -0.839845i q^{87} +(-13.2943 - 4.35218i) q^{88} +10.5055i q^{89} +(-7.84824 + 7.84824i) q^{91} +(1.38323 + 0.296151i) q^{92} +(0.821187 + 0.821187i) q^{93} +(-2.08316 + 1.68436i) q^{94} +(0.829667 + 0.483103i) q^{96} -4.79937 q^{97} +(0.134781 - 0.108979i) q^{98} +(10.3907 + 10.3907i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 4 q^{4} - 12 q^{6} - 8 q^{11} + 12 q^{12} + 4 q^{14} + 16 q^{16} - 8 q^{19} + 20 q^{22} + 8 q^{24} - 16 q^{26} - 24 q^{27} + 4 q^{28} - 16 q^{29} + 16 q^{34} - 4 q^{36} + 16 q^{37} - 20 q^{38} - 60 q^{42}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.09971 + 0.889181i −0.777611 + 0.628746i
\(3\) 0.120009 + 0.120009i 0.0692872 + 0.0692872i 0.740901 0.671614i \(-0.234399\pi\)
−0.671614 + 0.740901i \(0.734399\pi\)
\(4\) 0.418713 1.95568i 0.209357 0.977839i
\(5\) 0 0
\(6\) −0.238684 0.0252650i −0.0974425 0.0103144i
\(7\) 2.66881i 1.00872i −0.863495 0.504358i \(-0.831729\pi\)
0.863495 0.504358i \(-0.168271\pi\)
\(8\) 1.27849 + 2.52299i 0.452015 + 0.892010i
\(9\) 2.97120i 0.990399i
\(10\) 0 0
\(11\) −3.49714 + 3.49714i −1.05443 + 1.05443i −0.0559977 + 0.998431i \(0.517834\pi\)
−0.998431 + 0.0559977i \(0.982166\pi\)
\(12\) 0.284948 0.184450i 0.0822574 0.0532460i
\(13\) −2.94072 2.94072i −0.815610 0.815610i 0.169858 0.985468i \(-0.445669\pi\)
−0.985468 + 0.169858i \(0.945669\pi\)
\(14\) 2.37306 + 2.93491i 0.634227 + 0.784389i
\(15\) 0 0
\(16\) −3.64936 1.63774i −0.912340 0.409434i
\(17\) −1.85116 −0.448971 −0.224486 0.974477i \(-0.572070\pi\)
−0.224486 + 0.974477i \(0.572070\pi\)
\(18\) 2.64193 + 3.26745i 0.622709 + 0.770144i
\(19\) −3.44856 3.44856i −0.791155 0.791155i 0.190527 0.981682i \(-0.438980\pi\)
−0.981682 + 0.190527i \(0.938980\pi\)
\(20\) 0 0
\(21\) 0.320281 0.320281i 0.0698911 0.0698911i
\(22\) 0.736240 6.95543i 0.156967 1.48290i
\(23\) 0.707288i 0.147480i 0.997278 + 0.0737399i \(0.0234935\pi\)
−0.997278 + 0.0737399i \(0.976507\pi\)
\(24\) −0.149351 + 0.456211i −0.0304860 + 0.0931237i
\(25\) 0 0
\(26\) 5.84877 + 0.619099i 1.14704 + 0.121415i
\(27\) 0.716597 0.716597i 0.137909 0.137909i
\(28\) −5.21934 1.11747i −0.986363 0.211181i
\(29\) −3.49909 3.49909i −0.649766 0.649766i 0.303171 0.952936i \(-0.401955\pi\)
−0.952936 + 0.303171i \(0.901955\pi\)
\(30\) 0 0
\(31\) 6.84272 1.22899 0.614494 0.788921i \(-0.289360\pi\)
0.614494 + 0.788921i \(0.289360\pi\)
\(32\) 5.46947 1.44391i 0.966875 0.255250i
\(33\) −0.839377 −0.146117
\(34\) 2.03573 1.64601i 0.349125 0.282289i
\(35\) 0 0
\(36\) −5.81070 1.24408i −0.968451 0.207346i
\(37\) 0.0975060 0.0975060i 0.0160299 0.0160299i −0.699046 0.715076i \(-0.746392\pi\)
0.715076 + 0.699046i \(0.246392\pi\)
\(38\) 6.85881 + 0.726013i 1.11265 + 0.117775i
\(39\) 0.705826i 0.113023i
\(40\) 0 0
\(41\) 10.2052i 1.59379i −0.604117 0.796896i \(-0.706474\pi\)
0.604117 0.796896i \(-0.293526\pi\)
\(42\) −0.0674276 + 0.637004i −0.0104043 + 0.0982918i
\(43\) −4.43844 + 4.43844i −0.676855 + 0.676855i −0.959287 0.282432i \(-0.908859\pi\)
0.282432 + 0.959287i \(0.408859\pi\)
\(44\) 5.37499 + 8.30359i 0.810310 + 1.25181i
\(45\) 0 0
\(46\) −0.628908 0.777810i −0.0927274 0.114682i
\(47\) 1.89428 0.276310 0.138155 0.990411i \(-0.455883\pi\)
0.138155 + 0.990411i \(0.455883\pi\)
\(48\) −0.241413 0.634498i −0.0348449 0.0915820i
\(49\) −0.122561 −0.0175087
\(50\) 0 0
\(51\) −0.222155 0.222155i −0.0311079 0.0311079i
\(52\) −6.98243 + 4.51979i −0.968289 + 0.626782i
\(53\) 7.43897 7.43897i 1.02182 1.02182i 0.0220650 0.999757i \(-0.492976\pi\)
0.999757 0.0220650i \(-0.00702407\pi\)
\(54\) −0.150862 + 1.42523i −0.0205298 + 0.193949i
\(55\) 0 0
\(56\) 6.73338 3.41205i 0.899786 0.455955i
\(57\) 0.827717i 0.109634i
\(58\) 6.95931 + 0.736651i 0.913802 + 0.0967270i
\(59\) 0.959574 0.959574i 0.124926 0.124926i −0.641880 0.766805i \(-0.721845\pi\)
0.766805 + 0.641880i \(0.221845\pi\)
\(60\) 0 0
\(61\) 6.49825 + 6.49825i 0.832015 + 0.832015i 0.987792 0.155777i \(-0.0497881\pi\)
−0.155777 + 0.987792i \(0.549788\pi\)
\(62\) −7.52499 + 6.08442i −0.955674 + 0.772722i
\(63\) −7.92956 −0.999031
\(64\) −4.73092 + 6.45123i −0.591365 + 0.806404i
\(65\) 0 0
\(66\) 0.923069 0.746358i 0.113622 0.0918703i
\(67\) −3.49691 3.49691i −0.427216 0.427216i 0.460463 0.887679i \(-0.347683\pi\)
−0.887679 + 0.460463i \(0.847683\pi\)
\(68\) −0.775103 + 3.62027i −0.0939951 + 0.439022i
\(69\) −0.0848809 + 0.0848809i −0.0102185 + 0.0102185i
\(70\) 0 0
\(71\) 7.86777i 0.933733i 0.884328 + 0.466866i \(0.154617\pi\)
−0.884328 + 0.466866i \(0.845383\pi\)
\(72\) 7.49629 3.79865i 0.883446 0.447675i
\(73\) 15.6564i 1.83244i −0.400675 0.916220i \(-0.631224\pi\)
0.400675 0.916220i \(-0.368776\pi\)
\(74\) −0.0205276 + 0.193929i −0.00238628 + 0.0225437i
\(75\) 0 0
\(76\) −8.18824 + 5.30033i −0.939256 + 0.607989i
\(77\) 9.33322 + 9.33322i 1.06362 + 1.06362i
\(78\) 0.627607 + 0.776202i 0.0710625 + 0.0878876i
\(79\) −6.70212 −0.754047 −0.377024 0.926204i \(-0.623052\pi\)
−0.377024 + 0.926204i \(0.623052\pi\)
\(80\) 0 0
\(81\) −8.74159 −0.971288
\(82\) 9.07431 + 11.2228i 1.00209 + 1.23935i
\(83\) 3.87327 + 3.87327i 0.425147 + 0.425147i 0.886971 0.461825i \(-0.152805\pi\)
−0.461825 + 0.886971i \(0.652805\pi\)
\(84\) −0.492261 0.760473i −0.0537101 0.0829744i
\(85\) 0 0
\(86\) 0.934407 8.82755i 0.100760 0.951900i
\(87\) 0.839845i 0.0900408i
\(88\) −13.2943 4.35218i −1.41718 0.463944i
\(89\) 10.5055i 1.11358i 0.830653 + 0.556790i \(0.187967\pi\)
−0.830653 + 0.556790i \(0.812033\pi\)
\(90\) 0 0
\(91\) −7.84824 + 7.84824i −0.822719 + 0.822719i
\(92\) 1.38323 + 0.296151i 0.144212 + 0.0308759i
\(93\) 0.821187 + 0.821187i 0.0851531 + 0.0851531i
\(94\) −2.08316 + 1.68436i −0.214861 + 0.173729i
\(95\) 0 0
\(96\) 0.829667 + 0.483103i 0.0846776 + 0.0493065i
\(97\) −4.79937 −0.487303 −0.243651 0.969863i \(-0.578345\pi\)
−0.243651 + 0.969863i \(0.578345\pi\)
\(98\) 0.134781 0.108979i 0.0136150 0.0110085i
\(99\) 10.3907 + 10.3907i 1.04430 + 1.04430i
\(100\) 0 0
\(101\) 0.372979 0.372979i 0.0371128 0.0371128i −0.688307 0.725420i \(-0.741646\pi\)
0.725420 + 0.688307i \(0.241646\pi\)
\(102\) 0.441842 + 0.0467695i 0.0437489 + 0.00463087i
\(103\) 10.3013i 1.01502i 0.861647 + 0.507508i \(0.169433\pi\)
−0.861647 + 0.507508i \(0.830567\pi\)
\(104\) 3.65972 11.1791i 0.358865 1.09620i
\(105\) 0 0
\(106\) −1.56610 + 14.7953i −0.152113 + 1.43705i
\(107\) −14.5069 + 14.5069i −1.40244 + 1.40244i −0.610165 + 0.792274i \(0.708897\pi\)
−0.792274 + 0.610165i \(0.791103\pi\)
\(108\) −1.10138 1.70148i −0.105981 0.163725i
\(109\) 0.796284 + 0.796284i 0.0762701 + 0.0762701i 0.744213 0.667943i \(-0.232825\pi\)
−0.667943 + 0.744213i \(0.732825\pi\)
\(110\) 0 0
\(111\) 0.0234032 0.00222133
\(112\) −4.37081 + 9.73945i −0.413003 + 0.920292i
\(113\) −0.842524 −0.0792580 −0.0396290 0.999214i \(-0.512618\pi\)
−0.0396290 + 0.999214i \(0.512618\pi\)
\(114\) 0.735990 + 0.910246i 0.0689318 + 0.0852524i
\(115\) 0 0
\(116\) −8.30822 + 5.37799i −0.771399 + 0.499334i
\(117\) −8.73747 + 8.73747i −0.807779 + 0.807779i
\(118\) −0.202015 + 1.90849i −0.0185970 + 0.175690i
\(119\) 4.94039i 0.452885i
\(120\) 0 0
\(121\) 13.4600i 1.22364i
\(122\) −12.9243 1.36805i −1.17011 0.123858i
\(123\) 1.22472 1.22472i 0.110429 0.110429i
\(124\) 2.86513 13.3822i 0.257297 1.20175i
\(125\) 0 0
\(126\) 8.72020 7.05082i 0.776857 0.628137i
\(127\) 21.1693 1.87847 0.939234 0.343277i \(-0.111537\pi\)
0.939234 + 0.343277i \(0.111537\pi\)
\(128\) −0.533685 11.3011i −0.0471715 0.998887i
\(129\) −1.06530 −0.0937947
\(130\) 0 0
\(131\) 4.67248 + 4.67248i 0.408237 + 0.408237i 0.881123 0.472887i \(-0.156788\pi\)
−0.472887 + 0.881123i \(0.656788\pi\)
\(132\) −0.351458 + 1.64155i −0.0305905 + 0.142879i
\(133\) −9.20357 + 9.20357i −0.798051 + 0.798051i
\(134\) 6.95497 + 0.736191i 0.600818 + 0.0635973i
\(135\) 0 0
\(136\) −2.36669 4.67044i −0.202942 0.400487i
\(137\) 10.2840i 0.878623i −0.898335 0.439312i \(-0.855222\pi\)
0.898335 0.439312i \(-0.144778\pi\)
\(138\) 0.0178696 0.168819i 0.00152117 0.0143708i
\(139\) 4.98588 4.98588i 0.422897 0.422897i −0.463303 0.886200i \(-0.653336\pi\)
0.886200 + 0.463303i \(0.153336\pi\)
\(140\) 0 0
\(141\) 0.227331 + 0.227331i 0.0191447 + 0.0191447i
\(142\) −6.99588 8.65225i −0.587081 0.726080i
\(143\) 20.5683 1.72001
\(144\) −4.86604 + 10.8430i −0.405503 + 0.903580i
\(145\) 0 0
\(146\) 13.9214 + 17.2174i 1.15214 + 1.42493i
\(147\) −0.0147084 0.0147084i −0.00121313 0.00121313i
\(148\) −0.149863 0.231518i −0.0123187 0.0190306i
\(149\) 8.79493 8.79493i 0.720509 0.720509i −0.248200 0.968709i \(-0.579839\pi\)
0.968709 + 0.248200i \(0.0798390\pi\)
\(150\) 0 0
\(151\) 22.1838i 1.80529i −0.430385 0.902645i \(-0.641622\pi\)
0.430385 0.902645i \(-0.358378\pi\)
\(152\) 4.29172 13.1096i 0.348105 1.06333i
\(153\) 5.50015i 0.444661i
\(154\) −18.5627 1.96489i −1.49583 0.158335i
\(155\) 0 0
\(156\) −1.38037 0.295539i −0.110518 0.0236620i
\(157\) 3.72187 + 3.72187i 0.297038 + 0.297038i 0.839852 0.542815i \(-0.182641\pi\)
−0.542815 + 0.839852i \(0.682641\pi\)
\(158\) 7.37037 5.95940i 0.586355 0.474104i
\(159\) 1.78549 0.141598
\(160\) 0 0
\(161\) 1.88762 0.148765
\(162\) 9.61319 7.77286i 0.755284 0.610694i
\(163\) −2.11630 2.11630i −0.165761 0.165761i 0.619352 0.785113i \(-0.287395\pi\)
−0.785113 + 0.619352i \(0.787395\pi\)
\(164\) −19.9582 4.27307i −1.55847 0.333671i
\(165\) 0 0
\(166\) −7.70350 0.815425i −0.597908 0.0632892i
\(167\) 18.1604i 1.40530i −0.711538 0.702648i \(-0.752001\pi\)
0.711538 0.702648i \(-0.247999\pi\)
\(168\) 1.21754 + 0.398589i 0.0939354 + 0.0307518i
\(169\) 4.29572i 0.330440i
\(170\) 0 0
\(171\) −10.2464 + 10.2464i −0.783559 + 0.783559i
\(172\) 6.82172 + 10.5386i 0.520151 + 0.803560i
\(173\) 8.53542 + 8.53542i 0.648936 + 0.648936i 0.952736 0.303800i \(-0.0982555\pi\)
−0.303800 + 0.952736i \(0.598255\pi\)
\(174\) 0.746774 + 0.923584i 0.0566128 + 0.0700167i
\(175\) 0 0
\(176\) 18.4897 7.03493i 1.39372 0.530278i
\(177\) 0.230315 0.0173115
\(178\) −9.34128 11.5530i −0.700159 0.865931i
\(179\) −2.42499 2.42499i −0.181252 0.181252i 0.610649 0.791901i \(-0.290909\pi\)
−0.791901 + 0.610649i \(0.790909\pi\)
\(180\) 0 0
\(181\) 4.46593 4.46593i 0.331950 0.331950i −0.521377 0.853327i \(-0.674581\pi\)
0.853327 + 0.521377i \(0.174581\pi\)
\(182\) 1.65226 15.6093i 0.122474 1.15704i
\(183\) 1.55970i 0.115296i
\(184\) −1.78448 + 0.904262i −0.131554 + 0.0666631i
\(185\) 0 0
\(186\) −1.63325 0.172881i −0.119756 0.0126763i
\(187\) 6.47376 6.47376i 0.473408 0.473408i
\(188\) 0.793162 3.70461i 0.0578473 0.270187i
\(189\) −1.91246 1.91246i −0.139111 0.139111i
\(190\) 0 0
\(191\) 7.75030 0.560792 0.280396 0.959884i \(-0.409534\pi\)
0.280396 + 0.959884i \(0.409534\pi\)
\(192\) −1.34196 + 0.206453i −0.0968475 + 0.0148994i
\(193\) 11.3388 0.816181 0.408091 0.912941i \(-0.366195\pi\)
0.408091 + 0.912941i \(0.366195\pi\)
\(194\) 5.27791 4.26751i 0.378932 0.306390i
\(195\) 0 0
\(196\) −0.0513179 + 0.239690i −0.00366557 + 0.0171207i
\(197\) −1.10001 + 1.10001i −0.0783725 + 0.0783725i −0.745206 0.666834i \(-0.767649\pi\)
0.666834 + 0.745206i \(0.267649\pi\)
\(198\) −20.6659 2.18751i −1.46866 0.155460i
\(199\) 14.2722i 1.01173i 0.862614 + 0.505864i \(0.168826\pi\)
−0.862614 + 0.505864i \(0.831174\pi\)
\(200\) 0 0
\(201\) 0.839321i 0.0592012i
\(202\) −0.0785219 + 0.741814i −0.00552478 + 0.0521939i
\(203\) −9.33843 + 9.33843i −0.655429 + 0.655429i
\(204\) −0.527483 + 0.341445i −0.0369312 + 0.0239059i
\(205\) 0 0
\(206\) −9.15971 11.3284i −0.638187 0.789287i
\(207\) 2.10149 0.146064
\(208\) 5.91563 + 15.5479i 0.410175 + 1.07805i
\(209\) 24.1203 1.66843
\(210\) 0 0
\(211\) −12.4716 12.4716i −0.858577 0.858577i 0.132593 0.991171i \(-0.457670\pi\)
−0.991171 + 0.132593i \(0.957670\pi\)
\(212\) −11.4334 17.6630i −0.785252 1.21310i
\(213\) −0.944203 + 0.944203i −0.0646957 + 0.0646957i
\(214\) 3.05409 28.8527i 0.208773 1.97233i
\(215\) 0 0
\(216\) 2.72413 + 0.891801i 0.185353 + 0.0606794i
\(217\) 18.2619i 1.23970i
\(218\) −1.58372 0.167639i −0.107263 0.0113539i
\(219\) 1.87890 1.87890i 0.126965 0.126965i
\(220\) 0 0
\(221\) 5.44374 + 5.44374i 0.366186 + 0.366186i
\(222\) −0.0257367 + 0.0208097i −0.00172733 + 0.00139665i
\(223\) −3.08673 −0.206703 −0.103351 0.994645i \(-0.532957\pi\)
−0.103351 + 0.994645i \(0.532957\pi\)
\(224\) −3.85353 14.5970i −0.257475 0.975303i
\(225\) 0 0
\(226\) 0.926530 0.749157i 0.0616319 0.0498332i
\(227\) −8.31678 8.31678i −0.552004 0.552004i 0.375015 0.927019i \(-0.377638\pi\)
−0.927019 + 0.375015i \(0.877638\pi\)
\(228\) −1.61875 0.346576i −0.107204 0.0229525i
\(229\) −9.98910 + 9.98910i −0.660098 + 0.660098i −0.955403 0.295305i \(-0.904579\pi\)
0.295305 + 0.955403i \(0.404579\pi\)
\(230\) 0 0
\(231\) 2.24014i 0.147390i
\(232\) 4.35461 13.3017i 0.285894 0.873301i
\(233\) 13.9015i 0.910718i 0.890308 + 0.455359i \(0.150489\pi\)
−0.890308 + 0.455359i \(0.849511\pi\)
\(234\) 1.83947 17.3779i 0.120250 1.13603i
\(235\) 0 0
\(236\) −1.47483 2.27840i −0.0960034 0.148311i
\(237\) −0.804314 0.804314i −0.0522458 0.0522458i
\(238\) −4.39290 5.43298i −0.284750 0.352168i
\(239\) −10.7687 −0.696569 −0.348284 0.937389i \(-0.613236\pi\)
−0.348284 + 0.937389i \(0.613236\pi\)
\(240\) 0 0
\(241\) −12.4707 −0.803305 −0.401653 0.915792i \(-0.631564\pi\)
−0.401653 + 0.915792i \(0.631564\pi\)
\(242\) 11.9684 + 14.8021i 0.769358 + 0.951515i
\(243\) −3.19886 3.19886i −0.205207 0.205207i
\(244\) 15.4294 9.98758i 0.987765 0.639390i
\(245\) 0 0
\(246\) −0.257836 + 2.43583i −0.0164390 + 0.155303i
\(247\) 20.2826i 1.29055i
\(248\) 8.74835 + 17.2641i 0.555521 + 1.09627i
\(249\) 0.929654i 0.0589144i
\(250\) 0 0
\(251\) 3.69093 3.69093i 0.232969 0.232969i −0.580962 0.813931i \(-0.697323\pi\)
0.813931 + 0.580962i \(0.197323\pi\)
\(252\) −3.32021 + 15.5077i −0.209154 + 0.976892i
\(253\) −2.47349 2.47349i −0.155507 0.155507i
\(254\) −23.2800 + 18.8233i −1.46072 + 1.18108i
\(255\) 0 0
\(256\) 10.6356 + 11.9534i 0.664727 + 0.747086i
\(257\) −3.11011 −0.194003 −0.0970016 0.995284i \(-0.530925\pi\)
−0.0970016 + 0.995284i \(0.530925\pi\)
\(258\) 1.17152 0.947248i 0.0729358 0.0589731i
\(259\) −0.260225 0.260225i −0.0161696 0.0161696i
\(260\) 0 0
\(261\) −10.3965 + 10.3965i −0.643527 + 0.643527i
\(262\) −9.29305 0.983680i −0.574126 0.0607719i
\(263\) 17.9512i 1.10692i −0.832877 0.553458i \(-0.813308\pi\)
0.832877 0.553458i \(-0.186692\pi\)
\(264\) −1.07314 2.11774i −0.0660469 0.130338i
\(265\) 0 0
\(266\) 1.93759 18.3049i 0.118801 1.12234i
\(267\) −1.26075 + 1.26075i −0.0771568 + 0.0771568i
\(268\) −8.30304 + 5.37463i −0.507189 + 0.328308i
\(269\) 1.62436 + 1.62436i 0.0990392 + 0.0990392i 0.754890 0.655851i \(-0.227690\pi\)
−0.655851 + 0.754890i \(0.727690\pi\)
\(270\) 0 0
\(271\) 18.1808 1.10440 0.552201 0.833711i \(-0.313788\pi\)
0.552201 + 0.833711i \(0.313788\pi\)
\(272\) 6.75553 + 3.03171i 0.409614 + 0.183824i
\(273\) −1.88372 −0.114008
\(274\) 9.14436 + 11.3094i 0.552431 + 0.683227i
\(275\) 0 0
\(276\) 0.130459 + 0.201541i 0.00785271 + 0.0121313i
\(277\) 13.8675 13.8675i 0.833218 0.833218i −0.154737 0.987956i \(-0.549453\pi\)
0.987956 + 0.154737i \(0.0494531\pi\)
\(278\) −1.04966 + 9.91636i −0.0629543 + 0.594744i
\(279\) 20.3310i 1.21719i
\(280\) 0 0
\(281\) 10.7377i 0.640556i 0.947324 + 0.320278i \(0.103776\pi\)
−0.947324 + 0.320278i \(0.896224\pi\)
\(282\) −0.452136 0.0478591i −0.0269243 0.00284997i
\(283\) 16.3679 16.3679i 0.972971 0.972971i −0.0266735 0.999644i \(-0.508491\pi\)
0.999644 + 0.0266735i \(0.00849143\pi\)
\(284\) 15.3868 + 3.29434i 0.913041 + 0.195483i
\(285\) 0 0
\(286\) −22.6191 + 18.2889i −1.33749 + 1.08145i
\(287\) −27.2359 −1.60768
\(288\) −4.29014 16.2509i −0.252799 0.957592i
\(289\) −13.5732 −0.798425
\(290\) 0 0
\(291\) −0.575968 0.575968i −0.0337638 0.0337638i
\(292\) −30.6188 6.55553i −1.79183 0.383633i
\(293\) 4.22052 4.22052i 0.246566 0.246566i −0.572994 0.819560i \(-0.694218\pi\)
0.819560 + 0.572994i \(0.194218\pi\)
\(294\) 0.0292534 + 0.00309651i 0.00170609 + 0.000180592i
\(295\) 0 0
\(296\) 0.370667 + 0.121346i 0.0215446 + 0.00705308i
\(297\) 5.01208i 0.290831i
\(298\) −1.85156 + 17.4921i −0.107258 + 1.01329i
\(299\) 2.07994 2.07994i 0.120286 0.120286i
\(300\) 0 0
\(301\) 11.8454 + 11.8454i 0.682755 + 0.682755i
\(302\) 19.7254 + 24.3957i 1.13507 + 1.40381i
\(303\) 0.0895217 0.00514289
\(304\) 6.93721 + 18.2329i 0.397876 + 1.04573i
\(305\) 0 0
\(306\) −4.89063 6.04855i −0.279579 0.345773i
\(307\) 12.6363 + 12.6363i 0.721190 + 0.721190i 0.968848 0.247658i \(-0.0796608\pi\)
−0.247658 + 0.968848i \(0.579661\pi\)
\(308\) 22.1607 14.3448i 1.26272 0.817373i
\(309\) −1.23625 + 1.23625i −0.0703276 + 0.0703276i
\(310\) 0 0
\(311\) 8.56815i 0.485855i −0.970044 0.242928i \(-0.921892\pi\)
0.970044 0.242928i \(-0.0781078\pi\)
\(312\) 1.78079 0.902392i 0.100817 0.0510879i
\(313\) 19.1825i 1.08426i 0.840295 + 0.542129i \(0.182382\pi\)
−0.840295 + 0.542129i \(0.817618\pi\)
\(314\) −7.40239 0.783551i −0.417741 0.0442183i
\(315\) 0 0
\(316\) −2.80626 + 13.1072i −0.157865 + 0.737337i
\(317\) 9.41764 + 9.41764i 0.528947 + 0.528947i 0.920258 0.391311i \(-0.127978\pi\)
−0.391311 + 0.920258i \(0.627978\pi\)
\(318\) −1.96351 + 1.58762i −0.110108 + 0.0890293i
\(319\) 24.4737 1.37026
\(320\) 0 0
\(321\) −3.48193 −0.194342
\(322\) −2.07583 + 1.67844i −0.115681 + 0.0935356i
\(323\) 6.38383 + 6.38383i 0.355206 + 0.355206i
\(324\) −3.66022 + 17.0957i −0.203345 + 0.949764i
\(325\) 0 0
\(326\) 4.20908 + 0.445536i 0.233120 + 0.0246760i
\(327\) 0.191122i 0.0105691i
\(328\) 25.7477 13.0473i 1.42168 0.720417i
\(329\) 5.05549i 0.278718i
\(330\) 0 0
\(331\) 12.8579 12.8579i 0.706733 0.706733i −0.259114 0.965847i \(-0.583431\pi\)
0.965847 + 0.259114i \(0.0834305\pi\)
\(332\) 9.19666 5.95308i 0.504732 0.326718i
\(333\) −0.289709 0.289709i −0.0158760 0.0158760i
\(334\) 16.1479 + 19.9711i 0.883574 + 1.09277i
\(335\) 0 0
\(336\) −1.69336 + 0.644285i −0.0923802 + 0.0351486i
\(337\) −3.31961 −0.180831 −0.0904153 0.995904i \(-0.528819\pi\)
−0.0904153 + 0.995904i \(0.528819\pi\)
\(338\) −3.81967 4.72403i −0.207763 0.256954i
\(339\) −0.101110 0.101110i −0.00549156 0.00549156i
\(340\) 0 0
\(341\) −23.9300 + 23.9300i −1.29588 + 1.29588i
\(342\) 2.15713 20.3789i 0.116644 1.10196i
\(343\) 18.3546i 0.991055i
\(344\) −16.8726 5.52361i −0.909710 0.297813i
\(345\) 0 0
\(346\) −16.9760 1.79693i −0.912635 0.0966035i
\(347\) −17.8860 + 17.8860i −0.960171 + 0.960171i −0.999237 0.0390656i \(-0.987562\pi\)
0.0390656 + 0.999237i \(0.487562\pi\)
\(348\) −1.64247 0.351654i −0.0880455 0.0188506i
\(349\) −3.68796 3.68796i −0.197412 0.197412i 0.601478 0.798890i \(-0.294579\pi\)
−0.798890 + 0.601478i \(0.794579\pi\)
\(350\) 0 0
\(351\) −4.21463 −0.224960
\(352\) −14.0780 + 24.1771i −0.750358 + 1.28864i
\(353\) −33.0951 −1.76148 −0.880738 0.473604i \(-0.842953\pi\)
−0.880738 + 0.473604i \(0.842953\pi\)
\(354\) −0.253279 + 0.204792i −0.0134616 + 0.0108846i
\(355\) 0 0
\(356\) 20.5454 + 4.39879i 1.08890 + 0.233135i
\(357\) −0.592891 + 0.592891i −0.0313791 + 0.0313791i
\(358\) 4.82303 + 0.510524i 0.254905 + 0.0269820i
\(359\) 6.52522i 0.344388i −0.985063 0.172194i \(-0.944914\pi\)
0.985063 0.172194i \(-0.0550856\pi\)
\(360\) 0 0
\(361\) 4.78519i 0.251852i
\(362\) −0.940195 + 8.88224i −0.0494156 + 0.466840i
\(363\) 1.61532 1.61532i 0.0847825 0.0847825i
\(364\) 12.0625 + 18.6348i 0.632246 + 0.976729i
\(365\) 0 0
\(366\) −1.38685 1.71521i −0.0724919 0.0896554i
\(367\) 11.0338 0.575959 0.287980 0.957636i \(-0.407016\pi\)
0.287980 + 0.957636i \(0.407016\pi\)
\(368\) 1.15835 2.58115i 0.0603833 0.134552i
\(369\) −30.3218 −1.57849
\(370\) 0 0
\(371\) −19.8532 19.8532i −1.03073 1.03073i
\(372\) 1.94982 1.26214i 0.101093 0.0654387i
\(373\) −6.84468 + 6.84468i −0.354404 + 0.354404i −0.861745 0.507341i \(-0.830628\pi\)
0.507341 + 0.861745i \(0.330628\pi\)
\(374\) −1.36290 + 12.8756i −0.0704737 + 0.665781i
\(375\) 0 0
\(376\) 2.42183 + 4.77925i 0.124896 + 0.246471i
\(377\) 20.5797i 1.05991i
\(378\) 3.80367 + 0.402623i 0.195640 + 0.0207087i
\(379\) −10.1072 + 10.1072i −0.519171 + 0.519171i −0.917321 0.398150i \(-0.869653\pi\)
0.398150 + 0.917321i \(0.369653\pi\)
\(380\) 0 0
\(381\) 2.54050 + 2.54050i 0.130154 + 0.130154i
\(382\) −8.52307 + 6.89143i −0.436078 + 0.352596i
\(383\) −29.5283 −1.50883 −0.754413 0.656400i \(-0.772078\pi\)
−0.754413 + 0.656400i \(0.772078\pi\)
\(384\) 1.29219 1.42028i 0.0659417 0.0724784i
\(385\) 0 0
\(386\) −12.4693 + 10.0822i −0.634671 + 0.513171i
\(387\) 13.1875 + 13.1875i 0.670356 + 0.670356i
\(388\) −2.00956 + 9.38604i −0.102020 + 0.476504i
\(389\) 0.990949 0.990949i 0.0502431 0.0502431i −0.681539 0.731782i \(-0.738689\pi\)
0.731782 + 0.681539i \(0.238689\pi\)
\(390\) 0 0
\(391\) 1.30930i 0.0662142i
\(392\) −0.156693 0.309220i −0.00791420 0.0156180i
\(393\) 1.12148i 0.0565711i
\(394\) 0.231581 2.18780i 0.0116669 0.110220i
\(395\) 0 0
\(396\) 24.6716 15.9701i 1.23979 0.802530i
\(397\) −17.0024 17.0024i −0.853326 0.853326i 0.137216 0.990541i \(-0.456185\pi\)
−0.990541 + 0.137216i \(0.956185\pi\)
\(398\) −12.6905 15.6952i −0.636119 0.786730i
\(399\) −2.20902 −0.110589
\(400\) 0 0
\(401\) 26.7791 1.33728 0.668642 0.743585i \(-0.266876\pi\)
0.668642 + 0.743585i \(0.266876\pi\)
\(402\) 0.746309 + 0.923008i 0.0372225 + 0.0460354i
\(403\) −20.1225 20.1225i −1.00238 1.00238i
\(404\) −0.573256 0.885599i −0.0285206 0.0440602i
\(405\) 0 0
\(406\) 1.96598 18.5731i 0.0975701 0.921767i
\(407\) 0.681985i 0.0338048i
\(408\) 0.276471 0.844518i 0.0136874 0.0418099i
\(409\) 13.1970i 0.652550i −0.945275 0.326275i \(-0.894206\pi\)
0.945275 0.326275i \(-0.105794\pi\)
\(410\) 0 0
\(411\) 1.23417 1.23417i 0.0608773 0.0608773i
\(412\) 20.1460 + 4.31328i 0.992523 + 0.212500i
\(413\) −2.56092 2.56092i −0.126015 0.126015i
\(414\) −2.31103 + 1.86861i −0.113581 + 0.0918371i
\(415\) 0 0
\(416\) −20.3304 11.8381i −0.996777 0.580409i
\(417\) 1.19670 0.0586026
\(418\) −26.5252 + 21.4473i −1.29739 + 1.04902i
\(419\) −9.92468 9.92468i −0.484852 0.484852i 0.421825 0.906677i \(-0.361390\pi\)
−0.906677 + 0.421825i \(0.861390\pi\)
\(420\) 0 0
\(421\) 15.7930 15.7930i 0.769702 0.769702i −0.208352 0.978054i \(-0.566810\pi\)
0.978054 + 0.208352i \(0.0668100\pi\)
\(422\) 24.8045 + 2.62559i 1.20747 + 0.127812i
\(423\) 5.62829i 0.273657i
\(424\) 28.2791 + 9.25777i 1.37335 + 0.449597i
\(425\) 0 0
\(426\) 0.198779 1.87791i 0.00963089 0.0909852i
\(427\) 17.3426 17.3426i 0.839268 0.839268i
\(428\) 22.2967 + 34.4452i 1.07775 + 1.66497i
\(429\) 2.46838 + 2.46838i 0.119174 + 0.119174i
\(430\) 0 0
\(431\) −0.285215 −0.0137383 −0.00686917 0.999976i \(-0.502187\pi\)
−0.00686917 + 0.999976i \(0.502187\pi\)
\(432\) −3.78871 + 1.44152i −0.182285 + 0.0693552i
\(433\) 18.1101 0.870318 0.435159 0.900354i \(-0.356692\pi\)
0.435159 + 0.900354i \(0.356692\pi\)
\(434\) 16.2382 + 20.0828i 0.779457 + 0.964004i
\(435\) 0 0
\(436\) 1.89069 1.22386i 0.0905476 0.0586123i
\(437\) 2.43913 2.43913i 0.116679 0.116679i
\(438\) −0.395559 + 3.73693i −0.0189005 + 0.178558i
\(439\) 11.5931i 0.553308i 0.960970 + 0.276654i \(0.0892256\pi\)
−0.960970 + 0.276654i \(0.910774\pi\)
\(440\) 0 0
\(441\) 0.364153i 0.0173406i
\(442\) −10.8270 1.14605i −0.514988 0.0545120i
\(443\) 22.6855 22.6855i 1.07782 1.07782i 0.0811145 0.996705i \(-0.474152\pi\)
0.996705 0.0811145i \(-0.0258479\pi\)
\(444\) 0.00979922 0.0457691i 0.000465050 0.00217211i
\(445\) 0 0
\(446\) 3.39450 2.74466i 0.160734 0.129963i
\(447\) 2.11094 0.0998440
\(448\) 17.2171 + 12.6259i 0.813433 + 0.596520i
\(449\) 12.1999 0.575747 0.287873 0.957669i \(-0.407052\pi\)
0.287873 + 0.957669i \(0.407052\pi\)
\(450\) 0 0
\(451\) 35.6892 + 35.6892i 1.68054 + 1.68054i
\(452\) −0.352776 + 1.64771i −0.0165932 + 0.0775016i
\(453\) 2.66225 2.66225i 0.125083 0.125083i
\(454\) 16.5411 + 1.75090i 0.776315 + 0.0821738i
\(455\) 0 0
\(456\) 2.08832 1.05823i 0.0977945 0.0495561i
\(457\) 1.70660i 0.0798314i 0.999203 + 0.0399157i \(0.0127089\pi\)
−0.999203 + 0.0399157i \(0.987291\pi\)
\(458\) 2.10297 19.8672i 0.0982652 0.928334i
\(459\) −1.32653 + 1.32653i −0.0619172 + 0.0619172i
\(460\) 0 0
\(461\) −4.74710 4.74710i −0.221094 0.221094i 0.587865 0.808959i \(-0.299969\pi\)
−0.808959 + 0.587865i \(0.799969\pi\)
\(462\) −1.99189 2.46350i −0.0926711 0.114612i
\(463\) 11.1761 0.519398 0.259699 0.965690i \(-0.416377\pi\)
0.259699 + 0.965690i \(0.416377\pi\)
\(464\) 7.03886 + 18.5000i 0.326771 + 0.858843i
\(465\) 0 0
\(466\) −12.3610 15.2876i −0.572610 0.708184i
\(467\) −2.06471 2.06471i −0.0955435 0.0955435i 0.657719 0.753263i \(-0.271521\pi\)
−0.753263 + 0.657719i \(0.771521\pi\)
\(468\) 13.4292 + 20.7462i 0.620764 + 0.958992i
\(469\) −9.33260 + 9.33260i −0.430940 + 0.430940i
\(470\) 0 0
\(471\) 0.893315i 0.0411618i
\(472\) 3.64780 + 1.19419i 0.167904 + 0.0549668i
\(473\) 31.0437i 1.42739i
\(474\) 1.59969 + 0.169329i 0.0734762 + 0.00777754i
\(475\) 0 0
\(476\) 9.66181 + 2.06861i 0.442848 + 0.0948144i
\(477\) −22.1026 22.1026i −1.01201 1.01201i
\(478\) 11.8424 9.57532i 0.541659 0.437965i
\(479\) −41.6214 −1.90173 −0.950864 0.309608i \(-0.899802\pi\)
−0.950864 + 0.309608i \(0.899802\pi\)
\(480\) 0 0
\(481\) −0.573477 −0.0261483
\(482\) 13.7141 11.0887i 0.624659 0.505075i
\(483\) 0.226531 + 0.226531i 0.0103075 + 0.0103075i
\(484\) −26.3235 5.63589i −1.19652 0.256177i
\(485\) 0 0
\(486\) 6.36217 + 0.673443i 0.288594 + 0.0305480i
\(487\) 8.25627i 0.374127i −0.982348 0.187064i \(-0.940103\pi\)
0.982348 0.187064i \(-0.0598970\pi\)
\(488\) −8.08704 + 24.7029i −0.366083 + 1.11825i
\(489\) 0.507950i 0.0229703i
\(490\) 0 0
\(491\) 4.28512 4.28512i 0.193385 0.193385i −0.603772 0.797157i \(-0.706336\pi\)
0.797157 + 0.603772i \(0.206336\pi\)
\(492\) −1.88235 2.90797i −0.0848630 0.131101i
\(493\) 6.47737 + 6.47737i 0.291726 + 0.291726i
\(494\) −18.0349 22.3049i −0.811427 1.00354i
\(495\) 0 0
\(496\) −24.9715 11.2066i −1.12125 0.503190i
\(497\) 20.9976 0.941871
\(498\) −0.826631 1.02235i −0.0370422 0.0458125i
\(499\) −15.1287 15.1287i −0.677253 0.677253i 0.282125 0.959378i \(-0.408961\pi\)
−0.959378 + 0.282125i \(0.908961\pi\)
\(500\) 0 0
\(501\) 2.17941 2.17941i 0.0973689 0.0973689i
\(502\) −0.777037 + 7.34084i −0.0346808 + 0.327638i
\(503\) 18.6439i 0.831291i −0.909527 0.415646i \(-0.863556\pi\)
0.909527 0.415646i \(-0.136444\pi\)
\(504\) −10.1379 20.0062i −0.451577 0.891146i
\(505\) 0 0
\(506\) 4.91950 + 0.520734i 0.218698 + 0.0231495i
\(507\) −0.515524 + 0.515524i −0.0228952 + 0.0228952i
\(508\) 8.86385 41.4003i 0.393270 1.83684i
\(509\) 11.6243 + 11.6243i 0.515239 + 0.515239i 0.916127 0.400888i \(-0.131298\pi\)
−0.400888 + 0.916127i \(0.631298\pi\)
\(510\) 0 0
\(511\) −41.7839 −1.84841
\(512\) −22.3248 3.68821i −0.986627 0.162997i
\(513\) −4.94246 −0.218215
\(514\) 3.42021 2.76545i 0.150859 0.121979i
\(515\) 0 0
\(516\) −0.446057 + 2.08339i −0.0196365 + 0.0917162i
\(517\) −6.62459 + 6.62459i −0.291349 + 0.291349i
\(518\) 0.517559 + 0.0547842i 0.0227402 + 0.00240708i
\(519\) 2.04865i 0.0899259i
\(520\) 0 0
\(521\) 36.9052i 1.61684i 0.588603 + 0.808422i \(0.299678\pi\)
−0.588603 + 0.808422i \(0.700322\pi\)
\(522\) 2.18873 20.6775i 0.0957983 0.905028i
\(523\) −6.04158 + 6.04158i −0.264180 + 0.264180i −0.826750 0.562570i \(-0.809813\pi\)
0.562570 + 0.826750i \(0.309813\pi\)
\(524\) 11.0943 7.18144i 0.484657 0.313723i
\(525\) 0 0
\(526\) 15.9618 + 19.7410i 0.695969 + 0.860750i
\(527\) −12.6669 −0.551780
\(528\) 3.06319 + 1.37468i 0.133308 + 0.0598252i
\(529\) 22.4997 0.978250
\(530\) 0 0
\(531\) −2.85108 2.85108i −0.123726 0.123726i
\(532\) 14.1456 + 21.8529i 0.613288 + 0.947443i
\(533\) −30.0108 + 30.0108i −1.29991 + 1.29991i
\(534\) 0.265421 2.50750i 0.0114859 0.108510i
\(535\) 0 0
\(536\) 4.35189 13.2934i 0.187973 0.574189i
\(537\) 0.582041i 0.0251169i
\(538\) −3.23068 0.341971i −0.139284 0.0147434i
\(539\) 0.428614 0.428614i 0.0184617 0.0184617i
\(540\) 0 0
\(541\) −28.4222 28.4222i −1.22197 1.22197i −0.966932 0.255035i \(-0.917913\pi\)
−0.255035 0.966932i \(-0.582087\pi\)
\(542\) −19.9935 + 16.1660i −0.858795 + 0.694389i
\(543\) 1.07190 0.0459997
\(544\) −10.1248 + 2.67290i −0.434099 + 0.114600i
\(545\) 0 0
\(546\) 2.07154 1.67497i 0.0886537 0.0716820i
\(547\) −23.3562 23.3562i −0.998640 0.998640i 0.00135902 0.999999i \(-0.499567\pi\)
−0.999999 + 0.00135902i \(0.999567\pi\)
\(548\) −20.1122 4.30605i −0.859152 0.183945i
\(549\) 19.3076 19.3076i 0.824027 0.824027i
\(550\) 0 0
\(551\) 24.1337i 1.02813i
\(552\) −0.322673 0.105634i −0.0137339 0.00449608i
\(553\) 17.8867i 0.760620i
\(554\) −2.91948 + 27.5810i −0.124037 + 1.17180i
\(555\) 0 0
\(556\) −7.66312 11.8384i −0.324989 0.502061i
\(557\) 4.89520 + 4.89520i 0.207416 + 0.207416i 0.803168 0.595752i \(-0.203146\pi\)
−0.595752 + 0.803168i \(0.703146\pi\)
\(558\) 18.0780 + 22.3582i 0.765302 + 0.946498i
\(559\) 26.1044 1.10410
\(560\) 0 0
\(561\) 1.55382 0.0656022
\(562\) −9.54774 11.8083i −0.402747 0.498103i
\(563\) −1.28613 1.28613i −0.0542040 0.0542040i 0.679485 0.733689i \(-0.262203\pi\)
−0.733689 + 0.679485i \(0.762203\pi\)
\(564\) 0.539773 0.349400i 0.0227285 0.0147124i
\(565\) 0 0
\(566\) −3.44587 + 32.5539i −0.144841 + 1.36834i
\(567\) 23.3297i 0.979754i
\(568\) −19.8503 + 10.0589i −0.832899 + 0.422061i
\(569\) 11.4799i 0.481261i −0.970617 0.240631i \(-0.922646\pi\)
0.970617 0.240631i \(-0.0773543\pi\)
\(570\) 0 0
\(571\) 28.7069 28.7069i 1.20134 1.20134i 0.227587 0.973758i \(-0.426917\pi\)
0.973758 0.227587i \(-0.0730835\pi\)
\(572\) 8.61221 40.2249i 0.360094 1.68189i
\(573\) 0.930105 + 0.930105i 0.0388557 + 0.0388557i
\(574\) 29.9515 24.2176i 1.25015 1.01082i
\(575\) 0 0
\(576\) 19.1679 + 14.0565i 0.798661 + 0.585687i
\(577\) 20.3419 0.846842 0.423421 0.905933i \(-0.360829\pi\)
0.423421 + 0.905933i \(0.360829\pi\)
\(578\) 14.9266 12.0691i 0.620864 0.502007i
\(579\) 1.36075 + 1.36075i 0.0565509 + 0.0565509i
\(580\) 0 0
\(581\) 10.3370 10.3370i 0.428852 0.428852i
\(582\) 1.14554 + 0.121256i 0.0474840 + 0.00502623i
\(583\) 52.0303i 2.15488i
\(584\) 39.5008 20.0165i 1.63456 0.828290i
\(585\) 0 0
\(586\) −0.888530 + 8.39415i −0.0367048 + 0.346759i
\(587\) 25.8136 25.8136i 1.06544 1.06544i 0.0677360 0.997703i \(-0.478422\pi\)
0.997703 0.0677360i \(-0.0215775\pi\)
\(588\) −0.0349236 + 0.0226063i −0.00144022 + 0.000932270i
\(589\) −23.5975 23.5975i −0.972320 0.972320i
\(590\) 0 0
\(591\) −0.264022 −0.0108604
\(592\) −0.515524 + 0.196145i −0.0211879 + 0.00806152i
\(593\) −4.02945 −0.165470 −0.0827349 0.996572i \(-0.526365\pi\)
−0.0827349 + 0.996572i \(0.526365\pi\)
\(594\) −4.45665 5.51183i −0.182859 0.226153i
\(595\) 0 0
\(596\) −13.5175 20.8826i −0.553699 0.855385i
\(597\) −1.71279 + 1.71279i −0.0700997 + 0.0700997i
\(598\) −0.437882 + 4.13677i −0.0179063 + 0.169165i
\(599\) 31.6701i 1.29400i −0.762489 0.647002i \(-0.776023\pi\)
0.762489 0.647002i \(-0.223977\pi\)
\(600\) 0 0
\(601\) 19.4667i 0.794065i 0.917805 + 0.397032i \(0.129960\pi\)
−0.917805 + 0.397032i \(0.870040\pi\)
\(602\) −23.5591 2.49376i −0.960197 0.101638i
\(603\) −10.3900 + 10.3900i −0.423114 + 0.423114i
\(604\) −43.3843 9.28864i −1.76528 0.377949i
\(605\) 0 0
\(606\) −0.0984477 + 0.0796010i −0.00399916 + 0.00323357i
\(607\) −13.6128 −0.552528 −0.276264 0.961082i \(-0.589096\pi\)
−0.276264 + 0.961082i \(0.589096\pi\)
\(608\) −23.8412 13.8824i −0.966890 0.563006i
\(609\) −2.24139 −0.0908257
\(610\) 0 0
\(611\) −5.57057 5.57057i −0.225361 0.225361i
\(612\) 10.7565 + 2.30298i 0.434807 + 0.0930926i
\(613\) 11.1480 11.1480i 0.450265 0.450265i −0.445177 0.895442i \(-0.646859\pi\)
0.895442 + 0.445177i \(0.146859\pi\)
\(614\) −25.1321 2.66026i −1.01425 0.107360i
\(615\) 0 0
\(616\) −11.6152 + 35.4800i −0.467988 + 1.42953i
\(617\) 1.96695i 0.0791863i −0.999216 0.0395932i \(-0.987394\pi\)
0.999216 0.0395932i \(-0.0126062\pi\)
\(618\) 0.260262 2.45876i 0.0104693 0.0989057i
\(619\) 7.84144 7.84144i 0.315174 0.315174i −0.531736 0.846910i \(-0.678460\pi\)
0.846910 + 0.531736i \(0.178460\pi\)
\(620\) 0 0
\(621\) 0.506840 + 0.506840i 0.0203388 + 0.0203388i
\(622\) 7.61864 + 9.42246i 0.305480 + 0.377806i
\(623\) 28.0372 1.12329
\(624\) −1.15596 + 2.57581i −0.0462753 + 0.103115i
\(625\) 0 0
\(626\) −17.0567 21.0951i −0.681723 0.843131i
\(627\) 2.89464 + 2.89464i 0.115601 + 0.115601i
\(628\) 8.83718 5.72039i 0.352642 0.228268i
\(629\) −0.180499 + 0.180499i −0.00719696 + 0.00719696i
\(630\) 0 0
\(631\) 0.220729i 0.00878708i 0.999990 + 0.00439354i \(0.00139851\pi\)
−0.999990 + 0.00439354i \(0.998601\pi\)
\(632\) −8.56860 16.9093i −0.340840 0.672618i
\(633\) 2.99339i 0.118977i
\(634\) −18.7306 1.98266i −0.743888 0.0787414i
\(635\) 0 0
\(636\) 0.747606 3.49184i 0.0296445 0.138460i
\(637\) 0.360418 + 0.360418i 0.0142803 + 0.0142803i
\(638\) −26.9139 + 21.7615i −1.06553 + 0.861547i
\(639\) 23.3767 0.924767
\(640\) 0 0
\(641\) −19.2037 −0.758502 −0.379251 0.925294i \(-0.623818\pi\)
−0.379251 + 0.925294i \(0.623818\pi\)
\(642\) 3.82910 3.09606i 0.151122 0.122192i
\(643\) 7.17110 + 7.17110i 0.282801 + 0.282801i 0.834225 0.551424i \(-0.185915\pi\)
−0.551424 + 0.834225i \(0.685915\pi\)
\(644\) 0.790371 3.69158i 0.0311450 0.145469i
\(645\) 0 0
\(646\) −12.6967 1.34396i −0.499546 0.0528775i
\(647\) 26.4735i 1.04078i 0.853928 + 0.520391i \(0.174214\pi\)
−0.853928 + 0.520391i \(0.825786\pi\)
\(648\) −11.1760 22.0549i −0.439037 0.866399i
\(649\) 6.71153i 0.263451i
\(650\) 0 0
\(651\) 2.19159 2.19159i 0.0858953 0.0858953i
\(652\) −5.02492 + 3.25268i −0.196791 + 0.127385i
\(653\) −10.5746 10.5746i −0.413815 0.413815i 0.469250 0.883065i \(-0.344524\pi\)
−0.883065 + 0.469250i \(0.844524\pi\)
\(654\) −0.169942 0.210179i −0.00664527 0.00821863i
\(655\) 0 0
\(656\) −16.7135 + 37.2426i −0.652553 + 1.45408i
\(657\) −46.5182 −1.81485
\(658\) 4.49525 + 5.55956i 0.175243 + 0.216734i
\(659\) 24.1291 + 24.1291i 0.939937 + 0.939937i 0.998296 0.0583584i \(-0.0185866\pi\)
−0.0583584 + 0.998296i \(0.518587\pi\)
\(660\) 0 0
\(661\) 23.4294 23.4294i 0.911299 0.911299i −0.0850756 0.996374i \(-0.527113\pi\)
0.996374 + 0.0850756i \(0.0271132\pi\)
\(662\) −2.70692 + 25.5729i −0.105207 + 0.993919i
\(663\) 1.30659i 0.0507439i
\(664\) −4.82027 + 14.7241i −0.187063 + 0.571408i
\(665\) 0 0
\(666\) 0.576200 + 0.0609914i 0.0223273 + 0.00236337i
\(667\) 2.47487 2.47487i 0.0958273 0.0958273i
\(668\) −35.5159 7.60401i −1.37415 0.294208i
\(669\) −0.370435 0.370435i −0.0143218 0.0143218i
\(670\) 0 0
\(671\) −45.4506 −1.75460
\(672\) 1.28931 2.21423i 0.0497363 0.0854157i
\(673\) 41.8069 1.61154 0.805769 0.592230i \(-0.201752\pi\)
0.805769 + 0.592230i \(0.201752\pi\)
\(674\) 3.65060 2.95173i 0.140616 0.113697i
\(675\) 0 0
\(676\) 8.40105 + 1.79867i 0.323117 + 0.0691798i
\(677\) 22.7350 22.7350i 0.873776 0.873776i −0.119106 0.992882i \(-0.538003\pi\)
0.992882 + 0.119106i \(0.0380027\pi\)
\(678\) 0.201097 + 0.0212864i 0.00772310 + 0.000817499i
\(679\) 12.8086i 0.491550i
\(680\) 0 0
\(681\) 1.99617i 0.0764936i
\(682\) 5.03788 47.5940i 0.192911 1.82247i
\(683\) −34.4402 + 34.4402i −1.31782 + 1.31782i −0.402315 + 0.915501i \(0.631794\pi\)
−0.915501 + 0.402315i \(0.868206\pi\)
\(684\) 15.7483 + 24.3289i 0.602151 + 0.930238i
\(685\) 0 0
\(686\) 16.3206 + 20.1847i 0.623122 + 0.770655i
\(687\) −2.39756 −0.0914727
\(688\) 23.4664 8.92845i 0.894649 0.340394i
\(689\) −43.7519 −1.66682
\(690\) 0 0
\(691\) 16.0991 + 16.0991i 0.612438 + 0.612438i 0.943581 0.331143i \(-0.107434\pi\)
−0.331143 + 0.943581i \(0.607434\pi\)
\(692\) 20.2664 13.1186i 0.770414 0.498696i
\(693\) 27.7308 27.7308i 1.05341 1.05341i
\(694\) 3.76547 35.5733i 0.142935 1.35034i
\(695\) 0 0
\(696\) 2.11892 1.07373i 0.0803174 0.0406998i
\(697\) 18.8915i 0.715567i
\(698\) 7.33495 + 0.776413i 0.277632 + 0.0293877i
\(699\) −1.66830 + 1.66830i −0.0631010 + 0.0631010i
\(700\) 0 0
\(701\) −30.0507 30.0507i −1.13500 1.13500i −0.989334 0.145666i \(-0.953467\pi\)
−0.145666 0.989334i \(-0.546533\pi\)
\(702\) 4.63486 3.74757i 0.174931 0.141443i
\(703\) −0.672512 −0.0253643
\(704\) −6.01617 39.1056i −0.226743 1.47385i
\(705\) 0 0
\(706\) 36.3950 29.4276i 1.36974 1.10752i
\(707\) −0.995412 0.995412i −0.0374363 0.0374363i
\(708\) 0.0964358 0.450422i 0.00362428 0.0169279i
\(709\) −12.9188 + 12.9188i −0.485176 + 0.485176i −0.906780 0.421604i \(-0.861467\pi\)
0.421604 + 0.906780i \(0.361467\pi\)
\(710\) 0 0
\(711\) 19.9133i 0.746807i
\(712\) −26.5052 + 13.4312i −0.993325 + 0.503355i
\(713\) 4.83977i 0.181251i
\(714\) 0.124819 1.17919i 0.00467123 0.0441302i
\(715\) 0 0
\(716\) −5.75788 + 3.72713i −0.215182 + 0.139289i
\(717\) −1.29234 1.29234i −0.0482633 0.0482633i
\(718\) 5.80211 + 7.17584i 0.216533 + 0.267800i
\(719\) 17.0356 0.635319 0.317659 0.948205i \(-0.397103\pi\)
0.317659 + 0.948205i \(0.397103\pi\)
\(720\) 0 0
\(721\) 27.4922 1.02386
\(722\) −4.25490 5.26231i −0.158351 0.195843i
\(723\) −1.49659 1.49659i −0.0556588 0.0556588i
\(724\) −6.86398 10.6039i −0.255098 0.394090i
\(725\) 0 0
\(726\) −0.340068 + 3.21270i −0.0126211 + 0.119234i
\(727\) 31.7051i 1.17588i −0.808905 0.587939i \(-0.799939\pi\)
0.808905 0.587939i \(-0.200061\pi\)
\(728\) −29.8349 9.76710i −1.10576 0.361993i
\(729\) 25.4570i 0.942852i
\(730\) 0 0
\(731\) 8.21624 8.21624i 0.303888 0.303888i
\(732\) 3.05026 + 0.653065i 0.112741 + 0.0241380i
\(733\) −3.87657 3.87657i −0.143184 0.143184i 0.631881 0.775065i \(-0.282283\pi\)
−0.775065 + 0.631881i \(0.782283\pi\)
\(734\) −12.1339 + 9.81105i −0.447872 + 0.362132i
\(735\) 0 0
\(736\) 1.02126 + 3.86849i 0.0376442 + 0.142595i
\(737\) 24.4584 0.900937
\(738\) 33.3451 26.9616i 1.22745 0.992469i
\(739\) 11.3024 + 11.3024i 0.415766 + 0.415766i 0.883742 0.467975i \(-0.155016\pi\)
−0.467975 + 0.883742i \(0.655016\pi\)
\(740\) 0 0
\(741\) −2.43409 + 2.43409i −0.0894184 + 0.0894184i
\(742\) 39.4859 + 4.17962i 1.44957 + 0.153439i
\(743\) 30.7210i 1.12704i 0.826102 + 0.563521i \(0.190554\pi\)
−0.826102 + 0.563521i \(0.809446\pi\)
\(744\) −1.02196 + 3.12172i −0.0374670 + 0.114448i
\(745\) 0 0
\(746\) 1.44098 13.6133i 0.0527582 0.498419i
\(747\) 11.5082 11.5082i 0.421065 0.421065i
\(748\) −9.94995 15.3712i −0.363806 0.562028i
\(749\) 38.7163 + 38.7163i 1.41466 + 1.41466i
\(750\) 0 0
\(751\) 16.4695 0.600981 0.300491 0.953785i \(-0.402850\pi\)
0.300491 + 0.953785i \(0.402850\pi\)
\(752\) −6.91292 3.10234i −0.252088 0.113131i
\(753\) 0.885888 0.0322836
\(754\) −18.2991 22.6317i −0.666415 0.824198i
\(755\) 0 0
\(756\) −4.54093 + 2.93939i −0.165152 + 0.106905i
\(757\) −21.9737 + 21.9737i −0.798649 + 0.798649i −0.982883 0.184233i \(-0.941020\pi\)
0.184233 + 0.982883i \(0.441020\pi\)
\(758\) 2.12783 20.1021i 0.0772861 0.730140i
\(759\) 0.593681i 0.0215493i
\(760\) 0 0
\(761\) 5.91749i 0.214509i −0.994232 0.107254i \(-0.965794\pi\)
0.994232 0.107254i \(-0.0342060\pi\)
\(762\) −5.05277 0.534842i −0.183043 0.0193753i
\(763\) 2.12513 2.12513i 0.0769349 0.0769349i
\(764\) 3.24515 15.1571i 0.117406 0.548365i
\(765\) 0 0
\(766\) 32.4725 26.2560i 1.17328 0.948668i
\(767\) −5.64368 −0.203782
\(768\) −0.158140 + 2.71088i −0.00570640 + 0.0978206i
\(769\) 10.7206 0.386596 0.193298 0.981140i \(-0.438082\pi\)
0.193298 + 0.981140i \(0.438082\pi\)
\(770\) 0 0
\(771\) −0.373240 0.373240i −0.0134419 0.0134419i
\(772\) 4.74769 22.1750i 0.170873 0.798094i
\(773\) 16.8329 16.8329i 0.605438 0.605438i −0.336312 0.941750i \(-0.609180\pi\)
0.941750 + 0.336312i \(0.109180\pi\)
\(774\) −26.2284 2.77631i −0.942760 0.0997922i
\(775\) 0 0
\(776\) −6.13596 12.1088i −0.220268 0.434679i
\(777\) 0.0624587i 0.00224069i
\(778\) −0.208621 + 1.97089i −0.00747941 + 0.0706597i
\(779\) −35.1934 + 35.1934i −1.26094 + 1.26094i
\(780\) 0 0
\(781\) −27.5147 27.5147i −0.984554 0.984554i
\(782\) 1.16421 + 1.43985i 0.0416319 + 0.0514889i
\(783\) −5.01488 −0.179217
\(784\) 0.447269 + 0.200723i 0.0159739 + 0.00716867i
\(785\) 0 0
\(786\) −0.997198 1.23330i −0.0355689 0.0439903i
\(787\) 25.4619 + 25.4619i 0.907619 + 0.907619i 0.996080 0.0884603i \(-0.0281946\pi\)
−0.0884603 + 0.996080i \(0.528195\pi\)
\(788\) 1.69068 + 2.61186i 0.0602280 + 0.0930436i
\(789\) 2.15430 2.15430i 0.0766951 0.0766951i
\(790\) 0 0
\(791\) 2.24854i 0.0799489i
\(792\) −12.9312 + 39.5000i −0.459489 + 1.40357i
\(793\) 38.2191i 1.35720i
\(794\) 33.8159 + 3.57945i 1.20008 + 0.127030i
\(795\) 0 0
\(796\) 27.9118 + 5.97594i 0.989307 + 0.211812i
\(797\) −7.14518 7.14518i −0.253095 0.253095i 0.569143 0.822238i \(-0.307275\pi\)
−0.822238 + 0.569143i \(0.807275\pi\)
\(798\) 2.42928 1.96422i 0.0859955 0.0695326i
\(799\) −3.50662 −0.124055
\(800\) 0 0
\(801\) 31.2139 1.10289
\(802\) −29.4492 + 23.8115i −1.03989 + 0.840812i
\(803\) 54.7526 + 54.7526i 1.93218 + 1.93218i
\(804\) −1.64144 0.351435i −0.0578892 0.0123941i
\(805\) 0 0
\(806\) 40.0215 + 4.23632i 1.40970 + 0.149218i
\(807\) 0.389876i 0.0137243i
\(808\) 1.41787 + 0.464171i 0.0498806 + 0.0163295i
\(809\) 12.4413i 0.437412i 0.975791 + 0.218706i \(0.0701835\pi\)
−0.975791 + 0.218706i \(0.929817\pi\)
\(810\) 0 0
\(811\) −30.6494 + 30.6494i −1.07624 + 1.07624i −0.0794022 + 0.996843i \(0.525301\pi\)
−0.996843 + 0.0794022i \(0.974699\pi\)
\(812\) 14.3528 + 22.1731i 0.503686 + 0.778123i
\(813\) 2.18185 + 2.18185i 0.0765210 + 0.0765210i
\(814\) −0.606409 0.749984i −0.0212546 0.0262869i
\(815\) 0 0
\(816\) 0.446892 + 1.17456i 0.0156444 + 0.0411177i
\(817\) 30.6125 1.07099
\(818\) 11.7345 + 14.5129i 0.410288 + 0.507430i
\(819\) 23.3187 + 23.3187i 0.814820 + 0.814820i
\(820\) 0 0
\(821\) 8.84907 8.84907i 0.308835 0.308835i −0.535623 0.844457i \(-0.679923\pi\)
0.844457 + 0.535623i \(0.179923\pi\)
\(822\) −0.259826 + 2.45463i −0.00906247 + 0.0856152i
\(823\) 11.7501i 0.409583i −0.978806 0.204792i \(-0.934348\pi\)
0.978806 0.204792i \(-0.0656516\pi\)
\(824\) −25.9900 + 13.1701i −0.905405 + 0.458802i
\(825\) 0 0
\(826\) 5.09339 + 0.539141i 0.177222 + 0.0187591i
\(827\) 3.40407 3.40407i 0.118371 0.118371i −0.645440 0.763811i \(-0.723326\pi\)
0.763811 + 0.645440i \(0.223326\pi\)
\(828\) 0.879922 4.10984i 0.0305794 0.142827i
\(829\) 24.8718 + 24.8718i 0.863834 + 0.863834i 0.991781 0.127947i \(-0.0408389\pi\)
−0.127947 + 0.991781i \(0.540839\pi\)
\(830\) 0 0
\(831\) 3.32845 0.115463
\(832\) 32.8836 5.05896i 1.14003 0.175388i
\(833\) 0.226880 0.00786092
\(834\) −1.31602 + 1.06408i −0.0455700 + 0.0368462i
\(835\) 0 0
\(836\) 10.0995 47.1715i 0.349297 1.63146i
\(837\) 4.90347 4.90347i 0.169489 0.169489i
\(838\) 19.7391 + 2.08940i 0.681875 + 0.0721773i
\(839\) 3.26196i 0.112615i 0.998413 + 0.0563076i \(0.0179328\pi\)
−0.998413 + 0.0563076i \(0.982067\pi\)
\(840\) 0 0
\(841\) 4.51268i 0.155610i
\(842\) −3.32483 + 31.4104i −0.114581 + 1.08248i
\(843\) −1.28862 + 1.28862i −0.0443823 + 0.0443823i
\(844\) −29.6124 + 19.1683i −1.01930 + 0.659802i
\(845\) 0 0
\(846\) 5.00457 + 6.18947i 0.172061 + 0.212798i
\(847\) −35.9223 −1.23430
\(848\) −39.3306 + 14.9644i −1.35062 + 0.513880i
\(849\) 3.92859 0.134829
\(850\) 0 0
\(851\) 0.0689649 + 0.0689649i 0.00236409 + 0.00236409i
\(852\) 1.45121 + 2.24191i 0.0497175 + 0.0768065i
\(853\) −4.02276 + 4.02276i −0.137737 + 0.137737i −0.772613 0.634877i \(-0.781051\pi\)
0.634877 + 0.772613i \(0.281051\pi\)
\(854\) −3.65107 + 34.4925i −0.124937 + 1.18031i
\(855\) 0 0
\(856\) −55.1478 18.0538i −1.88491 0.617067i
\(857\) 44.6563i 1.52543i 0.646736 + 0.762714i \(0.276134\pi\)
−0.646736 + 0.762714i \(0.723866\pi\)
\(858\) −4.90932 0.519658i −0.167602 0.0177408i
\(859\) 5.22864 5.22864i 0.178399 0.178399i −0.612259 0.790658i \(-0.709739\pi\)
0.790658 + 0.612259i \(0.209739\pi\)
\(860\) 0 0
\(861\) −3.26855 3.26855i −0.111392 0.111392i
\(862\) 0.313653 0.253608i 0.0106831 0.00863793i
\(863\) −36.9653 −1.25831 −0.629157 0.777278i \(-0.716600\pi\)
−0.629157 + 0.777278i \(0.716600\pi\)
\(864\) 2.88470 4.95411i 0.0981396 0.168542i
\(865\) 0 0
\(866\) −19.9159 + 16.1032i −0.676769 + 0.547209i
\(867\) −1.62891 1.62891i −0.0553206 0.0553206i
\(868\) −35.7145 7.64651i −1.21223 0.259539i
\(869\) 23.4383 23.4383i 0.795089 0.795089i
\(870\) 0 0
\(871\) 20.5669i 0.696883i
\(872\) −0.990971 + 3.02705i −0.0335585 + 0.102509i
\(873\) 14.2599i 0.482624i
\(874\) −0.513501 + 4.85116i −0.0173694 + 0.164093i
\(875\) 0 0
\(876\) −2.88781 4.46126i −0.0975701 0.150732i
\(877\) −9.40192 9.40192i −0.317480 0.317480i 0.530318 0.847799i \(-0.322072\pi\)
−0.847799 + 0.530318i \(0.822072\pi\)
\(878\) −10.3084 12.7490i −0.347890 0.430258i
\(879\) 1.01300 0.0341677
\(880\) 0 0
\(881\) −10.3069 −0.347248 −0.173624 0.984812i \(-0.555548\pi\)
−0.173624 + 0.984812i \(0.555548\pi\)
\(882\) −0.323798 0.400462i −0.0109028 0.0134842i
\(883\) −34.3375 34.3375i −1.15555 1.15555i −0.985422 0.170128i \(-0.945582\pi\)
−0.170128 0.985422i \(-0.554418\pi\)
\(884\) 12.9256 8.36684i 0.434734 0.281407i
\(885\) 0 0
\(886\) −4.77589 + 45.1189i −0.160449 + 1.51580i
\(887\) 6.79523i 0.228161i −0.993471 0.114081i \(-0.963608\pi\)
0.993471 0.114081i \(-0.0363922\pi\)
\(888\) 0.0299208 + 0.0590459i 0.00100407 + 0.00198145i
\(889\) 56.4968i 1.89484i
\(890\) 0 0
\(891\) 30.5706 30.5706i 1.02415 1.02415i
\(892\) −1.29245 + 6.03665i −0.0432745 + 0.202122i
\(893\) −6.53256 6.53256i −0.218604 0.218604i
\(894\) −2.32142 + 1.87701i −0.0776398 + 0.0627766i
\(895\) 0 0
\(896\) −30.1606 + 1.42431i −1.00759 + 0.0475827i
\(897\) 0.499223 0.0166686
\(898\) −13.4163 + 10.8479i −0.447707 + 0.361998i
\(899\) −23.9433 23.9433i −0.798554 0.798554i
\(900\) 0 0
\(901\) −13.7707 + 13.7707i −0.458769 + 0.458769i
\(902\) −70.9819 7.51351i −2.36344 0.250173i
\(903\) 2.84310i 0.0946123i
\(904\) −1.07716 2.12568i −0.0358258 0.0706990i
\(905\) 0 0
\(906\) −0.560473 + 5.29492i −0.0186205 + 0.175912i
\(907\) 3.82391 3.82391i 0.126971 0.126971i −0.640766 0.767737i \(-0.721383\pi\)
0.767737 + 0.640766i \(0.221383\pi\)
\(908\) −19.7473 + 12.7826i −0.655337 + 0.424206i
\(909\) −1.10819 1.10819i −0.0367565 0.0367565i
\(910\) 0 0
\(911\) −18.9169 −0.626743 −0.313372 0.949631i \(-0.601459\pi\)
−0.313372 + 0.949631i \(0.601459\pi\)
\(912\) −1.35558 + 3.02064i −0.0448878 + 0.100023i
\(913\) −27.0908 −0.896574
\(914\) −1.51748 1.87676i −0.0501937 0.0620777i
\(915\) 0 0
\(916\) 15.3529 + 23.7180i 0.507274 + 0.783666i
\(917\) 12.4700 12.4700i 0.411795 0.411795i
\(918\) 0.279270 2.63832i 0.00921727 0.0870777i
\(919\) 48.9075i 1.61331i 0.591022 + 0.806655i \(0.298724\pi\)
−0.591022 + 0.806655i \(0.701276\pi\)
\(920\) 0 0
\(921\) 3.03293i 0.0999384i
\(922\) 9.44144 + 0.999388i 0.310937 + 0.0329131i
\(923\) 23.1369 23.1369i 0.761562 0.761562i
\(924\) 4.38099 + 0.937976i 0.144124 + 0.0308571i
\(925\) 0 0
\(926\) −12.2905 + 9.93759i −0.403890 + 0.326570i
\(927\) 30.6071 1.00527
\(928\) −24.1906 14.0858i −0.794095 0.462390i
\(929\) 35.4660 1.16360 0.581801 0.813331i \(-0.302348\pi\)
0.581801 + 0.813331i \(0.302348\pi\)
\(930\) 0 0
\(931\) 0.422660 + 0.422660i 0.0138521 + 0.0138521i
\(932\) 27.1869 + 5.82074i 0.890536 + 0.190665i
\(933\) 1.02825 1.02825i 0.0336635 0.0336635i
\(934\) 4.10649 + 0.434676i 0.134368 + 0.0142230i
\(935\) 0 0
\(936\) −33.2153 10.8737i −1.08568 0.355419i
\(937\) 56.4991i 1.84575i 0.385105 + 0.922873i \(0.374165\pi\)
−0.385105 + 0.922873i \(0.625835\pi\)
\(938\) 1.96476 18.5615i 0.0641516 0.606055i
\(939\) −2.30207 + 2.30207i −0.0751252 + 0.0751252i
\(940\) 0 0
\(941\) −2.86034 2.86034i −0.0932445 0.0932445i 0.658946 0.752190i \(-0.271003\pi\)
−0.752190 + 0.658946i \(0.771003\pi\)
\(942\) −0.794319 0.982385i −0.0258803 0.0320078i
\(943\) 7.21805 0.235052
\(944\) −5.07336 + 1.93030i −0.165124 + 0.0628259i
\(945\) 0 0
\(946\) 27.6035 + 34.1390i 0.897466 + 1.10995i
\(947\) −5.86681 5.86681i −0.190646 0.190646i 0.605329 0.795975i \(-0.293041\pi\)
−0.795975 + 0.605329i \(0.793041\pi\)
\(948\) −1.90976 + 1.23620i −0.0620260 + 0.0401500i
\(949\) −46.0411 + 46.0411i −1.49456 + 1.49456i
\(950\) 0 0
\(951\) 2.26040i 0.0732985i
\(952\) −12.4645 + 6.31624i −0.403978 + 0.204711i
\(953\) 25.0238i 0.810599i 0.914184 + 0.405299i \(0.132833\pi\)
−0.914184 + 0.405299i \(0.867167\pi\)
\(954\) 43.9597 + 4.65318i 1.42325 + 0.150652i
\(955\) 0 0
\(956\) −4.50899 + 21.0601i −0.145831 + 0.681132i
\(957\) 2.93706 + 2.93706i 0.0949416 + 0.0949416i
\(958\) 45.7713 37.0089i 1.47880 1.19570i
\(959\) −27.4461 −0.886281
\(960\) 0 0
\(961\) 15.8228 0.510412
\(962\) 0.630657 0.509925i 0.0203332 0.0164406i
\(963\) 43.1030 + 43.1030i 1.38897 + 1.38897i
\(964\) −5.22163 + 24.3886i −0.168177 + 0.785504i
\(965\) 0 0
\(966\) −0.450545 0.0476907i −0.0144961 0.00153442i
\(967\) 16.6523i 0.535502i 0.963488 + 0.267751i \(0.0862804\pi\)
−0.963488 + 0.267751i \(0.913720\pi\)
\(968\) 33.9595 17.2085i 1.09150 0.553103i
\(969\) 1.53223i 0.0492224i
\(970\) 0 0
\(971\) −30.6552 + 30.6552i −0.983771 + 0.983771i −0.999870 0.0160991i \(-0.994875\pi\)
0.0160991 + 0.999870i \(0.494875\pi\)
\(972\) −7.59534 + 4.91654i −0.243621 + 0.157698i
\(973\) −13.3064 13.3064i −0.426583 0.426583i
\(974\) 7.34132 + 9.07948i 0.235231 + 0.290925i
\(975\) 0 0
\(976\) −13.0720 34.3569i −0.418425 1.09974i
\(977\) 13.4307 0.429687 0.214844 0.976648i \(-0.431076\pi\)
0.214844 + 0.976648i \(0.431076\pi\)
\(978\) 0.451659 + 0.558596i 0.0144425 + 0.0178619i
\(979\) −36.7392 36.7392i −1.17419 1.17419i
\(980\) 0 0
\(981\) 2.36591 2.36591i 0.0755378 0.0755378i
\(982\) −0.902130 + 8.52263i −0.0287881 + 0.271968i
\(983\) 7.94549i 0.253422i 0.991940 + 0.126711i \(0.0404420\pi\)
−0.991940 + 0.126711i \(0.959558\pi\)
\(984\) 4.65575 + 1.52416i 0.148420 + 0.0485884i
\(985\) 0 0
\(986\) −12.8828 1.36366i −0.410271 0.0434276i
\(987\) 0.606704 0.606704i 0.0193116 0.0193116i
\(988\) 39.6662 + 8.49257i 1.26195 + 0.270185i
\(989\) −3.13925 3.13925i −0.0998225 0.0998225i
\(990\) 0 0
\(991\) −25.0787 −0.796652 −0.398326 0.917244i \(-0.630409\pi\)
−0.398326 + 0.917244i \(0.630409\pi\)
\(992\) 37.4260 9.88027i 1.18828 0.313699i
\(993\) 3.08612 0.0979350
\(994\) −23.0912 + 18.6707i −0.732409 + 0.592198i
\(995\) 0 0
\(996\) 1.81810 + 0.389258i 0.0576088 + 0.0123341i
\(997\) −36.1819 + 36.1819i −1.14589 + 1.14589i −0.158539 + 0.987353i \(0.550678\pi\)
−0.987353 + 0.158539i \(0.949322\pi\)
\(998\) 30.0893 + 3.18498i 0.952459 + 0.100819i
\(999\) 0.139745i 0.00442134i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.l.h.301.2 16
4.3 odd 2 1600.2.l.i.401.4 16
5.2 odd 4 400.2.q.g.349.3 16
5.3 odd 4 400.2.q.h.349.6 16
5.4 even 2 80.2.l.a.61.7 yes 16
15.14 odd 2 720.2.t.c.541.2 16
16.5 even 4 inner 400.2.l.h.101.2 16
16.11 odd 4 1600.2.l.i.1201.4 16
20.3 even 4 1600.2.q.g.849.5 16
20.7 even 4 1600.2.q.h.849.4 16
20.19 odd 2 320.2.l.a.81.5 16
40.19 odd 2 640.2.l.a.161.4 16
40.29 even 2 640.2.l.b.161.5 16
60.59 even 2 2880.2.t.c.721.6 16
80.19 odd 4 640.2.l.a.481.4 16
80.27 even 4 1600.2.q.g.49.5 16
80.29 even 4 640.2.l.b.481.5 16
80.37 odd 4 400.2.q.h.149.6 16
80.43 even 4 1600.2.q.h.49.4 16
80.53 odd 4 400.2.q.g.149.3 16
80.59 odd 4 320.2.l.a.241.5 16
80.69 even 4 80.2.l.a.21.7 16
160.59 odd 8 5120.2.a.u.1.4 8
160.69 even 8 5120.2.a.s.1.5 8
160.139 odd 8 5120.2.a.t.1.5 8
160.149 even 8 5120.2.a.v.1.4 8
240.59 even 4 2880.2.t.c.2161.7 16
240.149 odd 4 720.2.t.c.181.2 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.l.a.21.7 16 80.69 even 4
80.2.l.a.61.7 yes 16 5.4 even 2
320.2.l.a.81.5 16 20.19 odd 2
320.2.l.a.241.5 16 80.59 odd 4
400.2.l.h.101.2 16 16.5 even 4 inner
400.2.l.h.301.2 16 1.1 even 1 trivial
400.2.q.g.149.3 16 80.53 odd 4
400.2.q.g.349.3 16 5.2 odd 4
400.2.q.h.149.6 16 80.37 odd 4
400.2.q.h.349.6 16 5.3 odd 4
640.2.l.a.161.4 16 40.19 odd 2
640.2.l.a.481.4 16 80.19 odd 4
640.2.l.b.161.5 16 40.29 even 2
640.2.l.b.481.5 16 80.29 even 4
720.2.t.c.181.2 16 240.149 odd 4
720.2.t.c.541.2 16 15.14 odd 2
1600.2.l.i.401.4 16 4.3 odd 2
1600.2.l.i.1201.4 16 16.11 odd 4
1600.2.q.g.49.5 16 80.27 even 4
1600.2.q.g.849.5 16 20.3 even 4
1600.2.q.h.49.4 16 80.43 even 4
1600.2.q.h.849.4 16 20.7 even 4
2880.2.t.c.721.6 16 60.59 even 2
2880.2.t.c.2161.7 16 240.59 even 4
5120.2.a.s.1.5 8 160.69 even 8
5120.2.a.t.1.5 8 160.139 odd 8
5120.2.a.u.1.4 8 160.59 odd 8
5120.2.a.v.1.4 8 160.149 even 8