Properties

Label 400.2.l.f.101.6
Level $400$
Weight $2$
Character 400.101
Analytic conductor $3.194$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.l (of order \(4\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(i)\)
Coefficient field: 12.0.4767670494822400.1
Defining polynomial: \(x^{12} - 4 x^{11} + 7 x^{10} - 4 x^{9} - 8 x^{8} + 24 x^{7} - 38 x^{6} + 48 x^{5} - 32 x^{4} - 32 x^{3} + 112 x^{2} - 128 x + 64\)
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 101.6
Root \(-1.41313 - 0.0554252i\) of defining polynomial
Character \(\chi\) \(=\) 400.101
Dual form 400.2.l.f.301.6

$q$-expansion

\(f(q)\) \(=\) \(q+(1.41313 + 0.0554252i) q^{2} +(-0.488516 + 0.488516i) q^{3} +(1.99386 + 0.156646i) q^{4} +(-0.717411 + 0.663259i) q^{6} +4.71540i q^{7} +(2.80889 + 0.331870i) q^{8} +2.52270i q^{9} +O(q^{10})\) \(q+(1.41313 + 0.0554252i) q^{2} +(-0.488516 + 0.488516i) q^{3} +(1.99386 + 0.156646i) q^{4} +(-0.717411 + 0.663259i) q^{6} +4.71540i q^{7} +(2.80889 + 0.331870i) q^{8} +2.52270i q^{9} +(-3.91360 - 3.91360i) q^{11} +(-1.05055 + 0.897506i) q^{12} +(-0.0878822 + 0.0878822i) q^{13} +(-0.261352 + 6.66346i) q^{14} +(3.95092 + 0.624658i) q^{16} +4.67442 q^{17} +(-0.139821 + 3.56490i) q^{18} +(1.81249 - 1.81249i) q^{19} +(-2.30355 - 2.30355i) q^{21} +(-5.31350 - 5.74732i) q^{22} -1.63007i q^{23} +(-1.53431 + 1.21006i) q^{24} +(-0.129060 + 0.119318i) q^{26} +(-2.69793 - 2.69793i) q^{27} +(-0.738648 + 9.40184i) q^{28} +(3.26362 - 3.26362i) q^{29} -2.12875 q^{31} +(5.54854 + 1.10170i) q^{32} +3.82371 q^{33} +(6.60555 + 0.259081i) q^{34} +(-0.395171 + 5.02991i) q^{36} +(3.97797 + 3.97797i) q^{37} +(2.66173 - 2.46082i) q^{38} -0.0858637i q^{39} -8.25504i q^{41} +(-3.12753 - 3.38288i) q^{42} +(2.27336 + 2.27336i) q^{43} +(-7.19010 - 8.41620i) q^{44} +(0.0903468 - 2.30349i) q^{46} -4.06129 q^{47} +(-2.23524 + 1.62493i) q^{48} -15.2350 q^{49} +(-2.28353 + 2.28353i) q^{51} +(-0.188991 + 0.161458i) q^{52} +(-5.03938 - 5.03938i) q^{53} +(-3.66298 - 3.96205i) q^{54} +(-1.56490 + 13.2450i) q^{56} +1.77086i q^{57} +(4.79280 - 4.43103i) q^{58} +(-5.16453 - 5.16453i) q^{59} +(7.12726 - 7.12726i) q^{61} +(-3.00819 - 0.117986i) q^{62} -11.8956 q^{63} +(7.77972 + 1.86437i) q^{64} +(5.40339 + 0.211930i) q^{66} +(-7.49920 + 7.49920i) q^{67} +(9.32012 + 0.732228i) q^{68} +(0.796314 + 0.796314i) q^{69} +4.54072i q^{71} +(-0.837210 + 7.08600i) q^{72} -8.30557i q^{73} +(5.40090 + 5.84186i) q^{74} +(3.89776 - 3.32992i) q^{76} +(18.4542 - 18.4542i) q^{77} +(0.00475901 - 0.121336i) q^{78} +11.5317 q^{79} -4.93215 q^{81} +(0.457537 - 11.6654i) q^{82} +(-1.16919 + 1.16919i) q^{83} +(-4.23211 - 4.95379i) q^{84} +(3.08655 + 3.33855i) q^{86} +3.18866i q^{87} +(-9.69406 - 12.2917i) q^{88} +3.24572i q^{89} +(-0.414400 - 0.414400i) q^{91} +(0.255343 - 3.25012i) q^{92} +(1.03993 - 1.03993i) q^{93} +(-5.73912 - 0.225098i) q^{94} +(-3.24875 + 2.17235i) q^{96} -13.9581 q^{97} +(-21.5290 - 0.844405i) q^{98} +(9.87285 - 9.87285i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12q - 4q^{2} - 2q^{3} + 2q^{4} + 6q^{6} + 8q^{8} + O(q^{10}) \) \( 12q - 4q^{2} - 2q^{3} + 2q^{4} + 6q^{6} + 8q^{8} - 2q^{11} - 8q^{12} + 4q^{13} + 14q^{14} + 2q^{16} + 8q^{17} - 18q^{18} - 14q^{19} - 20q^{21} - 2q^{22} - 14q^{24} - 16q^{26} + 10q^{27} - 26q^{28} - 4q^{31} + 16q^{32} - 28q^{33} - 6q^{34} + 2q^{36} - 8q^{37} - 10q^{38} - 10q^{42} - 44q^{44} - 10q^{46} - 8q^{47} + 28q^{48} + 4q^{49} + 10q^{51} + 12q^{52} + 16q^{53} + 10q^{54} + 6q^{56} + 60q^{58} + 20q^{59} + 4q^{61} + 18q^{62} + 8q^{63} + 38q^{64} + 32q^{66} - 50q^{67} + 60q^{68} + 14q^{72} + 10q^{74} + 60q^{76} + 8q^{77} - 4q^{78} + 12q^{79} - 8q^{81} - 42q^{82} + 2q^{83} + 34q^{84} + 6q^{86} - 30q^{88} + 2q^{92} + 44q^{93} + 32q^{94} - 34q^{96} - 64q^{98} + 12q^{99} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.41313 + 0.0554252i 0.999232 + 0.0391915i
\(3\) −0.488516 + 0.488516i −0.282045 + 0.282045i −0.833924 0.551879i \(-0.813911\pi\)
0.551879 + 0.833924i \(0.313911\pi\)
\(4\) 1.99386 + 0.156646i 0.996928 + 0.0783229i
\(5\) 0 0
\(6\) −0.717411 + 0.663259i −0.292882 + 0.270774i
\(7\) 4.71540i 1.78226i 0.453753 + 0.891128i \(0.350085\pi\)
−0.453753 + 0.891128i \(0.649915\pi\)
\(8\) 2.80889 + 0.331870i 0.993093 + 0.117334i
\(9\) 2.52270i 0.840901i
\(10\) 0 0
\(11\) −3.91360 3.91360i −1.17999 1.17999i −0.979745 0.200249i \(-0.935825\pi\)
−0.200249 0.979745i \(-0.564175\pi\)
\(12\) −1.05055 + 0.897506i −0.303269 + 0.259088i
\(13\) −0.0878822 + 0.0878822i −0.0243741 + 0.0243741i −0.719189 0.694815i \(-0.755486\pi\)
0.694815 + 0.719189i \(0.255486\pi\)
\(14\) −0.261352 + 6.66346i −0.0698493 + 1.78089i
\(15\) 0 0
\(16\) 3.95092 + 0.624658i 0.987731 + 0.156165i
\(17\) 4.67442 1.13371 0.566857 0.823816i \(-0.308159\pi\)
0.566857 + 0.823816i \(0.308159\pi\)
\(18\) −0.139821 + 3.56490i −0.0329562 + 0.840255i
\(19\) 1.81249 1.81249i 0.415813 0.415813i −0.467945 0.883758i \(-0.655005\pi\)
0.883758 + 0.467945i \(0.155005\pi\)
\(20\) 0 0
\(21\) −2.30355 2.30355i −0.502676 0.502676i
\(22\) −5.31350 5.74732i −1.13284 1.22533i
\(23\) 1.63007i 0.339893i −0.985453 0.169946i \(-0.945641\pi\)
0.985453 0.169946i \(-0.0543594\pi\)
\(24\) −1.53431 + 1.21006i −0.313190 + 0.247003i
\(25\) 0 0
\(26\) −0.129060 + 0.119318i −0.0253107 + 0.0234002i
\(27\) −2.69793 2.69793i −0.519217 0.519217i
\(28\) −0.738648 + 9.40184i −0.139591 + 1.77678i
\(29\) 3.26362 3.26362i 0.606039 0.606039i −0.335869 0.941909i \(-0.609030\pi\)
0.941909 + 0.335869i \(0.109030\pi\)
\(30\) 0 0
\(31\) −2.12875 −0.382334 −0.191167 0.981557i \(-0.561227\pi\)
−0.191167 + 0.981557i \(0.561227\pi\)
\(32\) 5.54854 + 1.10170i 0.980852 + 0.194755i
\(33\) 3.82371 0.665622
\(34\) 6.60555 + 0.259081i 1.13284 + 0.0444320i
\(35\) 0 0
\(36\) −0.395171 + 5.02991i −0.0658618 + 0.838318i
\(37\) 3.97797 + 3.97797i 0.653974 + 0.653974i 0.953948 0.299973i \(-0.0969778\pi\)
−0.299973 + 0.953948i \(0.596978\pi\)
\(38\) 2.66173 2.46082i 0.431790 0.399197i
\(39\) 0.0858637i 0.0137492i
\(40\) 0 0
\(41\) 8.25504i 1.28922i −0.764511 0.644611i \(-0.777020\pi\)
0.764511 0.644611i \(-0.222980\pi\)
\(42\) −3.12753 3.38288i −0.482589 0.521990i
\(43\) 2.27336 + 2.27336i 0.346685 + 0.346685i 0.858873 0.512188i \(-0.171165\pi\)
−0.512188 + 0.858873i \(0.671165\pi\)
\(44\) −7.19010 8.41620i −1.08395 1.26879i
\(45\) 0 0
\(46\) 0.0903468 2.30349i 0.0133209 0.339631i
\(47\) −4.06129 −0.592400 −0.296200 0.955126i \(-0.595719\pi\)
−0.296200 + 0.955126i \(0.595719\pi\)
\(48\) −2.23524 + 1.62493i −0.322630 + 0.234539i
\(49\) −15.2350 −2.17643
\(50\) 0 0
\(51\) −2.28353 + 2.28353i −0.319758 + 0.319758i
\(52\) −0.188991 + 0.161458i −0.0262083 + 0.0223902i
\(53\) −5.03938 5.03938i −0.692211 0.692211i 0.270507 0.962718i \(-0.412809\pi\)
−0.962718 + 0.270507i \(0.912809\pi\)
\(54\) −3.66298 3.96205i −0.498469 0.539167i
\(55\) 0 0
\(56\) −1.56490 + 13.2450i −0.209119 + 1.76994i
\(57\) 1.77086i 0.234556i
\(58\) 4.79280 4.43103i 0.629325 0.581822i
\(59\) −5.16453 5.16453i −0.672365 0.672365i 0.285896 0.958261i \(-0.407709\pi\)
−0.958261 + 0.285896i \(0.907709\pi\)
\(60\) 0 0
\(61\) 7.12726 7.12726i 0.912552 0.912552i −0.0839206 0.996472i \(-0.526744\pi\)
0.996472 + 0.0839206i \(0.0267442\pi\)
\(62\) −3.00819 0.117986i −0.382041 0.0149843i
\(63\) −11.8956 −1.49870
\(64\) 7.77972 + 1.86437i 0.972466 + 0.233047i
\(65\) 0 0
\(66\) 5.40339 + 0.211930i 0.665111 + 0.0260868i
\(67\) −7.49920 + 7.49920i −0.916173 + 0.916173i −0.996748 0.0805758i \(-0.974324\pi\)
0.0805758 + 0.996748i \(0.474324\pi\)
\(68\) 9.32012 + 0.732228i 1.13023 + 0.0887957i
\(69\) 0.796314 + 0.796314i 0.0958649 + 0.0958649i
\(70\) 0 0
\(71\) 4.54072i 0.538884i 0.963017 + 0.269442i \(0.0868393\pi\)
−0.963017 + 0.269442i \(0.913161\pi\)
\(72\) −0.837210 + 7.08600i −0.0986662 + 0.835093i
\(73\) 8.30557i 0.972093i −0.873933 0.486047i \(-0.838439\pi\)
0.873933 0.486047i \(-0.161561\pi\)
\(74\) 5.40090 + 5.84186i 0.627842 + 0.679102i
\(75\) 0 0
\(76\) 3.89776 3.32992i 0.447104 0.381968i
\(77\) 18.4542 18.4542i 2.10305 2.10305i
\(78\) 0.00475901 0.121336i 0.000538852 0.0137386i
\(79\) 11.5317 1.29742 0.648709 0.761037i \(-0.275309\pi\)
0.648709 + 0.761037i \(0.275309\pi\)
\(80\) 0 0
\(81\) −4.93215 −0.548017
\(82\) 0.457537 11.6654i 0.0505266 1.28823i
\(83\) −1.16919 + 1.16919i −0.128335 + 0.128335i −0.768357 0.640022i \(-0.778925\pi\)
0.640022 + 0.768357i \(0.278925\pi\)
\(84\) −4.23211 4.95379i −0.461761 0.540503i
\(85\) 0 0
\(86\) 3.08655 + 3.33855i 0.332831 + 0.360006i
\(87\) 3.18866i 0.341861i
\(88\) −9.69406 12.2917i −1.03339 1.31030i
\(89\) 3.24572i 0.344046i 0.985093 + 0.172023i \(0.0550304\pi\)
−0.985093 + 0.172023i \(0.944970\pi\)
\(90\) 0 0
\(91\) −0.414400 0.414400i −0.0434409 0.0434409i
\(92\) 0.255343 3.25012i 0.0266214 0.338848i
\(93\) 1.03993 1.03993i 0.107835 0.107835i
\(94\) −5.73912 0.225098i −0.591945 0.0232171i
\(95\) 0 0
\(96\) −3.24875 + 2.17235i −0.331574 + 0.221714i
\(97\) −13.9581 −1.41723 −0.708613 0.705598i \(-0.750679\pi\)
−0.708613 + 0.705598i \(0.750679\pi\)
\(98\) −21.5290 0.844405i −2.17476 0.0852978i
\(99\) 9.87285 9.87285i 0.992258 0.992258i
\(100\) 0 0
\(101\) 13.4088 + 13.4088i 1.33422 + 1.33422i 0.901552 + 0.432672i \(0.142429\pi\)
0.432672 + 0.901552i \(0.357571\pi\)
\(102\) −3.35348 + 3.10035i −0.332044 + 0.306981i
\(103\) 13.7638i 1.35618i −0.734977 0.678092i \(-0.762807\pi\)
0.734977 0.678092i \(-0.237193\pi\)
\(104\) −0.276017 + 0.217686i −0.0270657 + 0.0213459i
\(105\) 0 0
\(106\) −6.84197 7.40059i −0.664551 0.718808i
\(107\) −0.327996 0.327996i −0.0317086 0.0317086i 0.691075 0.722783i \(-0.257138\pi\)
−0.722783 + 0.691075i \(0.757138\pi\)
\(108\) −4.95666 5.80190i −0.476955 0.558288i
\(109\) −0.149698 + 0.149698i −0.0143385 + 0.0143385i −0.714240 0.699901i \(-0.753227\pi\)
0.699901 + 0.714240i \(0.253227\pi\)
\(110\) 0 0
\(111\) −3.88660 −0.368900
\(112\) −2.94551 + 18.6302i −0.278325 + 1.76039i
\(113\) 5.97999 0.562550 0.281275 0.959627i \(-0.409243\pi\)
0.281275 + 0.959627i \(0.409243\pi\)
\(114\) −0.0981502 + 2.50245i −0.00919261 + 0.234376i
\(115\) 0 0
\(116\) 7.01843 5.99596i 0.651644 0.556711i
\(117\) −0.221701 0.221701i −0.0204962 0.0204962i
\(118\) −7.01189 7.58439i −0.645497 0.698199i
\(119\) 22.0418i 2.02057i
\(120\) 0 0
\(121\) 19.6325i 1.78477i
\(122\) 10.4668 9.67669i 0.947615 0.876086i
\(123\) 4.03272 + 4.03272i 0.363618 + 0.363618i
\(124\) −4.24442 0.333459i −0.381160 0.0299455i
\(125\) 0 0
\(126\) −16.8100 0.659314i −1.49755 0.0587364i
\(127\) −2.73076 −0.242315 −0.121158 0.992633i \(-0.538661\pi\)
−0.121158 + 0.992633i \(0.538661\pi\)
\(128\) 10.8904 + 3.06579i 0.962585 + 0.270980i
\(129\) −2.22115 −0.195561
\(130\) 0 0
\(131\) −0.813555 + 0.813555i −0.0710806 + 0.0710806i −0.741753 0.670673i \(-0.766006\pi\)
0.670673 + 0.741753i \(0.266006\pi\)
\(132\) 7.62392 + 0.598967i 0.663577 + 0.0521334i
\(133\) 8.54661 + 8.54661i 0.741085 + 0.741085i
\(134\) −11.0130 + 10.1817i −0.951375 + 0.879563i
\(135\) 0 0
\(136\) 13.1299 + 1.55130i 1.12588 + 0.133023i
\(137\) 0.199812i 0.0170711i 0.999964 + 0.00853557i \(0.00271699\pi\)
−0.999964 + 0.00853557i \(0.997283\pi\)
\(138\) 1.08116 + 1.16943i 0.0920342 + 0.0995484i
\(139\) −11.6301 11.6301i −0.986448 0.986448i 0.0134610 0.999909i \(-0.495715\pi\)
−0.999909 + 0.0134610i \(0.995715\pi\)
\(140\) 0 0
\(141\) 1.98400 1.98400i 0.167083 0.167083i
\(142\) −0.251670 + 6.41661i −0.0211197 + 0.538470i
\(143\) 0.687871 0.0575227
\(144\) −1.57583 + 9.96701i −0.131319 + 0.830585i
\(145\) 0 0
\(146\) 0.460338 11.7368i 0.0380978 0.971346i
\(147\) 7.44256 7.44256i 0.613852 0.613852i
\(148\) 7.30837 + 8.55463i 0.600744 + 0.703186i
\(149\) −1.13384 1.13384i −0.0928880 0.0928880i 0.659136 0.752024i \(-0.270922\pi\)
−0.752024 + 0.659136i \(0.770922\pi\)
\(150\) 0 0
\(151\) 7.12216i 0.579593i 0.957088 + 0.289797i \(0.0935877\pi\)
−0.957088 + 0.289797i \(0.906412\pi\)
\(152\) 5.69259 4.48957i 0.461730 0.364152i
\(153\) 11.7922i 0.953341i
\(154\) 27.1009 25.0553i 2.18386 2.01901i
\(155\) 0 0
\(156\) 0.0134502 0.171200i 0.00107688 0.0137070i
\(157\) −5.32145 + 5.32145i −0.424698 + 0.424698i −0.886818 0.462120i \(-0.847089\pi\)
0.462120 + 0.886818i \(0.347089\pi\)
\(158\) 16.2957 + 0.639147i 1.29642 + 0.0508478i
\(159\) 4.92363 0.390469
\(160\) 0 0
\(161\) 7.68643 0.605775
\(162\) −6.96976 0.273365i −0.547596 0.0214776i
\(163\) −12.3010 + 12.3010i −0.963488 + 0.963488i −0.999357 0.0358685i \(-0.988580\pi\)
0.0358685 + 0.999357i \(0.488580\pi\)
\(164\) 1.29312 16.4594i 0.100975 1.28526i
\(165\) 0 0
\(166\) −1.71702 + 1.58741i −0.133266 + 0.123207i
\(167\) 9.86820i 0.763624i 0.924240 + 0.381812i \(0.124700\pi\)
−0.924240 + 0.381812i \(0.875300\pi\)
\(168\) −5.70594 7.23490i −0.440223 0.558184i
\(169\) 12.9846i 0.998812i
\(170\) 0 0
\(171\) 4.57237 + 4.57237i 0.349658 + 0.349658i
\(172\) 4.17665 + 4.88887i 0.318466 + 0.372773i
\(173\) −13.4089 + 13.4089i −1.01946 + 1.01946i −0.0196525 + 0.999807i \(0.506256\pi\)
−0.999807 + 0.0196525i \(0.993744\pi\)
\(174\) −0.176732 + 4.50599i −0.0133980 + 0.341598i
\(175\) 0 0
\(176\) −13.0177 17.9070i −0.981243 1.34979i
\(177\) 5.04591 0.379274
\(178\) −0.179895 + 4.58662i −0.0134837 + 0.343782i
\(179\) 0.419587 0.419587i 0.0313614 0.0313614i −0.691252 0.722614i \(-0.742941\pi\)
0.722614 + 0.691252i \(0.242941\pi\)
\(180\) 0 0
\(181\) −14.2605 14.2605i −1.05998 1.05998i −0.998083 0.0618956i \(-0.980285\pi\)
−0.0618956 0.998083i \(-0.519715\pi\)
\(182\) −0.562632 0.608568i −0.0417050 0.0451101i
\(183\) 6.96356i 0.514761i
\(184\) 0.540971 4.57868i 0.0398809 0.337545i
\(185\) 0 0
\(186\) 1.52719 1.41191i 0.111979 0.103526i
\(187\) −18.2938 18.2938i −1.33777 1.33777i
\(188\) −8.09762 0.636183i −0.590580 0.0463984i
\(189\) 12.7218 12.7218i 0.925377 0.925377i
\(190\) 0 0
\(191\) 17.3304 1.25399 0.626993 0.779025i \(-0.284285\pi\)
0.626993 + 0.779025i \(0.284285\pi\)
\(192\) −4.71130 + 2.88974i −0.340008 + 0.208549i
\(193\) 16.8667 1.21409 0.607045 0.794667i \(-0.292355\pi\)
0.607045 + 0.794667i \(0.292355\pi\)
\(194\) −19.7245 0.773628i −1.41614 0.0555432i
\(195\) 0 0
\(196\) −30.3765 2.38650i −2.16975 0.170464i
\(197\) −3.58908 3.58908i −0.255712 0.255712i 0.567596 0.823307i \(-0.307874\pi\)
−0.823307 + 0.567596i \(0.807874\pi\)
\(198\) 14.4988 13.4044i 1.03038 0.952608i
\(199\) 6.64501i 0.471052i 0.971868 + 0.235526i \(0.0756813\pi\)
−0.971868 + 0.235526i \(0.924319\pi\)
\(200\) 0 0
\(201\) 7.32695i 0.516803i
\(202\) 18.2051 + 19.6915i 1.28091 + 1.38549i
\(203\) 15.3893 + 15.3893i 1.08012 + 1.08012i
\(204\) −4.91073 + 4.19532i −0.343820 + 0.293731i
\(205\) 0 0
\(206\) 0.762860 19.4500i 0.0531510 1.35514i
\(207\) 4.11218 0.285816
\(208\) −0.402112 + 0.292320i −0.0278815 + 0.0202687i
\(209\) −14.1867 −0.981314
\(210\) 0 0
\(211\) 1.90906 1.90906i 0.131425 0.131425i −0.638334 0.769759i \(-0.720376\pi\)
0.769759 + 0.638334i \(0.220376\pi\)
\(212\) −9.25839 10.8372i −0.635869 0.744301i
\(213\) −2.21821 2.21821i −0.151989 0.151989i
\(214\) −0.445321 0.481680i −0.0304415 0.0329270i
\(215\) 0 0
\(216\) −6.68282 8.47355i −0.454709 0.576552i
\(217\) 10.0379i 0.681418i
\(218\) −0.219839 + 0.203245i −0.0148894 + 0.0137655i
\(219\) 4.05740 + 4.05740i 0.274174 + 0.274174i
\(220\) 0 0
\(221\) −0.410798 + 0.410798i −0.0276333 + 0.0276333i
\(222\) −5.49226 0.215416i −0.368617 0.0144578i
\(223\) 24.1071 1.61433 0.807165 0.590326i \(-0.201001\pi\)
0.807165 + 0.590326i \(0.201001\pi\)
\(224\) −5.19497 + 26.1636i −0.347103 + 1.74813i
\(225\) 0 0
\(226\) 8.45048 + 0.331442i 0.562118 + 0.0220472i
\(227\) 6.67411 6.67411i 0.442977 0.442977i −0.450035 0.893011i \(-0.648588\pi\)
0.893011 + 0.450035i \(0.148588\pi\)
\(228\) −0.277397 + 3.53084i −0.0183711 + 0.233835i
\(229\) 16.0807 + 16.0807i 1.06264 + 1.06264i 0.997902 + 0.0647388i \(0.0206214\pi\)
0.0647388 + 0.997902i \(0.479379\pi\)
\(230\) 0 0
\(231\) 18.0303i 1.18631i
\(232\) 10.2503 8.08406i 0.672962 0.530744i
\(233\) 16.4976i 1.08079i −0.841411 0.540396i \(-0.818274\pi\)
0.841411 0.540396i \(-0.181726\pi\)
\(234\) −0.301004 0.325579i −0.0196772 0.0212838i
\(235\) 0 0
\(236\) −9.48833 11.1063i −0.617638 0.722961i
\(237\) −5.63342 + 5.63342i −0.365930 + 0.365930i
\(238\) −1.22167 + 31.1478i −0.0791891 + 2.01901i
\(239\) 5.25917 0.340188 0.170094 0.985428i \(-0.445593\pi\)
0.170094 + 0.985428i \(0.445593\pi\)
\(240\) 0 0
\(241\) −14.1126 −0.909075 −0.454538 0.890728i \(-0.650196\pi\)
−0.454538 + 0.890728i \(0.650196\pi\)
\(242\) −1.08813 + 27.7432i −0.0699479 + 1.78340i
\(243\) 10.5032 10.5032i 0.673782 0.673782i
\(244\) 15.3272 13.0943i 0.981222 0.838275i
\(245\) 0 0
\(246\) 5.47523 + 5.92226i 0.349088 + 0.377589i
\(247\) 0.318571i 0.0202702i
\(248\) −5.97942 0.706468i −0.379693 0.0448608i
\(249\) 1.14234i 0.0723927i
\(250\) 0 0
\(251\) −9.98825 9.98825i −0.630453 0.630453i 0.317729 0.948182i \(-0.397080\pi\)
−0.948182 + 0.317729i \(0.897080\pi\)
\(252\) −23.7181 1.86339i −1.49410 0.117383i
\(253\) −6.37943 + 6.37943i −0.401071 + 0.401071i
\(254\) −3.85890 0.151353i −0.242129 0.00949671i
\(255\) 0 0
\(256\) 15.2196 + 4.93595i 0.951225 + 0.308497i
\(257\) −8.44760 −0.526947 −0.263474 0.964667i \(-0.584868\pi\)
−0.263474 + 0.964667i \(0.584868\pi\)
\(258\) −3.13877 0.123108i −0.195411 0.00766435i
\(259\) −18.7577 + 18.7577i −1.16555 + 1.16555i
\(260\) 0 0
\(261\) 8.23315 + 8.23315i 0.509619 + 0.509619i
\(262\) −1.19475 + 1.10457i −0.0738118 + 0.0682403i
\(263\) 18.3064i 1.12882i 0.825494 + 0.564410i \(0.190896\pi\)
−0.825494 + 0.564410i \(0.809104\pi\)
\(264\) 10.7404 + 1.26897i 0.661024 + 0.0781000i
\(265\) 0 0
\(266\) 11.6037 + 12.5511i 0.711472 + 0.769560i
\(267\) −1.58559 1.58559i −0.0970364 0.0970364i
\(268\) −16.1270 + 13.7776i −0.985115 + 0.841601i
\(269\) 13.5631 13.5631i 0.826955 0.826955i −0.160140 0.987094i \(-0.551194\pi\)
0.987094 + 0.160140i \(0.0511945\pi\)
\(270\) 0 0
\(271\) −2.24520 −0.136386 −0.0681930 0.997672i \(-0.521723\pi\)
−0.0681930 + 0.997672i \(0.521723\pi\)
\(272\) 18.4683 + 2.91991i 1.11980 + 0.177046i
\(273\) 0.404882 0.0245046
\(274\) −0.0110746 + 0.282360i −0.000669044 + 0.0170580i
\(275\) 0 0
\(276\) 1.46300 + 1.71247i 0.0880620 + 0.103079i
\(277\) 7.28255 + 7.28255i 0.437566 + 0.437566i 0.891192 0.453626i \(-0.149870\pi\)
−0.453626 + 0.891192i \(0.649870\pi\)
\(278\) −15.7901 17.0793i −0.947030 1.02435i
\(279\) 5.37020i 0.321506i
\(280\) 0 0
\(281\) 6.04084i 0.360367i 0.983633 + 0.180183i \(0.0576691\pi\)
−0.983633 + 0.180183i \(0.942331\pi\)
\(282\) 2.91361 2.69369i 0.173503 0.160407i
\(283\) −15.1350 15.1350i −0.899682 0.899682i 0.0957259 0.995408i \(-0.469483\pi\)
−0.995408 + 0.0957259i \(0.969483\pi\)
\(284\) −0.711284 + 9.05354i −0.0422070 + 0.537229i
\(285\) 0 0
\(286\) 0.972049 + 0.0381254i 0.0574785 + 0.00225440i
\(287\) 38.9259 2.29772
\(288\) −2.77927 + 13.9973i −0.163770 + 0.824800i
\(289\) 4.85021 0.285306
\(290\) 0 0
\(291\) 6.81873 6.81873i 0.399721 0.399721i
\(292\) 1.30103 16.5601i 0.0761371 0.969107i
\(293\) −10.7777 10.7777i −0.629637 0.629637i 0.318339 0.947977i \(-0.396875\pi\)
−0.947977 + 0.318339i \(0.896875\pi\)
\(294\) 10.9298 10.1048i 0.637438 0.589322i
\(295\) 0 0
\(296\) 9.85351 + 12.4939i 0.572724 + 0.726190i
\(297\) 21.1172i 1.22534i
\(298\) −1.53942 1.66511i −0.0891762 0.0964571i
\(299\) 0.143254 + 0.143254i 0.00828459 + 0.00828459i
\(300\) 0 0
\(301\) −10.7198 + 10.7198i −0.617881 + 0.617881i
\(302\) −0.394747 + 10.0645i −0.0227152 + 0.579148i
\(303\) −13.1008 −0.752621
\(304\) 8.29319 6.02882i 0.475647 0.345776i
\(305\) 0 0
\(306\) −0.653584 + 16.6639i −0.0373629 + 0.952609i
\(307\) 7.94378 7.94378i 0.453376 0.453376i −0.443098 0.896473i \(-0.646120\pi\)
0.896473 + 0.443098i \(0.146120\pi\)
\(308\) 39.6858 33.9042i 2.26131 1.93187i
\(309\) 6.72382 + 6.72382i 0.382505 + 0.382505i
\(310\) 0 0
\(311\) 31.1649i 1.76720i −0.468244 0.883599i \(-0.655113\pi\)
0.468244 0.883599i \(-0.344887\pi\)
\(312\) 0.0284956 0.241182i 0.00161325 0.0136542i
\(313\) 5.35842i 0.302876i 0.988467 + 0.151438i \(0.0483903\pi\)
−0.988467 + 0.151438i \(0.951610\pi\)
\(314\) −7.81482 + 7.22494i −0.441016 + 0.407727i
\(315\) 0 0
\(316\) 22.9925 + 1.80639i 1.29343 + 0.101617i
\(317\) −8.88165 + 8.88165i −0.498843 + 0.498843i −0.911078 0.412235i \(-0.864748\pi\)
0.412235 + 0.911078i \(0.364748\pi\)
\(318\) 6.95771 + 0.272893i 0.390169 + 0.0153031i
\(319\) −25.5450 −1.43025
\(320\) 0 0
\(321\) 0.320463 0.0178865
\(322\) 10.8619 + 0.426022i 0.605310 + 0.0237413i
\(323\) 8.47233 8.47233i 0.471413 0.471413i
\(324\) −9.83400 0.772600i −0.546333 0.0429222i
\(325\) 0 0
\(326\) −18.0646 + 16.7011i −1.00051 + 0.924987i
\(327\) 0.146260i 0.00808817i
\(328\) 2.73960 23.1875i 0.151269 1.28032i
\(329\) 19.1506i 1.05581i
\(330\) 0 0
\(331\) 6.07281 + 6.07281i 0.333792 + 0.333792i 0.854025 0.520233i \(-0.174155\pi\)
−0.520233 + 0.854025i \(0.674155\pi\)
\(332\) −2.51435 + 2.14805i −0.137993 + 0.117890i
\(333\) −10.0352 + 10.0352i −0.549928 + 0.549928i
\(334\) −0.546947 + 13.9450i −0.0299276 + 0.763038i
\(335\) 0 0
\(336\) −7.66222 10.5401i −0.418008 0.575009i
\(337\) −22.0227 −1.19965 −0.599827 0.800130i \(-0.704764\pi\)
−0.599827 + 0.800130i \(0.704764\pi\)
\(338\) −0.719672 + 18.3488i −0.0391450 + 0.998044i
\(339\) −2.92132 + 2.92132i −0.158664 + 0.158664i
\(340\) 0 0
\(341\) 8.33106 + 8.33106i 0.451152 + 0.451152i
\(342\) 6.20792 + 6.71477i 0.335686 + 0.363093i
\(343\) 38.8315i 2.09670i
\(344\) 5.63117 + 7.14009i 0.303612 + 0.384968i
\(345\) 0 0
\(346\) −19.6917 + 18.2053i −1.05863 + 0.978722i
\(347\) 11.8920 + 11.8920i 0.638395 + 0.638395i 0.950159 0.311765i \(-0.100920\pi\)
−0.311765 + 0.950159i \(0.600920\pi\)
\(348\) −0.499490 + 6.35773i −0.0267755 + 0.340810i
\(349\) −8.65696 + 8.65696i −0.463396 + 0.463396i −0.899767 0.436371i \(-0.856264\pi\)
0.436371 + 0.899767i \(0.356264\pi\)
\(350\) 0 0
\(351\) 0.474200 0.0253109
\(352\) −17.4031 26.0263i −0.927589 1.38721i
\(353\) −26.6153 −1.41659 −0.708296 0.705916i \(-0.750536\pi\)
−0.708296 + 0.705916i \(0.750536\pi\)
\(354\) 7.13051 + 0.279671i 0.378983 + 0.0148643i
\(355\) 0 0
\(356\) −0.508429 + 6.47151i −0.0269467 + 0.342989i
\(357\) −10.7678 10.7678i −0.569890 0.569890i
\(358\) 0.616185 0.569674i 0.0325664 0.0301082i
\(359\) 4.85032i 0.255990i −0.991775 0.127995i \(-0.959146\pi\)
0.991775 0.127995i \(-0.0408542\pi\)
\(360\) 0 0
\(361\) 12.4298i 0.654199i
\(362\) −19.3616 20.9424i −1.01762 1.10071i
\(363\) −9.59078 9.59078i −0.503385 0.503385i
\(364\) −0.761340 0.891168i −0.0399051 0.0467099i
\(365\) 0 0
\(366\) −0.385957 + 9.84039i −0.0201743 + 0.514365i
\(367\) −15.6741 −0.818182 −0.409091 0.912494i \(-0.634154\pi\)
−0.409091 + 0.912494i \(0.634154\pi\)
\(368\) 1.01823 6.44027i 0.0530792 0.335722i
\(369\) 20.8250 1.08411
\(370\) 0 0
\(371\) 23.7627 23.7627i 1.23370 1.23370i
\(372\) 2.23637 1.91057i 0.115950 0.0990582i
\(373\) 5.44481 + 5.44481i 0.281922 + 0.281922i 0.833875 0.551953i \(-0.186117\pi\)
−0.551953 + 0.833875i \(0.686117\pi\)
\(374\) −24.8375 26.8654i −1.28432 1.38918i
\(375\) 0 0
\(376\) −11.4077 1.34782i −0.588308 0.0695085i
\(377\) 0.573629i 0.0295434i
\(378\) 18.6827 17.2724i 0.960933 0.888399i
\(379\) −17.4103 17.4103i −0.894309 0.894309i 0.100616 0.994925i \(-0.467919\pi\)
−0.994925 + 0.100616i \(0.967919\pi\)
\(380\) 0 0
\(381\) 1.33402 1.33402i 0.0683438 0.0683438i
\(382\) 24.4901 + 0.960543i 1.25302 + 0.0491457i
\(383\) −9.04928 −0.462396 −0.231198 0.972907i \(-0.574265\pi\)
−0.231198 + 0.972907i \(0.574265\pi\)
\(384\) −6.81782 + 3.82245i −0.347921 + 0.195064i
\(385\) 0 0
\(386\) 23.8348 + 0.934839i 1.21316 + 0.0475821i
\(387\) −5.73503 + 5.73503i −0.291528 + 0.291528i
\(388\) −27.8303 2.18647i −1.41287 0.111001i
\(389\) −15.3617 15.3617i −0.778871 0.778871i 0.200768 0.979639i \(-0.435656\pi\)
−0.979639 + 0.200768i \(0.935656\pi\)
\(390\) 0 0
\(391\) 7.61962i 0.385341i
\(392\) −42.7935 5.05605i −2.16140 0.255369i
\(393\) 0.794869i 0.0400959i
\(394\) −4.87291 5.27076i −0.245493 0.265537i
\(395\) 0 0
\(396\) 21.2316 18.1385i 1.06693 0.911494i
\(397\) −9.44519 + 9.44519i −0.474041 + 0.474041i −0.903220 0.429179i \(-0.858803\pi\)
0.429179 + 0.903220i \(0.358803\pi\)
\(398\) −0.368301 + 9.39024i −0.0184613 + 0.470690i
\(399\) −8.35031 −0.418038
\(400\) 0 0
\(401\) −21.5765 −1.07748 −0.538739 0.842473i \(-0.681099\pi\)
−0.538739 + 0.842473i \(0.681099\pi\)
\(402\) 0.406098 10.3539i 0.0202543 0.516406i
\(403\) 0.187079 0.187079i 0.00931907 0.00931907i
\(404\) 24.6347 + 28.8356i 1.22562 + 1.43462i
\(405\) 0 0
\(406\) 20.8941 + 22.6000i 1.03696 + 1.12162i
\(407\) 31.1363i 1.54337i
\(408\) −7.17202 + 5.65635i −0.355068 + 0.280031i
\(409\) 4.17336i 0.206359i −0.994663 0.103180i \(-0.967098\pi\)
0.994663 0.103180i \(-0.0329017\pi\)
\(410\) 0 0
\(411\) −0.0976116 0.0976116i −0.00481482 0.00481482i
\(412\) 2.15604 27.4430i 0.106220 1.35202i
\(413\) 24.3529 24.3529i 1.19833 1.19833i
\(414\) 5.81103 + 0.227918i 0.285597 + 0.0112016i
\(415\) 0 0
\(416\) −0.584438 + 0.390798i −0.0286544 + 0.0191604i
\(417\) 11.3629 0.556445
\(418\) −20.0476 0.786300i −0.980560 0.0384592i
\(419\) 27.1191 27.1191i 1.32485 1.32485i 0.415060 0.909794i \(-0.363761\pi\)
0.909794 0.415060i \(-0.136239\pi\)
\(420\) 0 0
\(421\) −26.9594 26.9594i −1.31392 1.31392i −0.918500 0.395421i \(-0.870599\pi\)
−0.395421 0.918500i \(-0.629401\pi\)
\(422\) 2.80355 2.59193i 0.136475 0.126173i
\(423\) 10.2454i 0.498150i
\(424\) −12.4826 15.8275i −0.606210 0.768650i
\(425\) 0 0
\(426\) −3.01167 3.25756i −0.145916 0.157829i
\(427\) 33.6079 + 33.6079i 1.62640 + 1.62640i
\(428\) −0.602598 0.705357i −0.0291277 0.0340947i
\(429\) −0.336036 + 0.336036i −0.0162240 + 0.0162240i
\(430\) 0 0
\(431\) −22.4059 −1.07925 −0.539626 0.841905i \(-0.681434\pi\)
−0.539626 + 0.841905i \(0.681434\pi\)
\(432\) −8.97403 12.3446i −0.431763 0.593930i
\(433\) −16.8061 −0.807649 −0.403824 0.914837i \(-0.632319\pi\)
−0.403824 + 0.914837i \(0.632319\pi\)
\(434\) 0.556353 14.1848i 0.0267058 0.680894i
\(435\) 0 0
\(436\) −0.321925 + 0.275026i −0.0154174 + 0.0131714i
\(437\) −2.95448 2.95448i −0.141332 0.141332i
\(438\) 5.50874 + 5.95851i 0.263218 + 0.284708i
\(439\) 9.08322i 0.433519i 0.976225 + 0.216759i \(0.0695487\pi\)
−0.976225 + 0.216759i \(0.930451\pi\)
\(440\) 0 0
\(441\) 38.4335i 1.83017i
\(442\) −0.603279 + 0.557742i −0.0286951 + 0.0265291i
\(443\) 12.5397 + 12.5397i 0.595781 + 0.595781i 0.939187 0.343406i \(-0.111581\pi\)
−0.343406 + 0.939187i \(0.611581\pi\)
\(444\) −7.74933 0.608820i −0.367767 0.0288933i
\(445\) 0 0
\(446\) 34.0664 + 1.33614i 1.61309 + 0.0632681i
\(447\) 1.10780 0.0523972
\(448\) −8.79127 + 36.6845i −0.415349 + 1.73318i
\(449\) 18.0707 0.852811 0.426406 0.904532i \(-0.359780\pi\)
0.426406 + 0.904532i \(0.359780\pi\)
\(450\) 0 0
\(451\) −32.3069 + 32.3069i −1.52127 + 1.52127i
\(452\) 11.9232 + 0.936740i 0.560822 + 0.0440605i
\(453\) −3.47929 3.47929i −0.163471 0.163471i
\(454\) 9.80129 9.06146i 0.459997 0.425275i
\(455\) 0 0
\(456\) −0.587695 + 4.97415i −0.0275213 + 0.232936i
\(457\) 18.6637i 0.873052i 0.899692 + 0.436526i \(0.143791\pi\)
−0.899692 + 0.436526i \(0.856209\pi\)
\(458\) 21.8328 + 23.6153i 1.02018 + 1.10347i
\(459\) −12.6113 12.6113i −0.588643 0.588643i
\(460\) 0 0
\(461\) −0.831229 + 0.831229i −0.0387142 + 0.0387142i −0.726199 0.687485i \(-0.758715\pi\)
0.687485 + 0.726199i \(0.258715\pi\)
\(462\) −0.999335 + 25.4791i −0.0464933 + 1.18540i
\(463\) 7.82533 0.363674 0.181837 0.983329i \(-0.441796\pi\)
0.181837 + 0.983329i \(0.441796\pi\)
\(464\) 14.9330 10.8557i 0.693246 0.503962i
\(465\) 0 0
\(466\) 0.914382 23.3132i 0.0423579 1.07996i
\(467\) 8.75068 8.75068i 0.404933 0.404933i −0.475034 0.879967i \(-0.657564\pi\)
0.879967 + 0.475034i \(0.157564\pi\)
\(468\) −0.407311 0.476768i −0.0188280 0.0220386i
\(469\) −35.3617 35.3617i −1.63285 1.63285i
\(470\) 0 0
\(471\) 5.19922i 0.239568i
\(472\) −12.7926 16.2206i −0.588829 0.746612i
\(473\) 17.7941i 0.818172i
\(474\) −8.27297 + 7.64850i −0.379990 + 0.351307i
\(475\) 0 0
\(476\) −3.45275 + 43.9481i −0.158257 + 2.01436i
\(477\) 12.7129 12.7129i 0.582082 0.582082i
\(478\) 7.43188 + 0.291491i 0.339926 + 0.0133325i
\(479\) 2.10417 0.0961421 0.0480710 0.998844i \(-0.484693\pi\)
0.0480710 + 0.998844i \(0.484693\pi\)
\(480\) 0 0
\(481\) −0.699186 −0.0318801
\(482\) −19.9430 0.782196i −0.908377 0.0356281i
\(483\) −3.75494 + 3.75494i −0.170856 + 0.170856i
\(484\) −3.07534 + 39.1443i −0.139788 + 1.77929i
\(485\) 0 0
\(486\) 15.4245 14.2602i 0.699671 0.646858i
\(487\) 4.87183i 0.220764i 0.993889 + 0.110382i \(0.0352074\pi\)
−0.993889 + 0.110382i \(0.964793\pi\)
\(488\) 22.3850 17.6544i 1.01332 0.799175i
\(489\) 12.0185i 0.543494i
\(490\) 0 0
\(491\) 14.3582 + 14.3582i 0.647975 + 0.647975i 0.952503 0.304528i \(-0.0984987\pi\)
−0.304528 + 0.952503i \(0.598499\pi\)
\(492\) 7.40895 + 8.67237i 0.334021 + 0.390981i
\(493\) 15.2555 15.2555i 0.687075 0.687075i
\(494\) −0.0176569 + 0.450181i −0.000794419 + 0.0202546i
\(495\) 0 0
\(496\) −8.41052 1.32974i −0.377644 0.0597071i
\(497\) −21.4113 −0.960429
\(498\) 0.0633143 1.61427i 0.00283718 0.0723370i
\(499\) −25.1060 + 25.1060i −1.12390 + 1.12390i −0.132748 + 0.991150i \(0.542380\pi\)
−0.991150 + 0.132748i \(0.957620\pi\)
\(500\) 0 0
\(501\) −4.82077 4.82077i −0.215376 0.215376i
\(502\) −13.5611 14.6683i −0.605260 0.654677i
\(503\) 18.8868i 0.842120i 0.907033 + 0.421060i \(0.138342\pi\)
−0.907033 + 0.421060i \(0.861658\pi\)
\(504\) −33.4133 3.94778i −1.48835 0.175848i
\(505\) 0 0
\(506\) −9.36852 + 8.66136i −0.416482 + 0.385044i
\(507\) −6.34316 6.34316i −0.281710 0.281710i
\(508\) −5.44473 0.427761i −0.241571 0.0189788i
\(509\) −22.9756 + 22.9756i −1.01837 + 1.01837i −0.0185459 + 0.999828i \(0.505904\pi\)
−0.999828 + 0.0185459i \(0.994096\pi\)
\(510\) 0 0
\(511\) 39.1641 1.73252
\(512\) 21.2337 + 7.81868i 0.938404 + 0.345540i
\(513\) −9.77993 −0.431794
\(514\) −11.9375 0.468210i −0.526542 0.0206519i
\(515\) 0 0
\(516\) −4.42865 0.347933i −0.194961 0.0153169i
\(517\) 15.8942 + 15.8942i 0.699028 + 0.699028i
\(518\) −27.5467 + 25.4674i −1.21033 + 1.11897i
\(519\) 13.1009i 0.575066i
\(520\) 0 0
\(521\) 20.2089i 0.885367i 0.896678 + 0.442683i \(0.145973\pi\)
−0.896678 + 0.442683i \(0.854027\pi\)
\(522\) 11.1782 + 12.0908i 0.489255 + 0.529201i
\(523\) −3.93445 3.93445i −0.172042 0.172042i 0.615834 0.787876i \(-0.288819\pi\)
−0.787876 + 0.615834i \(0.788819\pi\)
\(524\) −1.74955 + 1.49467i −0.0764295 + 0.0652951i
\(525\) 0 0
\(526\) −1.01464 + 25.8693i −0.0442402 + 1.12795i
\(527\) −9.95066 −0.433458
\(528\) 15.1072 + 2.38851i 0.657456 + 0.103947i
\(529\) 20.3429 0.884473
\(530\) 0 0
\(531\) 13.0286 13.0286i 0.565393 0.565393i
\(532\) 15.7019 + 18.3795i 0.680765 + 0.796853i
\(533\) 0.725471 + 0.725471i 0.0314237 + 0.0314237i
\(534\) −2.15276 2.32852i −0.0931589 0.100765i
\(535\) 0 0
\(536\) −23.5532 + 18.5757i −1.01734 + 0.802346i
\(537\) 0.409950i 0.0176906i
\(538\) 19.9181 18.4146i 0.858729 0.793910i
\(539\) 59.6238 + 59.6238i 2.56818 + 2.56818i
\(540\) 0 0
\(541\) −3.17895 + 3.17895i −0.136674 + 0.136674i −0.772134 0.635460i \(-0.780811\pi\)
0.635460 + 0.772134i \(0.280811\pi\)
\(542\) −3.17275 0.124440i −0.136281 0.00534518i
\(543\) 13.9330 0.597923
\(544\) 25.9362 + 5.14982i 1.11201 + 0.220797i
\(545\) 0 0
\(546\) 0.572150 + 0.0224407i 0.0244857 + 0.000960372i
\(547\) −1.32918 + 1.32918i −0.0568317 + 0.0568317i −0.734951 0.678120i \(-0.762795\pi\)
0.678120 + 0.734951i \(0.262795\pi\)
\(548\) −0.0312998 + 0.398397i −0.00133706 + 0.0170187i
\(549\) 17.9800 + 17.9800i 0.767366 + 0.767366i
\(550\) 0 0
\(551\) 11.8306i 0.503998i
\(552\) 1.97249 + 2.50103i 0.0839545 + 0.106451i
\(553\) 54.3766i 2.31233i
\(554\) 9.88754 + 10.6948i 0.420081 + 0.454379i
\(555\) 0 0
\(556\) −21.3669 25.0105i −0.906157 1.06068i
\(557\) −24.9082 + 24.9082i −1.05539 + 1.05539i −0.0570196 + 0.998373i \(0.518160\pi\)
−0.998373 + 0.0570196i \(0.981840\pi\)
\(558\) 0.297645 7.58878i 0.0126003 0.321259i
\(559\) −0.399576 −0.0169003
\(560\) 0 0
\(561\) 17.8736 0.754625
\(562\) −0.334815 + 8.53648i −0.0141233 + 0.360090i
\(563\) −3.80804 + 3.80804i −0.160490 + 0.160490i −0.782784 0.622294i \(-0.786201\pi\)
0.622294 + 0.782784i \(0.286201\pi\)
\(564\) 4.26660 3.64503i 0.179656 0.153484i
\(565\) 0 0
\(566\) −20.5488 22.2265i −0.863731 0.934251i
\(567\) 23.2571i 0.976706i
\(568\) −1.50693 + 12.7544i −0.0632293 + 0.535162i
\(569\) 8.43971i 0.353811i −0.984228 0.176905i \(-0.943391\pi\)
0.984228 0.176905i \(-0.0566087\pi\)
\(570\) 0 0
\(571\) −21.2821 21.2821i −0.890629 0.890629i 0.103953 0.994582i \(-0.466851\pi\)
−0.994582 + 0.103953i \(0.966851\pi\)
\(572\) 1.37152 + 0.107752i 0.0573460 + 0.00450534i
\(573\) −8.46619 + 8.46619i −0.353680 + 0.353680i
\(574\) 55.0072 + 2.15747i 2.29596 + 0.0900512i
\(575\) 0 0
\(576\) −4.70326 + 19.6259i −0.195969 + 0.817748i
\(577\) 36.3491 1.51323 0.756615 0.653860i \(-0.226852\pi\)
0.756615 + 0.653860i \(0.226852\pi\)
\(578\) 6.85396 + 0.268824i 0.285087 + 0.0111816i
\(579\) −8.23964 + 8.23964i −0.342428 + 0.342428i
\(580\) 0 0
\(581\) −5.51321 5.51321i −0.228726 0.228726i
\(582\) 10.0137 9.25780i 0.415080 0.383748i
\(583\) 39.4442i 1.63361i
\(584\) 2.75637 23.3294i 0.114059 0.965379i
\(585\) 0 0
\(586\) −14.6328 15.8275i −0.604477 0.653830i
\(587\) 6.55994 + 6.55994i 0.270758 + 0.270758i 0.829405 0.558647i \(-0.188679\pi\)
−0.558647 + 0.829405i \(0.688679\pi\)
\(588\) 16.0052 13.6735i 0.660044 0.563887i
\(589\) −3.85833 + 3.85833i −0.158980 + 0.158980i
\(590\) 0 0
\(591\) 3.50665 0.144244
\(592\) 13.2318 + 18.2015i 0.543823 + 0.748078i
\(593\) 1.40974 0.0578911 0.0289455 0.999581i \(-0.490785\pi\)
0.0289455 + 0.999581i \(0.490785\pi\)
\(594\) −1.17043 + 29.8413i −0.0480231 + 1.22440i
\(595\) 0 0
\(596\) −2.08311 2.43833i −0.0853274 0.0998779i
\(597\) −3.24619 3.24619i −0.132858 0.132858i
\(598\) 0.194496 + 0.210376i 0.00795354 + 0.00860291i
\(599\) 23.3593i 0.954435i −0.878785 0.477218i \(-0.841645\pi\)
0.878785 0.477218i \(-0.158355\pi\)
\(600\) 0 0
\(601\) 20.4138i 0.832695i −0.909206 0.416347i \(-0.863310\pi\)
0.909206 0.416347i \(-0.136690\pi\)
\(602\) −15.7426 + 14.5543i −0.641622 + 0.593190i
\(603\) −18.9183 18.9183i −0.770411 0.770411i
\(604\) −1.11566 + 14.2006i −0.0453954 + 0.577813i
\(605\) 0 0
\(606\) −18.5131 0.726115i −0.752043 0.0294964i
\(607\) −0.758240 −0.0307760 −0.0153880 0.999882i \(-0.504898\pi\)
−0.0153880 + 0.999882i \(0.504898\pi\)
\(608\) 12.0535 8.05983i 0.488833 0.326869i
\(609\) −15.0358 −0.609283
\(610\) 0 0
\(611\) 0.356915 0.356915i 0.0144392 0.0144392i
\(612\) −1.84719 + 23.5119i −0.0746684 + 0.950413i
\(613\) −12.0341 12.0341i −0.486052 0.486052i 0.421006 0.907058i \(-0.361677\pi\)
−0.907058 + 0.421006i \(0.861677\pi\)
\(614\) 11.6659 10.7853i 0.470796 0.435259i
\(615\) 0 0
\(616\) 57.9602 45.7114i 2.33528 1.84176i
\(617\) 32.6899i 1.31605i −0.752998 0.658023i \(-0.771393\pi\)
0.752998 0.658023i \(-0.228607\pi\)
\(618\) 9.12894 + 9.87428i 0.367220 + 0.397202i
\(619\) 26.3836 + 26.3836i 1.06045 + 1.06045i 0.998052 + 0.0623934i \(0.0198733\pi\)
0.0623934 + 0.998052i \(0.480127\pi\)
\(620\) 0 0
\(621\) −4.39781 + 4.39781i −0.176478 + 0.176478i
\(622\) 1.72732 44.0399i 0.0692592 1.76584i
\(623\) −15.3049 −0.613178
\(624\) 0.0536355 0.339241i 0.00214714 0.0135805i
\(625\) 0 0
\(626\) −0.296991 + 7.57213i −0.0118702 + 0.302643i
\(627\) 6.93042 6.93042i 0.276774 0.276774i
\(628\) −11.4438 + 9.77662i −0.456657 + 0.390130i
\(629\) 18.5947 + 18.5947i 0.741420 + 0.741420i
\(630\) 0 0
\(631\) 6.08765i 0.242345i −0.992631 0.121173i \(-0.961335\pi\)
0.992631 0.121173i \(-0.0386655\pi\)
\(632\) 32.3913 + 3.82703i 1.28846 + 0.152231i
\(633\) 1.86521i 0.0741354i
\(634\) −13.0432 + 12.0586i −0.518010 + 0.478909i
\(635\) 0 0
\(636\) 9.81701 + 0.771266i 0.389270 + 0.0305827i
\(637\) 1.33889 1.33889i 0.0530487 0.0530487i
\(638\) −36.0983 1.41584i −1.42915 0.0560535i
\(639\) −11.4549 −0.453149
\(640\) 0 0
\(641\) 11.1680 0.441111 0.220555 0.975374i \(-0.429213\pi\)
0.220555 + 0.975374i \(0.429213\pi\)
\(642\) 0.452855 + 0.0177617i 0.0178728 + 0.000700999i
\(643\) 21.9585 21.9585i 0.865957 0.865957i −0.126065 0.992022i \(-0.540235\pi\)
0.992022 + 0.126065i \(0.0402348\pi\)
\(644\) 15.3256 + 1.20405i 0.603914 + 0.0474460i
\(645\) 0 0
\(646\) 12.4421 11.5029i 0.489526 0.452575i
\(647\) 36.9848i 1.45402i 0.686625 + 0.727011i \(0.259091\pi\)
−0.686625 + 0.727011i \(0.740909\pi\)
\(648\) −13.8539 1.63683i −0.544231 0.0643009i
\(649\) 40.4238i 1.58677i
\(650\) 0 0
\(651\) 4.90368 + 4.90368i 0.192190 + 0.192190i
\(652\) −26.4533 + 22.5995i −1.03599 + 0.885065i
\(653\) 18.4157 18.4157i 0.720663 0.720663i −0.248077 0.968740i \(-0.579799\pi\)
0.968740 + 0.248077i \(0.0797986\pi\)
\(654\) 0.00810646 0.206683i 0.000316988 0.00808196i
\(655\) 0 0
\(656\) 5.15658 32.6150i 0.201331 1.27340i
\(657\) 20.9525 0.817435
\(658\) 1.06143 27.0622i 0.0413787 1.05500i
\(659\) −15.5421 + 15.5421i −0.605434 + 0.605434i −0.941749 0.336316i \(-0.890819\pi\)
0.336316 + 0.941749i \(0.390819\pi\)
\(660\) 0 0
\(661\) 29.6677 + 29.6677i 1.15394 + 1.15394i 0.985755 + 0.168185i \(0.0537906\pi\)
0.168185 + 0.985755i \(0.446209\pi\)
\(662\) 8.24507 + 8.91825i 0.320454 + 0.346617i
\(663\) 0.401363i 0.0155877i
\(664\) −3.67215 + 2.89611i −0.142507 + 0.112391i
\(665\) 0 0
\(666\) −14.7373 + 13.6249i −0.571058 + 0.527953i
\(667\) −5.31992 5.31992i −0.205988 0.205988i
\(668\) −1.54581 + 19.6758i −0.0598092 + 0.761278i
\(669\) −11.7767 + 11.7767i −0.455313 + 0.455313i
\(670\) 0 0
\(671\) −55.7864 −2.15361
\(672\) −10.2435 15.3192i −0.395152 0.590949i
\(673\) 29.2198 1.12634 0.563171 0.826340i \(-0.309581\pi\)
0.563171 + 0.826340i \(0.309581\pi\)
\(674\) −31.1209 1.22061i −1.19873 0.0470163i
\(675\) 0 0
\(676\) −2.03397 + 25.8893i −0.0782298 + 0.995743i
\(677\) −17.2591 17.2591i −0.663320 0.663320i 0.292841 0.956161i \(-0.405399\pi\)
−0.956161 + 0.292841i \(0.905399\pi\)
\(678\) −4.29011 + 3.96628i −0.164761 + 0.152324i
\(679\) 65.8179i 2.52586i
\(680\) 0 0
\(681\) 6.52082i 0.249878i
\(682\) 11.3111 + 12.2346i 0.433124 + 0.468487i
\(683\) −1.10407 1.10407i −0.0422459 0.0422459i 0.685668 0.727914i \(-0.259510\pi\)
−0.727914 + 0.685668i \(0.759510\pi\)
\(684\) 8.40041 + 9.83289i 0.321198 + 0.375970i
\(685\) 0 0
\(686\) 2.15224 54.8738i 0.0821731 2.09509i
\(687\) −15.7113 −0.599425
\(688\) 7.56181 + 10.4020i 0.288291 + 0.396571i
\(689\) 0.885743 0.0337441
\(690\) 0 0
\(691\) −28.4233 + 28.4233i −1.08127 + 1.08127i −0.0848830 + 0.996391i \(0.527052\pi\)
−0.996391 + 0.0848830i \(0.972948\pi\)
\(692\) −28.8359 + 24.6350i −1.09617 + 0.936481i
\(693\) 46.5545 + 46.5545i 1.76846 + 1.76846i
\(694\) 16.1458 + 17.4640i 0.612885 + 0.662924i
\(695\) 0 0
\(696\) −1.05822 + 8.95660i −0.0401118 + 0.339499i
\(697\) 38.5875i 1.46161i
\(698\) −12.7132 + 11.7536i −0.481201 + 0.444879i
\(699\) 8.05933 + 8.05933i 0.304832 + 0.304832i
\(700\) 0 0
\(701\) −23.7991 + 23.7991i −0.898880 + 0.898880i −0.995337 0.0964573i \(-0.969249\pi\)
0.0964573 + 0.995337i \(0.469249\pi\)
\(702\) 0.670105 + 0.0262826i 0.0252915 + 0.000991974i
\(703\) 14.4200 0.543862
\(704\) −23.1503 37.7431i −0.872510 1.42250i
\(705\) 0 0
\(706\) −37.6109 1.47516i −1.41550 0.0555184i
\(707\) −63.2278 + 63.2278i −2.37793 + 2.37793i
\(708\) 10.0608 + 0.790421i 0.378109 + 0.0297058i
\(709\) 1.49921 + 1.49921i 0.0563039 + 0.0563039i 0.734698 0.678394i \(-0.237324\pi\)
−0.678394 + 0.734698i \(0.737324\pi\)
\(710\) 0 0
\(711\) 29.0911i 1.09100i
\(712\) −1.07716 + 9.11688i −0.0403682 + 0.341670i
\(713\) 3.47000i 0.129953i
\(714\) −14.6194 15.8130i −0.547118 0.591787i
\(715\) 0 0
\(716\) 0.902323 0.770870i 0.0337214 0.0288088i
\(717\) −2.56919 + 2.56919i −0.0959482 + 0.0959482i
\(718\) 0.268830 6.85412i 0.0100327 0.255794i
\(719\) 7.37612 0.275083 0.137541 0.990496i \(-0.456080\pi\)
0.137541 + 0.990496i \(0.456080\pi\)
\(720\) 0 0
\(721\) 64.9017 2.41707
\(722\) −0.688923 + 17.5649i −0.0256391 + 0.653696i
\(723\) 6.89425 6.89425i 0.256400 0.256400i
\(724\) −26.1996 30.6673i −0.973702 1.13974i
\(725\) 0 0
\(726\) −13.0214 14.0846i −0.483270 0.522727i
\(727\) 30.1470i 1.11809i −0.829137 0.559045i \(-0.811168\pi\)
0.829137 0.559045i \(-0.188832\pi\)
\(728\) −1.02648 1.30153i −0.0380438 0.0482380i
\(729\) 4.53447i 0.167943i
\(730\) 0 0
\(731\) 10.6267 + 10.6267i 0.393041 + 0.393041i
\(732\) −1.09081 + 13.8843i −0.0403176 + 0.513180i
\(733\) 1.43297 1.43297i 0.0529279 0.0529279i −0.680147 0.733075i \(-0.738084\pi\)
0.733075 + 0.680147i \(0.238084\pi\)
\(734\) −22.1495 0.868740i −0.817553 0.0320658i
\(735\) 0 0
\(736\) 1.79585 9.04449i 0.0661959 0.333384i
\(737\) 58.6977 2.16216
\(738\) 29.4284 + 1.15423i 1.08328 + 0.0424879i
\(739\) 31.0001 31.0001i 1.14036 1.14036i 0.151973 0.988385i \(-0.451437\pi\)
0.988385 0.151973i \(-0.0485626\pi\)
\(740\) 0 0
\(741\) −0.155627 0.155627i −0.00571710 0.00571710i
\(742\) 34.8968 32.2626i 1.28110 1.18440i
\(743\) 38.5395i 1.41388i 0.707276 + 0.706938i \(0.249924\pi\)
−0.707276 + 0.706938i \(0.750076\pi\)
\(744\) 3.26616 2.57592i 0.119743 0.0944378i
\(745\) 0 0
\(746\) 7.39243 + 7.99599i 0.270656 + 0.292754i
\(747\) −2.94952 2.94952i −0.107917 0.107917i
\(748\) −33.6096 39.3408i −1.22889 1.43844i
\(749\) 1.54664 1.54664i 0.0565128 0.0565128i
\(750\) 0 0
\(751\) 26.9523 0.983503 0.491751 0.870736i \(-0.336357\pi\)
0.491751 + 0.870736i \(0.336357\pi\)
\(752\) −16.0458 2.53692i −0.585132 0.0925118i
\(753\) 9.75884 0.355632
\(754\) −0.0317935 + 0.810610i −0.00115785 + 0.0295207i
\(755\) 0 0
\(756\) 27.3583 23.3727i 0.995012 0.850056i
\(757\) −17.0688 17.0688i −0.620377 0.620377i 0.325251 0.945628i \(-0.394551\pi\)
−0.945628 + 0.325251i \(0.894551\pi\)
\(758\) −23.6380 25.5680i −0.858573 0.928671i
\(759\) 6.23290i 0.226240i
\(760\) 0 0
\(761\) 6.89608i 0.249983i −0.992158 0.124991i \(-0.960110\pi\)
0.992158 0.124991i \(-0.0398903\pi\)
\(762\) 1.95907 1.81120i 0.0709698 0.0656128i
\(763\) −0.705886 0.705886i −0.0255548 0.0255548i
\(764\) 34.5544 + 2.71474i 1.25013 + 0.0982158i
\(765\) 0 0
\(766\) −12.7878 0.501558i −0.462041 0.0181220i
\(767\) 0.907741 0.0327766
\(768\) −9.84631 + 5.02373i −0.355298 + 0.181278i
\(769\) 11.8443 0.427117 0.213558 0.976930i \(-0.431495\pi\)
0.213558 + 0.976930i \(0.431495\pi\)
\(770\) 0 0
\(771\) 4.12679 4.12679i 0.148623 0.148623i
\(772\) 33.6297 + 2.64209i 1.21036 + 0.0950910i
\(773\) 3.58865 + 3.58865i 0.129075 + 0.129075i 0.768693 0.639618i \(-0.220907\pi\)
−0.639618 + 0.768693i \(0.720907\pi\)
\(774\) −8.42219 + 7.78646i −0.302729 + 0.279878i
\(775\) 0 0
\(776\) −39.2066 4.63226i −1.40744 0.166288i
\(777\) 18.3269i 0.657474i
\(778\) −20.8567 22.5595i −0.747748 0.808798i
\(779\) −14.9622 14.9622i −0.536075 0.536075i
\(780\) 0 0
\(781\) 17.7705 17.7705i 0.635880 0.635880i
\(782\) 0.422319 10.7675i 0.0151021 0.385045i