Properties

Label 400.2.bi.d.303.1
Level $400$
Weight $2$
Character 400.303
Analytic conductor $3.194$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(47,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 17])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 303.1
Character \(\chi\) \(=\) 400.303
Dual form 400.2.bi.d.367.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.10308 + 0.491480i) q^{3} +(-0.657061 - 2.13735i) q^{5} +(-1.48242 - 1.48242i) q^{7} +(6.53441 - 2.12316i) q^{9} +(1.78975 + 0.581525i) q^{11} +(-3.02736 + 5.94154i) q^{13} +(3.08938 + 6.30945i) q^{15} +(0.378869 - 2.39209i) q^{17} +(-2.43438 + 1.76868i) q^{19} +(5.32864 + 3.87148i) q^{21} +(2.55503 + 5.01453i) q^{23} +(-4.13654 + 2.80874i) q^{25} +(-10.8353 + 5.52089i) q^{27} +(-2.79473 + 3.84662i) q^{29} +(1.62620 + 2.23827i) q^{31} +(-5.83955 - 0.924894i) q^{33} +(-2.19440 + 4.14248i) q^{35} +(3.13777 + 1.59877i) q^{37} +(6.47402 - 19.9250i) q^{39} +(2.32964 + 7.16989i) q^{41} +(8.80325 - 8.80325i) q^{43} +(-8.83145 - 12.5713i) q^{45} +(1.05721 + 6.67497i) q^{47} -2.60489i q^{49} +7.60906i q^{51} +(1.14017 + 7.19877i) q^{53} +(0.0669477 - 4.20742i) q^{55} +(6.68480 - 6.68480i) q^{57} +(-0.807784 - 2.48610i) q^{59} +(-0.283453 + 0.872379i) q^{61} +(-12.8341 - 6.53931i) q^{63} +(14.6883 + 2.56659i) q^{65} +(-8.27337 - 1.31037i) q^{67} +(-10.3930 - 14.3048i) q^{69} +(-5.33283 + 7.34002i) q^{71} +(1.04647 - 0.533201i) q^{73} +(11.4556 - 10.7488i) q^{75} +(-1.79109 - 3.51521i) q^{77} +(4.61218 + 3.35095i) q^{79} +(14.2341 - 10.3417i) q^{81} +(0.967254 - 6.10700i) q^{83} +(-5.36167 + 0.761971i) q^{85} +(6.78175 - 13.3099i) q^{87} +(0.0514581 + 0.0167197i) q^{89} +(13.2956 - 4.32001i) q^{91} +(-6.14629 - 6.14629i) q^{93} +(5.37982 + 4.04099i) q^{95} +(-15.5905 + 2.46930i) q^{97} +12.9296 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{5} - 4 q^{13} - 24 q^{17} - 48 q^{25} - 40 q^{29} - 64 q^{33} - 20 q^{37} - 24 q^{45} + 28 q^{53} + 48 q^{57} + 112 q^{65} + 140 q^{69} + 108 q^{73} + 136 q^{77} - 20 q^{81} - 24 q^{85} + 80 q^{89}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{7}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.10308 + 0.491480i −1.79157 + 0.283756i −0.961680 0.274175i \(-0.911595\pi\)
−0.829887 + 0.557931i \(0.811595\pi\)
\(4\) 0 0
\(5\) −0.657061 2.13735i −0.293847 0.955853i
\(6\) 0 0
\(7\) −1.48242 1.48242i −0.560300 0.560300i 0.369092 0.929393i \(-0.379669\pi\)
−0.929393 + 0.369092i \(0.879669\pi\)
\(8\) 0 0
\(9\) 6.53441 2.12316i 2.17814 0.707720i
\(10\) 0 0
\(11\) 1.78975 + 0.581525i 0.539630 + 0.175336i 0.566135 0.824312i \(-0.308438\pi\)
−0.0265057 + 0.999649i \(0.508438\pi\)
\(12\) 0 0
\(13\) −3.02736 + 5.94154i −0.839640 + 1.64789i −0.0806872 + 0.996739i \(0.525711\pi\)
−0.758952 + 0.651146i \(0.774289\pi\)
\(14\) 0 0
\(15\) 3.08938 + 6.30945i 0.797675 + 1.62909i
\(16\) 0 0
\(17\) 0.378869 2.39209i 0.0918893 0.580166i −0.898185 0.439619i \(-0.855114\pi\)
0.990074 0.140548i \(-0.0448864\pi\)
\(18\) 0 0
\(19\) −2.43438 + 1.76868i −0.558484 + 0.405762i −0.830904 0.556416i \(-0.812176\pi\)
0.272420 + 0.962179i \(0.412176\pi\)
\(20\) 0 0
\(21\) 5.32864 + 3.87148i 1.16280 + 0.844827i
\(22\) 0 0
\(23\) 2.55503 + 5.01453i 0.532761 + 1.04560i 0.987887 + 0.155175i \(0.0495940\pi\)
−0.455126 + 0.890427i \(0.650406\pi\)
\(24\) 0 0
\(25\) −4.13654 + 2.80874i −0.827308 + 0.561748i
\(26\) 0 0
\(27\) −10.8353 + 5.52089i −2.08526 + 1.06250i
\(28\) 0 0
\(29\) −2.79473 + 3.84662i −0.518968 + 0.714299i −0.985399 0.170259i \(-0.945540\pi\)
0.466431 + 0.884558i \(0.345540\pi\)
\(30\) 0 0
\(31\) 1.62620 + 2.23827i 0.292073 + 0.402005i 0.929686 0.368352i \(-0.120078\pi\)
−0.637613 + 0.770357i \(0.720078\pi\)
\(32\) 0 0
\(33\) −5.83955 0.924894i −1.01654 0.161003i
\(34\) 0 0
\(35\) −2.19440 + 4.14248i −0.370922 + 0.700207i
\(36\) 0 0
\(37\) 3.13777 + 1.59877i 0.515845 + 0.262836i 0.692476 0.721441i \(-0.256520\pi\)
−0.176631 + 0.984277i \(0.556520\pi\)
\(38\) 0 0
\(39\) 6.47402 19.9250i 1.03667 3.19055i
\(40\) 0 0
\(41\) 2.32964 + 7.16989i 0.363828 + 1.11975i 0.950711 + 0.310077i \(0.100355\pi\)
−0.586883 + 0.809672i \(0.699645\pi\)
\(42\) 0 0
\(43\) 8.80325 8.80325i 1.34248 1.34248i 0.448901 0.893581i \(-0.351816\pi\)
0.893581 0.448901i \(-0.148184\pi\)
\(44\) 0 0
\(45\) −8.83145 12.5713i −1.31651 1.87402i
\(46\) 0 0
\(47\) 1.05721 + 6.67497i 0.154210 + 0.973644i 0.936484 + 0.350710i \(0.114060\pi\)
−0.782274 + 0.622934i \(0.785940\pi\)
\(48\) 0 0
\(49\) 2.60489i 0.372127i
\(50\) 0 0
\(51\) 7.60906i 1.06548i
\(52\) 0 0
\(53\) 1.14017 + 7.19877i 0.156615 + 0.988826i 0.933342 + 0.358989i \(0.116878\pi\)
−0.776727 + 0.629837i \(0.783122\pi\)
\(54\) 0 0
\(55\) 0.0669477 4.20742i 0.00902723 0.567328i
\(56\) 0 0
\(57\) 6.68480 6.68480i 0.885424 0.885424i
\(58\) 0 0
\(59\) −0.807784 2.48610i −0.105165 0.323663i 0.884604 0.466342i \(-0.154428\pi\)
−0.989769 + 0.142679i \(0.954428\pi\)
\(60\) 0 0
\(61\) −0.283453 + 0.872379i −0.0362924 + 0.111697i −0.967562 0.252635i \(-0.918703\pi\)
0.931269 + 0.364332i \(0.118703\pi\)
\(62\) 0 0
\(63\) −12.8341 6.53931i −1.61695 0.823876i
\(64\) 0 0
\(65\) 14.6883 + 2.56659i 1.82186 + 0.318346i
\(66\) 0 0
\(67\) −8.27337 1.31037i −1.01075 0.160088i −0.370972 0.928644i \(-0.620975\pi\)
−0.639782 + 0.768557i \(0.720975\pi\)
\(68\) 0 0
\(69\) −10.3930 14.3048i −1.25117 1.72209i
\(70\) 0 0
\(71\) −5.33283 + 7.34002i −0.632891 + 0.871100i −0.998211 0.0597821i \(-0.980959\pi\)
0.365320 + 0.930882i \(0.380959\pi\)
\(72\) 0 0
\(73\) 1.04647 0.533201i 0.122480 0.0624065i −0.391677 0.920103i \(-0.628105\pi\)
0.514157 + 0.857696i \(0.328105\pi\)
\(74\) 0 0
\(75\) 11.4556 10.7488i 1.32278 1.24116i
\(76\) 0 0
\(77\) −1.79109 3.51521i −0.204114 0.400596i
\(78\) 0 0
\(79\) 4.61218 + 3.35095i 0.518911 + 0.377011i 0.816194 0.577779i \(-0.196080\pi\)
−0.297282 + 0.954790i \(0.596080\pi\)
\(80\) 0 0
\(81\) 14.2341 10.3417i 1.58157 1.14907i
\(82\) 0 0
\(83\) 0.967254 6.10700i 0.106170 0.670330i −0.875997 0.482317i \(-0.839795\pi\)
0.982167 0.188013i \(-0.0602047\pi\)
\(84\) 0 0
\(85\) −5.36167 + 0.761971i −0.581555 + 0.0826474i
\(86\) 0 0
\(87\) 6.78175 13.3099i 0.727080 1.42697i
\(88\) 0 0
\(89\) 0.0514581 + 0.0167197i 0.00545454 + 0.00177229i 0.311743 0.950166i \(-0.399087\pi\)
−0.306288 + 0.951939i \(0.599087\pi\)
\(90\) 0 0
\(91\) 13.2956 4.32001i 1.39376 0.452860i
\(92\) 0 0
\(93\) −6.14629 6.14629i −0.637340 0.637340i
\(94\) 0 0
\(95\) 5.37982 + 4.04099i 0.551958 + 0.414596i
\(96\) 0 0
\(97\) −15.5905 + 2.46930i −1.58298 + 0.250719i −0.885066 0.465465i \(-0.845887\pi\)
−0.697912 + 0.716184i \(0.745887\pi\)
\(98\) 0 0
\(99\) 12.9296 1.29948
\(100\) 0 0
\(101\) −13.5714 −1.35041 −0.675203 0.737632i \(-0.735944\pi\)
−0.675203 + 0.737632i \(0.735944\pi\)
\(102\) 0 0
\(103\) −11.5602 + 1.83096i −1.13906 + 0.180410i −0.697339 0.716742i \(-0.745633\pi\)
−0.441723 + 0.897151i \(0.645633\pi\)
\(104\) 0 0
\(105\) 4.77348 13.9330i 0.465844 1.35972i
\(106\) 0 0
\(107\) 0.0758596 + 0.0758596i 0.00733362 + 0.00733362i 0.710764 0.703430i \(-0.248349\pi\)
−0.703430 + 0.710764i \(0.748349\pi\)
\(108\) 0 0
\(109\) 1.88979 0.614031i 0.181009 0.0588135i −0.217110 0.976147i \(-0.569663\pi\)
0.398119 + 0.917334i \(0.369663\pi\)
\(110\) 0 0
\(111\) −10.5225 3.41897i −0.998753 0.324515i
\(112\) 0 0
\(113\) −1.52262 + 2.98831i −0.143236 + 0.281117i −0.951468 0.307748i \(-0.900425\pi\)
0.808232 + 0.588864i \(0.200425\pi\)
\(114\) 0 0
\(115\) 9.03900 8.75585i 0.842891 0.816487i
\(116\) 0 0
\(117\) −7.16722 + 45.2520i −0.662609 + 4.18355i
\(118\) 0 0
\(119\) −4.10771 + 2.98443i −0.376553 + 0.273582i
\(120\) 0 0
\(121\) −6.03416 4.38407i −0.548560 0.398552i
\(122\) 0 0
\(123\) −10.7529 21.1038i −0.969559 1.90287i
\(124\) 0 0
\(125\) 8.72123 + 6.99573i 0.780050 + 0.625717i
\(126\) 0 0
\(127\) −8.15162 + 4.15346i −0.723339 + 0.368560i −0.776577 0.630022i \(-0.783046\pi\)
0.0532378 + 0.998582i \(0.483046\pi\)
\(128\) 0 0
\(129\) −22.9906 + 31.6438i −2.02421 + 2.78609i
\(130\) 0 0
\(131\) 10.6435 + 14.6495i 0.929923 + 1.27993i 0.959890 + 0.280378i \(0.0904598\pi\)
−0.0299669 + 0.999551i \(0.509540\pi\)
\(132\) 0 0
\(133\) 6.23067 + 0.986841i 0.540268 + 0.0855700i
\(134\) 0 0
\(135\) 18.9196 + 19.5314i 1.62834 + 1.68099i
\(136\) 0 0
\(137\) 14.2013 + 7.23592i 1.21330 + 0.618206i 0.939159 0.343484i \(-0.111607\pi\)
0.274139 + 0.961690i \(0.411607\pi\)
\(138\) 0 0
\(139\) −3.65431 + 11.2468i −0.309954 + 0.953941i 0.667828 + 0.744316i \(0.267224\pi\)
−0.977782 + 0.209625i \(0.932776\pi\)
\(140\) 0 0
\(141\) −6.56123 20.1934i −0.552555 1.70059i
\(142\) 0 0
\(143\) −8.87337 + 8.87337i −0.742028 + 0.742028i
\(144\) 0 0
\(145\) 10.0579 + 3.44586i 0.835262 + 0.286163i
\(146\) 0 0
\(147\) 1.28025 + 8.08319i 0.105593 + 0.666690i
\(148\) 0 0
\(149\) 5.96489i 0.488663i −0.969692 0.244331i \(-0.921432\pi\)
0.969692 0.244331i \(-0.0785684\pi\)
\(150\) 0 0
\(151\) 7.86408i 0.639970i −0.947423 0.319985i \(-0.896322\pi\)
0.947423 0.319985i \(-0.103678\pi\)
\(152\) 0 0
\(153\) −2.60309 16.4353i −0.210448 1.32871i
\(154\) 0 0
\(155\) 3.71545 4.94643i 0.298432 0.397307i
\(156\) 0 0
\(157\) 8.99195 8.99195i 0.717635 0.717635i −0.250485 0.968120i \(-0.580590\pi\)
0.968120 + 0.250485i \(0.0805901\pi\)
\(158\) 0 0
\(159\) −7.07610 21.7780i −0.561172 1.72711i
\(160\) 0 0
\(161\) 3.64600 11.2212i 0.287345 0.884357i
\(162\) 0 0
\(163\) 7.61107 + 3.87804i 0.596145 + 0.303751i 0.725906 0.687794i \(-0.241421\pi\)
−0.129761 + 0.991545i \(0.541421\pi\)
\(164\) 0 0
\(165\) 1.86012 + 13.0889i 0.144810 + 1.01897i
\(166\) 0 0
\(167\) −1.62049 0.256660i −0.125397 0.0198610i 0.0934204 0.995627i \(-0.470220\pi\)
−0.218818 + 0.975766i \(0.570220\pi\)
\(168\) 0 0
\(169\) −18.4957 25.4572i −1.42275 1.95824i
\(170\) 0 0
\(171\) −12.1520 + 16.7258i −0.929289 + 1.27906i
\(172\) 0 0
\(173\) 7.59320 3.86893i 0.577300 0.294149i −0.140857 0.990030i \(-0.544986\pi\)
0.718157 + 0.695881i \(0.244986\pi\)
\(174\) 0 0
\(175\) 10.2958 + 1.96835i 0.778289 + 0.148793i
\(176\) 0 0
\(177\) 3.72849 + 7.31758i 0.280251 + 0.550023i
\(178\) 0 0
\(179\) 11.6100 + 8.43516i 0.867772 + 0.630473i 0.929988 0.367589i \(-0.119817\pi\)
−0.0622162 + 0.998063i \(0.519817\pi\)
\(180\) 0 0
\(181\) −10.2327 + 7.43451i −0.760592 + 0.552603i −0.899092 0.437760i \(-0.855772\pi\)
0.138500 + 0.990362i \(0.455772\pi\)
\(182\) 0 0
\(183\) 0.450822 2.84638i 0.0333257 0.210410i
\(184\) 0 0
\(185\) 1.35543 7.75700i 0.0996533 0.570306i
\(186\) 0 0
\(187\) 2.06914 4.06091i 0.151310 0.296963i
\(188\) 0 0
\(189\) 24.2467 + 7.87824i 1.76369 + 0.573058i
\(190\) 0 0
\(191\) −25.2328 + 8.19864i −1.82578 + 0.593233i −0.826231 + 0.563332i \(0.809519\pi\)
−0.999553 + 0.0299015i \(0.990481\pi\)
\(192\) 0 0
\(193\) 12.8160 + 12.8160i 0.922513 + 0.922513i 0.997207 0.0746938i \(-0.0237980\pi\)
−0.0746938 + 0.997207i \(0.523798\pi\)
\(194\) 0 0
\(195\) −46.8405 0.745318i −3.35432 0.0533733i
\(196\) 0 0
\(197\) 2.61520 0.414208i 0.186326 0.0295111i −0.0625742 0.998040i \(-0.519931\pi\)
0.248900 + 0.968529i \(0.419931\pi\)
\(198\) 0 0
\(199\) 3.27718 0.232313 0.116157 0.993231i \(-0.462943\pi\)
0.116157 + 0.993231i \(0.462943\pi\)
\(200\) 0 0
\(201\) 26.3170 1.85626
\(202\) 0 0
\(203\) 9.84524 1.55933i 0.691000 0.109444i
\(204\) 0 0
\(205\) 13.7939 9.69031i 0.963405 0.676801i
\(206\) 0 0
\(207\) 27.3423 + 27.3423i 1.90042 + 1.90042i
\(208\) 0 0
\(209\) −5.38545 + 1.74984i −0.372519 + 0.121039i
\(210\) 0 0
\(211\) −12.5986 4.09353i −0.867323 0.281810i −0.158639 0.987337i \(-0.550711\pi\)
−0.708684 + 0.705526i \(0.750711\pi\)
\(212\) 0 0
\(213\) 12.9408 25.3977i 0.886687 1.74022i
\(214\) 0 0
\(215\) −24.5999 13.0314i −1.67770 0.888731i
\(216\) 0 0
\(217\) 0.907343 5.72874i 0.0615945 0.388892i
\(218\) 0 0
\(219\) −2.98522 + 2.16889i −0.201722 + 0.146560i
\(220\) 0 0
\(221\) 13.0657 + 9.49278i 0.878894 + 0.638554i
\(222\) 0 0
\(223\) −2.04426 4.01208i −0.136893 0.268669i 0.812375 0.583135i \(-0.198174\pi\)
−0.949268 + 0.314467i \(0.898174\pi\)
\(224\) 0 0
\(225\) −21.0665 + 27.1360i −1.40443 + 1.80907i
\(226\) 0 0
\(227\) −18.0576 + 9.20080i −1.19852 + 0.610679i −0.935231 0.354037i \(-0.884809\pi\)
−0.263293 + 0.964716i \(0.584809\pi\)
\(228\) 0 0
\(229\) 1.72355 2.37227i 0.113896 0.156764i −0.748263 0.663402i \(-0.769112\pi\)
0.862159 + 0.506638i \(0.169112\pi\)
\(230\) 0 0
\(231\) 7.28556 + 10.0277i 0.479355 + 0.659775i
\(232\) 0 0
\(233\) −9.06421 1.43563i −0.593816 0.0940512i −0.147709 0.989031i \(-0.547190\pi\)
−0.446107 + 0.894980i \(0.647190\pi\)
\(234\) 0 0
\(235\) 13.5721 6.64549i 0.885346 0.433504i
\(236\) 0 0
\(237\) −15.9589 8.13148i −1.03664 0.528196i
\(238\) 0 0
\(239\) −3.98858 + 12.2756i −0.258000 + 0.794043i 0.735224 + 0.677825i \(0.237077\pi\)
−0.993224 + 0.116218i \(0.962923\pi\)
\(240\) 0 0
\(241\) 0.206055 + 0.634173i 0.0132732 + 0.0408507i 0.957474 0.288520i \(-0.0931633\pi\)
−0.944201 + 0.329371i \(0.893163\pi\)
\(242\) 0 0
\(243\) −13.2899 + 13.2899i −0.852548 + 0.852548i
\(244\) 0 0
\(245\) −5.56756 + 1.71157i −0.355698 + 0.109348i
\(246\) 0 0
\(247\) −3.13892 19.8184i −0.199725 1.26101i
\(248\) 0 0
\(249\) 19.4259i 1.23107i
\(250\) 0 0
\(251\) 1.24780i 0.0787607i 0.999224 + 0.0393803i \(0.0125384\pi\)
−0.999224 + 0.0393803i \(0.987462\pi\)
\(252\) 0 0
\(253\) 1.65679 + 10.4606i 0.104161 + 0.657650i
\(254\) 0 0
\(255\) 16.2632 4.99962i 1.01844 0.313088i
\(256\) 0 0
\(257\) 21.6851 21.6851i 1.35268 1.35268i 0.470029 0.882651i \(-0.344244\pi\)
0.882651 0.470029i \(-0.155756\pi\)
\(258\) 0 0
\(259\) −2.28143 7.02151i −0.141761 0.436296i
\(260\) 0 0
\(261\) −10.0949 + 31.0690i −0.624861 + 1.92313i
\(262\) 0 0
\(263\) 8.68088 + 4.42313i 0.535286 + 0.272742i 0.700668 0.713488i \(-0.252886\pi\)
−0.165382 + 0.986230i \(0.552886\pi\)
\(264\) 0 0
\(265\) 14.6371 7.16698i 0.899152 0.440264i
\(266\) 0 0
\(267\) −0.167896 0.0265921i −0.0102751 0.00162741i
\(268\) 0 0
\(269\) −8.00337 11.0157i −0.487974 0.671639i 0.492038 0.870573i \(-0.336252\pi\)
−0.980013 + 0.198934i \(0.936252\pi\)
\(270\) 0 0
\(271\) 4.57148 6.29210i 0.277697 0.382218i −0.647272 0.762259i \(-0.724090\pi\)
0.924970 + 0.380041i \(0.124090\pi\)
\(272\) 0 0
\(273\) −39.1343 + 19.9399i −2.36851 + 1.20682i
\(274\) 0 0
\(275\) −9.03672 + 2.62144i −0.544935 + 0.158079i
\(276\) 0 0
\(277\) −2.36128 4.63427i −0.141875 0.278446i 0.809125 0.587637i \(-0.199942\pi\)
−0.951000 + 0.309191i \(0.899942\pi\)
\(278\) 0 0
\(279\) 15.3784 + 11.1731i 0.920683 + 0.668915i
\(280\) 0 0
\(281\) −4.54165 + 3.29970i −0.270932 + 0.196844i −0.714952 0.699173i \(-0.753552\pi\)
0.444021 + 0.896017i \(0.353552\pi\)
\(282\) 0 0
\(283\) −3.02132 + 19.0758i −0.179599 + 1.13394i 0.718948 + 0.695063i \(0.244624\pi\)
−0.898547 + 0.438877i \(0.855376\pi\)
\(284\) 0 0
\(285\) −18.6801 9.89545i −1.10651 0.586156i
\(286\) 0 0
\(287\) 7.17526 14.0822i 0.423542 0.831249i
\(288\) 0 0
\(289\) 10.5894 + 3.44071i 0.622907 + 0.202395i
\(290\) 0 0
\(291\) 47.1651 15.3249i 2.76487 0.898360i
\(292\) 0 0
\(293\) 14.3952 + 14.3952i 0.840975 + 0.840975i 0.988986 0.148011i \(-0.0472870\pi\)
−0.148011 + 0.988986i \(0.547287\pi\)
\(294\) 0 0
\(295\) −4.78291 + 3.36004i −0.278472 + 0.195629i
\(296\) 0 0
\(297\) −22.6031 + 3.57998i −1.31156 + 0.207731i
\(298\) 0 0
\(299\) −37.5290 −2.17036
\(300\) 0 0
\(301\) −26.1001 −1.50439
\(302\) 0 0
\(303\) 42.1133 6.67009i 2.41934 0.383187i
\(304\) 0 0
\(305\) 2.05083 + 0.0326324i 0.117430 + 0.00186852i
\(306\) 0 0
\(307\) −8.19364 8.19364i −0.467636 0.467636i 0.433512 0.901148i \(-0.357274\pi\)
−0.901148 + 0.433512i \(0.857274\pi\)
\(308\) 0 0
\(309\) 34.9724 11.3632i 1.98951 0.646432i
\(310\) 0 0
\(311\) 23.3819 + 7.59725i 1.32587 + 0.430800i 0.884506 0.466529i \(-0.154496\pi\)
0.441361 + 0.897329i \(0.354496\pi\)
\(312\) 0 0
\(313\) −8.71271 + 17.0997i −0.492471 + 0.966530i 0.502328 + 0.864677i \(0.332477\pi\)
−0.994800 + 0.101852i \(0.967523\pi\)
\(314\) 0 0
\(315\) −5.54400 + 31.7278i −0.312369 + 1.78766i
\(316\) 0 0
\(317\) 0.452132 2.85465i 0.0253942 0.160333i −0.971732 0.236085i \(-0.924136\pi\)
0.997127 + 0.0757519i \(0.0241357\pi\)
\(318\) 0 0
\(319\) −7.23877 + 5.25927i −0.405293 + 0.294463i
\(320\) 0 0
\(321\) −0.272682 0.198115i −0.0152196 0.0110577i
\(322\) 0 0
\(323\) 3.30852 + 6.49334i 0.184091 + 0.361299i
\(324\) 0 0
\(325\) −4.16543 33.0805i −0.231056 1.83498i
\(326\) 0 0
\(327\) −5.56240 + 2.83419i −0.307602 + 0.156731i
\(328\) 0 0
\(329\) 8.32785 11.4623i 0.459129 0.631937i
\(330\) 0 0
\(331\) −17.3693 23.9068i −0.954705 1.31404i −0.949406 0.314052i \(-0.898313\pi\)
−0.00529905 0.999986i \(-0.501687\pi\)
\(332\) 0 0
\(333\) 23.8979 + 3.78506i 1.30960 + 0.207420i
\(334\) 0 0
\(335\) 2.63539 + 18.5441i 0.143986 + 1.01317i
\(336\) 0 0
\(337\) −23.0595 11.7494i −1.25613 0.640031i −0.306044 0.952017i \(-0.599006\pi\)
−0.950086 + 0.311987i \(0.899006\pi\)
\(338\) 0 0
\(339\) 3.25612 10.0213i 0.176848 0.544283i
\(340\) 0 0
\(341\) 1.60888 + 4.95161i 0.0871255 + 0.268145i
\(342\) 0 0
\(343\) −14.2384 + 14.2384i −0.768803 + 0.768803i
\(344\) 0 0
\(345\) −23.7455 + 31.6126i −1.27841 + 1.70197i
\(346\) 0 0
\(347\) 1.72540 + 10.8937i 0.0926243 + 0.584807i 0.989725 + 0.142982i \(0.0456690\pi\)
−0.897101 + 0.441826i \(0.854331\pi\)
\(348\) 0 0
\(349\) 1.52465i 0.0816125i −0.999167 0.0408062i \(-0.987007\pi\)
0.999167 0.0408062i \(-0.0129926\pi\)
\(350\) 0 0
\(351\) 81.0923i 4.32839i
\(352\) 0 0
\(353\) −1.42534 8.99925i −0.0758633 0.478982i −0.996145 0.0877249i \(-0.972040\pi\)
0.920281 0.391257i \(-0.127960\pi\)
\(354\) 0 0
\(355\) 19.1922 + 6.57530i 1.01862 + 0.348981i
\(356\) 0 0
\(357\) 11.2798 11.2798i 0.596989 0.596989i
\(358\) 0 0
\(359\) 2.16850 + 6.67395i 0.114449 + 0.352237i 0.991832 0.127554i \(-0.0407125\pi\)
−0.877383 + 0.479791i \(0.840712\pi\)
\(360\) 0 0
\(361\) −3.07336 + 9.45882i −0.161756 + 0.497833i
\(362\) 0 0
\(363\) 20.8792 + 10.6385i 1.09587 + 0.558375i
\(364\) 0 0
\(365\) −1.82723 1.88632i −0.0956417 0.0987345i
\(366\) 0 0
\(367\) −16.7913 2.65948i −0.876499 0.138824i −0.298058 0.954548i \(-0.596339\pi\)
−0.578441 + 0.815724i \(0.696339\pi\)
\(368\) 0 0
\(369\) 30.4456 + 41.9048i 1.58494 + 2.18148i
\(370\) 0 0
\(371\) 8.98135 12.3618i 0.466289 0.641791i
\(372\) 0 0
\(373\) 3.92679 2.00080i 0.203322 0.103598i −0.349365 0.936987i \(-0.613603\pi\)
0.552687 + 0.833389i \(0.313603\pi\)
\(374\) 0 0
\(375\) −30.5010 17.4220i −1.57506 0.899669i
\(376\) 0 0
\(377\) −14.3941 28.2501i −0.741336 1.45495i
\(378\) 0 0
\(379\) −1.70130 1.23607i −0.0873901 0.0634926i 0.543232 0.839582i \(-0.317200\pi\)
−0.630622 + 0.776090i \(0.717200\pi\)
\(380\) 0 0
\(381\) 23.2538 16.8949i 1.19133 0.865552i
\(382\) 0 0
\(383\) 4.01170 25.3289i 0.204988 1.29425i −0.643669 0.765304i \(-0.722589\pi\)
0.848658 0.528942i \(-0.177411\pi\)
\(384\) 0 0
\(385\) −6.33639 + 6.13790i −0.322932 + 0.312816i
\(386\) 0 0
\(387\) 38.8334 76.2148i 1.97401 3.87421i
\(388\) 0 0
\(389\) −3.41177 1.10855i −0.172983 0.0562057i 0.221245 0.975218i \(-0.428988\pi\)
−0.394228 + 0.919013i \(0.628988\pi\)
\(390\) 0 0
\(391\) 12.9632 4.21200i 0.655578 0.213010i
\(392\) 0 0
\(393\) −40.2275 40.2275i −2.02921 2.02921i
\(394\) 0 0
\(395\) 4.13166 12.0596i 0.207887 0.606786i
\(396\) 0 0
\(397\) 27.1780 4.30457i 1.36402 0.216040i 0.568860 0.822435i \(-0.307385\pi\)
0.795164 + 0.606394i \(0.207385\pi\)
\(398\) 0 0
\(399\) −19.8193 −0.992207
\(400\) 0 0
\(401\) −11.5819 −0.578374 −0.289187 0.957273i \(-0.593385\pi\)
−0.289187 + 0.957273i \(0.593385\pi\)
\(402\) 0 0
\(403\) −18.2218 + 2.88605i −0.907694 + 0.143765i
\(404\) 0 0
\(405\) −31.4565 23.6281i −1.56308 1.17409i
\(406\) 0 0
\(407\) 4.68609 + 4.68609i 0.232281 + 0.232281i
\(408\) 0 0
\(409\) 6.32672 2.05568i 0.312836 0.101647i −0.148391 0.988929i \(-0.547409\pi\)
0.461227 + 0.887282i \(0.347409\pi\)
\(410\) 0 0
\(411\) −47.6241 15.4740i −2.34912 0.763277i
\(412\) 0 0
\(413\) −2.48797 + 4.88291i −0.122425 + 0.240272i
\(414\) 0 0
\(415\) −13.6883 + 1.94531i −0.671935 + 0.0954916i
\(416\) 0 0
\(417\) 5.81204 36.6958i 0.284617 1.79700i
\(418\) 0 0
\(419\) 17.1911 12.4901i 0.839841 0.610180i −0.0824855 0.996592i \(-0.526286\pi\)
0.922326 + 0.386412i \(0.126286\pi\)
\(420\) 0 0
\(421\) 3.51629 + 2.55473i 0.171373 + 0.124510i 0.670166 0.742211i \(-0.266223\pi\)
−0.498792 + 0.866721i \(0.666223\pi\)
\(422\) 0 0
\(423\) 21.0803 + 41.3724i 1.02496 + 2.01159i
\(424\) 0 0
\(425\) 5.15155 + 10.9591i 0.249887 + 0.531595i
\(426\) 0 0
\(427\) 1.71342 0.873032i 0.0829183 0.0422490i
\(428\) 0 0
\(429\) 23.1737 31.8959i 1.11884 1.53995i
\(430\) 0 0
\(431\) 22.0143 + 30.3001i 1.06039 + 1.45950i 0.879438 + 0.476013i \(0.157919\pi\)
0.180954 + 0.983492i \(0.442081\pi\)
\(432\) 0 0
\(433\) 6.86293 + 1.08698i 0.329811 + 0.0522370i 0.319144 0.947706i \(-0.396605\pi\)
0.0106671 + 0.999943i \(0.496605\pi\)
\(434\) 0 0
\(435\) −32.9040 5.74954i −1.57763 0.275669i
\(436\) 0 0
\(437\) −15.0890 7.68822i −0.721804 0.367778i
\(438\) 0 0
\(439\) 1.52930 4.70671i 0.0729896 0.224639i −0.907906 0.419174i \(-0.862320\pi\)
0.980896 + 0.194535i \(0.0623198\pi\)
\(440\) 0 0
\(441\) −5.53059 17.0214i −0.263362 0.810544i
\(442\) 0 0
\(443\) 25.3224 25.3224i 1.20310 1.20310i 0.229887 0.973217i \(-0.426164\pi\)
0.973217 0.229887i \(-0.0738357\pi\)
\(444\) 0 0
\(445\) 0.00192485 0.120970i 9.12467e−5 0.00573452i
\(446\) 0 0
\(447\) 2.93163 + 18.5096i 0.138661 + 0.875472i
\(448\) 0 0
\(449\) 4.43711i 0.209400i −0.994504 0.104700i \(-0.966612\pi\)
0.994504 0.104700i \(-0.0333883\pi\)
\(450\) 0 0
\(451\) 14.1870i 0.668042i
\(452\) 0 0
\(453\) 3.86504 + 24.4029i 0.181595 + 1.14655i
\(454\) 0 0
\(455\) −17.9694 25.5789i −0.842420 1.19916i
\(456\) 0 0
\(457\) −9.45276 + 9.45276i −0.442182 + 0.442182i −0.892745 0.450563i \(-0.851223\pi\)
0.450563 + 0.892745i \(0.351223\pi\)
\(458\) 0 0
\(459\) 9.10126 + 28.0108i 0.424810 + 1.30743i
\(460\) 0 0
\(461\) −3.38937 + 10.4314i −0.157859 + 0.485839i −0.998439 0.0558473i \(-0.982214\pi\)
0.840581 + 0.541686i \(0.182214\pi\)
\(462\) 0 0
\(463\) −5.23594 2.66785i −0.243335 0.123985i 0.328071 0.944653i \(-0.393602\pi\)
−0.571405 + 0.820668i \(0.693602\pi\)
\(464\) 0 0
\(465\) −9.09829 + 17.1753i −0.421923 + 0.796484i
\(466\) 0 0
\(467\) 16.1066 + 2.55103i 0.745323 + 0.118048i 0.517534 0.855663i \(-0.326850\pi\)
0.227789 + 0.973710i \(0.426850\pi\)
\(468\) 0 0
\(469\) 10.3221 + 14.2071i 0.476628 + 0.656023i
\(470\) 0 0
\(471\) −23.4834 + 32.3221i −1.08206 + 1.48933i
\(472\) 0 0
\(473\) 20.8749 10.6363i 0.959829 0.489057i
\(474\) 0 0
\(475\) 5.10214 14.1537i 0.234102 0.649418i
\(476\) 0 0
\(477\) 22.7345 + 44.6189i 1.04094 + 2.04296i
\(478\) 0 0
\(479\) −25.4775 18.5105i −1.16410 0.845766i −0.173807 0.984780i \(-0.555607\pi\)
−0.990290 + 0.139014i \(0.955607\pi\)
\(480\) 0 0
\(481\) −18.9983 + 13.8031i −0.866248 + 0.629366i
\(482\) 0 0
\(483\) −5.79883 + 36.6124i −0.263856 + 1.66592i
\(484\) 0 0
\(485\) 15.5217 + 31.6999i 0.704803 + 1.43942i
\(486\) 0 0
\(487\) 1.48160 2.90780i 0.0671376 0.131765i −0.854999 0.518630i \(-0.826442\pi\)
0.922136 + 0.386865i \(0.126442\pi\)
\(488\) 0 0
\(489\) −25.5238 8.29318i −1.15423 0.375031i
\(490\) 0 0
\(491\) −5.87178 + 1.90786i −0.264990 + 0.0861004i −0.438498 0.898732i \(-0.644490\pi\)
0.173509 + 0.984832i \(0.444490\pi\)
\(492\) 0 0
\(493\) 8.14261 + 8.14261i 0.366724 + 0.366724i
\(494\) 0 0
\(495\) −8.49556 27.6352i −0.381847 1.24211i
\(496\) 0 0
\(497\) 18.7864 2.97548i 0.842687 0.133468i
\(498\) 0 0
\(499\) 29.4478 1.31826 0.659132 0.752027i \(-0.270924\pi\)
0.659132 + 0.752027i \(0.270924\pi\)
\(500\) 0 0
\(501\) 5.15466 0.230293
\(502\) 0 0
\(503\) 4.97751 0.788360i 0.221936 0.0351512i −0.0444760 0.999010i \(-0.514162\pi\)
0.266412 + 0.963859i \(0.414162\pi\)
\(504\) 0 0
\(505\) 8.91726 + 29.0069i 0.396813 + 1.29079i
\(506\) 0 0
\(507\) 69.9054 + 69.9054i 3.10461 + 3.10461i
\(508\) 0 0
\(509\) −40.5299 + 13.1690i −1.79646 + 0.583704i −0.999786 0.0207073i \(-0.993408\pi\)
−0.796672 + 0.604412i \(0.793408\pi\)
\(510\) 0 0
\(511\) −2.34172 0.760872i −0.103592 0.0336590i
\(512\) 0 0
\(513\) 16.6126 32.6041i 0.733466 1.43951i
\(514\) 0 0
\(515\) 11.5092 + 23.5052i 0.507155 + 1.03576i
\(516\) 0 0
\(517\) −1.98952 + 12.5613i −0.0874988 + 0.552446i
\(518\) 0 0
\(519\) −21.6608 + 15.7375i −0.950806 + 0.690801i
\(520\) 0 0
\(521\) 27.3429 + 19.8657i 1.19791 + 0.870334i 0.994078 0.108671i \(-0.0346595\pi\)
0.203835 + 0.979005i \(0.434660\pi\)
\(522\) 0 0
\(523\) 7.33650 + 14.3987i 0.320803 + 0.629610i 0.993942 0.109905i \(-0.0350547\pi\)
−0.673140 + 0.739515i \(0.735055\pi\)
\(524\) 0 0
\(525\) −32.9161 1.04778i −1.43658 0.0457287i
\(526\) 0 0
\(527\) 5.97025 3.04199i 0.260068 0.132511i
\(528\) 0 0
\(529\) −5.09826 + 7.01715i −0.221663 + 0.305094i
\(530\) 0 0
\(531\) −10.5568 14.5302i −0.458126 0.630556i
\(532\) 0 0
\(533\) −49.6528 7.86424i −2.15070 0.340638i
\(534\) 0 0
\(535\) 0.112294 0.211983i 0.00485490 0.00916482i
\(536\) 0 0
\(537\) −40.1725 20.4689i −1.73357 0.883299i
\(538\) 0 0
\(539\) 1.51481 4.66210i 0.0652474 0.200811i
\(540\) 0 0
\(541\) −9.37129 28.8419i −0.402903 1.24001i −0.922633 0.385678i \(-0.873968\pi\)
0.519730 0.854330i \(-0.326032\pi\)
\(542\) 0 0
\(543\) 28.0991 28.0991i 1.20585 1.20585i
\(544\) 0 0
\(545\) −2.55411 3.63569i −0.109406 0.155736i
\(546\) 0 0
\(547\) −2.71648 17.1512i −0.116148 0.733332i −0.975181 0.221411i \(-0.928934\pi\)
0.859032 0.511921i \(-0.171066\pi\)
\(548\) 0 0
\(549\) 6.30230i 0.268976i
\(550\) 0 0
\(551\) 14.3071i 0.609502i
\(552\) 0 0
\(553\) −1.86968 11.8047i −0.0795067 0.501986i
\(554\) 0 0
\(555\) −0.393607 + 24.7368i −0.0167077 + 1.05002i
\(556\) 0 0
\(557\) −13.0360 + 13.0360i −0.552354 + 0.552354i −0.927120 0.374765i \(-0.877723\pi\)
0.374765 + 0.927120i \(0.377723\pi\)
\(558\) 0 0
\(559\) 25.6542 + 78.9554i 1.08506 + 3.33946i
\(560\) 0 0
\(561\) −4.42485 + 13.6183i −0.186817 + 0.574965i
\(562\) 0 0
\(563\) 0.756513 + 0.385463i 0.0318832 + 0.0162453i 0.469859 0.882741i \(-0.344305\pi\)
−0.437976 + 0.898987i \(0.644305\pi\)
\(564\) 0 0
\(565\) 7.38752 + 1.29087i 0.310795 + 0.0543074i
\(566\) 0 0
\(567\) −36.4315 5.77018i −1.52998 0.242325i
\(568\) 0 0
\(569\) 18.3379 + 25.2399i 0.768764 + 1.05811i 0.996434 + 0.0843741i \(0.0268891\pi\)
−0.227671 + 0.973738i \(0.573111\pi\)
\(570\) 0 0
\(571\) 18.6193 25.6273i 0.779193 1.07247i −0.216177 0.976354i \(-0.569359\pi\)
0.995370 0.0961130i \(-0.0306410\pi\)
\(572\) 0 0
\(573\) 74.2702 37.8425i 3.10268 1.58089i
\(574\) 0 0
\(575\) −24.6535 13.5664i −1.02812 0.565757i
\(576\) 0 0
\(577\) 13.3730 + 26.2460i 0.556725 + 1.09264i 0.982230 + 0.187679i \(0.0600965\pi\)
−0.425505 + 0.904956i \(0.639904\pi\)
\(578\) 0 0
\(579\) −46.0678 33.4702i −1.91451 1.39097i
\(580\) 0 0
\(581\) −10.4870 + 7.61924i −0.435073 + 0.316099i
\(582\) 0 0
\(583\) −2.14564 + 13.5470i −0.0888632 + 0.561060i
\(584\) 0 0
\(585\) 101.429 14.4145i 4.19356 0.595966i
\(586\) 0 0
\(587\) −5.17748 + 10.1614i −0.213698 + 0.419405i −0.972827 0.231535i \(-0.925625\pi\)
0.759129 + 0.650940i \(0.225625\pi\)
\(588\) 0 0
\(589\) −7.91754 2.57257i −0.326237 0.106001i
\(590\) 0 0
\(591\) −7.91162 + 2.57064i −0.325441 + 0.105742i
\(592\) 0 0
\(593\) 19.0653 + 19.0653i 0.782917 + 0.782917i 0.980322 0.197405i \(-0.0632513\pi\)
−0.197405 + 0.980322i \(0.563251\pi\)
\(594\) 0 0
\(595\) 9.07778 + 6.81867i 0.372153 + 0.279538i
\(596\) 0 0
\(597\) −10.1694 + 1.61067i −0.416205 + 0.0659204i
\(598\) 0 0
\(599\) 11.8002 0.482144 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(600\) 0 0
\(601\) −32.6525 −1.33192 −0.665962 0.745986i \(-0.731979\pi\)
−0.665962 + 0.745986i \(0.731979\pi\)
\(602\) 0 0
\(603\) −56.8438 + 9.00317i −2.31486 + 0.366637i
\(604\) 0 0
\(605\) −5.40549 + 15.7777i −0.219764 + 0.641455i
\(606\) 0 0
\(607\) −6.42050 6.42050i −0.260600 0.260600i 0.564698 0.825298i \(-0.308993\pi\)
−0.825298 + 0.564698i \(0.808993\pi\)
\(608\) 0 0
\(609\) −29.7842 + 9.67748i −1.20692 + 0.392151i
\(610\) 0 0
\(611\) −42.8601 13.9261i −1.73393 0.563389i
\(612\) 0 0
\(613\) −5.69952 + 11.1859i −0.230201 + 0.451796i −0.976996 0.213259i \(-0.931592\pi\)
0.746794 + 0.665055i \(0.231592\pi\)
\(614\) 0 0
\(615\) −38.0409 + 36.8493i −1.53396 + 1.48591i
\(616\) 0 0
\(617\) −3.28442 + 20.7370i −0.132226 + 0.834842i 0.829034 + 0.559198i \(0.188891\pi\)
−0.961260 + 0.275644i \(0.911109\pi\)
\(618\) 0 0
\(619\) −36.0389 + 26.1838i −1.44852 + 1.05241i −0.462350 + 0.886697i \(0.652994\pi\)
−0.986173 + 0.165717i \(0.947006\pi\)
\(620\) 0 0
\(621\) −55.3693 40.2281i −2.22189 1.61430i
\(622\) 0 0
\(623\) −0.0514966 0.101068i −0.00206317 0.00404920i
\(624\) 0 0
\(625\) 9.22194 23.2369i 0.368878 0.929478i
\(626\) 0 0
\(627\) 15.8515 8.07674i 0.633048 0.322554i
\(628\) 0 0
\(629\) 5.01320 6.90008i 0.199890 0.275124i
\(630\) 0 0
\(631\) 19.0878 + 26.2721i 0.759873 + 1.04588i 0.997225 + 0.0744520i \(0.0237208\pi\)
−0.237351 + 0.971424i \(0.576279\pi\)
\(632\) 0 0
\(633\) 41.1064 + 6.51062i 1.63383 + 0.258774i
\(634\) 0 0
\(635\) 14.2335 + 14.6938i 0.564840 + 0.583106i
\(636\) 0 0
\(637\) 15.4770 + 7.88595i 0.613223 + 0.312453i
\(638\) 0 0
\(639\) −19.2629 + 59.2852i −0.762029 + 2.34528i
\(640\) 0 0
\(641\) −7.52983 23.1744i −0.297410 0.915335i −0.982401 0.186783i \(-0.940194\pi\)
0.684991 0.728552i \(-0.259806\pi\)
\(642\) 0 0
\(643\) 1.49712 1.49712i 0.0590406 0.0590406i −0.676970 0.736011i \(-0.736707\pi\)
0.736011 + 0.676970i \(0.236707\pi\)
\(644\) 0 0
\(645\) 82.7402 + 28.3470i 3.25789 + 1.11616i
\(646\) 0 0
\(647\) −5.49681 34.7055i −0.216102 1.36441i −0.822279 0.569084i \(-0.807298\pi\)
0.606178 0.795329i \(-0.292702\pi\)
\(648\) 0 0
\(649\) 4.91925i 0.193097i
\(650\) 0 0
\(651\) 18.2227i 0.714204i
\(652\) 0 0
\(653\) −1.54836 9.77595i −0.0605920 0.382563i −0.999285 0.0378086i \(-0.987962\pi\)
0.938693 0.344754i \(-0.112038\pi\)
\(654\) 0 0
\(655\) 24.3176 32.3744i 0.950168 1.26497i
\(656\) 0 0
\(657\) 5.70597 5.70597i 0.222611 0.222611i
\(658\) 0 0
\(659\) −6.38389 19.6476i −0.248681 0.765361i −0.995009 0.0997831i \(-0.968185\pi\)
0.746328 0.665578i \(-0.231815\pi\)
\(660\) 0 0
\(661\) 9.13244 28.1068i 0.355211 1.09323i −0.600676 0.799492i \(-0.705102\pi\)
0.955887 0.293734i \(-0.0948980\pi\)
\(662\) 0 0
\(663\) −45.2095 23.0354i −1.75579 0.894620i
\(664\) 0 0
\(665\) −1.98471 13.9655i −0.0769636 0.541561i
\(666\) 0 0
\(667\) −26.4296 4.18604i −1.02336 0.162084i
\(668\) 0 0
\(669\) 8.31536 + 11.4451i 0.321490 + 0.442493i
\(670\) 0 0
\(671\) −1.01462 + 1.39650i −0.0391689 + 0.0539114i
\(672\) 0 0
\(673\) −4.71234 + 2.40106i −0.181647 + 0.0925539i −0.542449 0.840088i \(-0.682503\pi\)
0.360802 + 0.932642i \(0.382503\pi\)
\(674\) 0 0
\(675\) 29.3141 53.2711i 1.12830 2.05040i
\(676\) 0 0
\(677\) 11.9354 + 23.4246i 0.458716 + 0.900281i 0.998296 + 0.0583466i \(0.0185828\pi\)
−0.539581 + 0.841934i \(0.681417\pi\)
\(678\) 0 0
\(679\) 26.7722 + 19.4511i 1.02742 + 0.746465i
\(680\) 0 0
\(681\) 51.5122 37.4258i 1.97395 1.43416i
\(682\) 0 0
\(683\) 1.48152 9.35392i 0.0566886 0.357918i −0.942996 0.332804i \(-0.892005\pi\)
0.999685 0.0251137i \(-0.00799478\pi\)
\(684\) 0 0
\(685\) 6.13458 35.1076i 0.234390 1.34139i
\(686\) 0 0
\(687\) −4.18241 + 8.20844i −0.159569 + 0.313171i
\(688\) 0 0
\(689\) −46.2234 15.0189i −1.76097 0.572175i
\(690\) 0 0
\(691\) 20.0943 6.52902i 0.764422 0.248376i 0.0992465 0.995063i \(-0.468357\pi\)
0.665175 + 0.746687i \(0.268357\pi\)
\(692\) 0 0
\(693\) −19.1671 19.1671i −0.728097 0.728097i
\(694\) 0 0
\(695\) 26.4395 + 0.420700i 1.00291 + 0.0159581i
\(696\) 0 0
\(697\) 18.0336 2.85625i 0.683073 0.108188i
\(698\) 0 0
\(699\) 28.8326 1.09055
\(700\) 0 0
\(701\) −24.4373 −0.922985 −0.461492 0.887144i \(-0.652686\pi\)
−0.461492 + 0.887144i \(0.652686\pi\)
\(702\) 0 0
\(703\) −10.4662 + 1.65768i −0.394741 + 0.0625208i
\(704\) 0 0
\(705\) −38.8492 + 27.2919i −1.46315 + 1.02787i
\(706\) 0 0
\(707\) 20.1185 + 20.1185i 0.756634 + 0.756634i
\(708\) 0 0
\(709\) 10.2804 3.34029i 0.386087 0.125447i −0.109541 0.993982i \(-0.534938\pi\)
0.495628 + 0.868535i \(0.334938\pi\)
\(710\) 0 0
\(711\) 37.2525 + 12.1041i 1.39708 + 0.453938i
\(712\) 0 0
\(713\) −7.06887 + 13.8734i −0.264731 + 0.519565i
\(714\) 0 0
\(715\) 24.7959 + 13.1352i 0.927312 + 0.491227i
\(716\) 0 0
\(717\) 6.34370 40.0525i 0.236910 1.49579i
\(718\) 0 0
\(719\) 32.1715 23.3740i 1.19980 0.871703i 0.205531 0.978651i \(-0.434108\pi\)
0.994265 + 0.106948i \(0.0341077\pi\)
\(720\) 0 0
\(721\) 19.8513 + 14.4228i 0.739300 + 0.537133i
\(722\) 0 0
\(723\) −0.951091 1.86662i −0.0353715 0.0694204i
\(724\) 0 0
\(725\) 0.756365 23.7614i 0.0280907 0.882475i
\(726\) 0 0
\(727\) −6.89379 + 3.51256i −0.255677 + 0.130274i −0.577132 0.816651i \(-0.695828\pi\)
0.321455 + 0.946925i \(0.395828\pi\)
\(728\) 0 0
\(729\) 3.68298 5.06919i 0.136407 0.187748i
\(730\) 0 0
\(731\) −17.7229 24.3934i −0.655503 0.902223i
\(732\) 0 0
\(733\) 27.0471 + 4.28384i 0.999008 + 0.158227i 0.634459 0.772957i \(-0.281223\pi\)
0.364549 + 0.931184i \(0.381223\pi\)
\(734\) 0 0
\(735\) 16.4354 8.04750i 0.606229 0.296836i
\(736\) 0 0
\(737\) −14.0452 7.15641i −0.517363 0.263610i
\(738\) 0 0
\(739\) −14.0319 + 43.1859i −0.516173 + 1.58862i 0.264964 + 0.964258i \(0.414640\pi\)
−0.781137 + 0.624359i \(0.785360\pi\)
\(740\) 0 0
\(741\) 19.4807 + 59.9553i 0.715640 + 2.20251i
\(742\) 0 0
\(743\) −11.6889 + 11.6889i −0.428825 + 0.428825i −0.888228 0.459403i \(-0.848063\pi\)
0.459403 + 0.888228i \(0.348063\pi\)
\(744\) 0 0
\(745\) −12.7491 + 3.91930i −0.467089 + 0.143592i
\(746\) 0 0
\(747\) −6.64570 41.9593i −0.243153 1.53521i
\(748\) 0 0
\(749\) 0.224911i 0.00821806i
\(750\) 0 0
\(751\) 1.17883i 0.0430162i 0.999769 + 0.0215081i \(0.00684677\pi\)
−0.999769 + 0.0215081i \(0.993153\pi\)
\(752\) 0 0
\(753\) −0.613271 3.87204i −0.0223488 0.141105i
\(754\) 0 0
\(755\) −16.8083 + 5.16718i −0.611717 + 0.188053i
\(756\) 0 0
\(757\) −30.8942 + 30.8942i −1.12287 + 1.12287i −0.131559 + 0.991308i \(0.541998\pi\)
−0.991308 + 0.131559i \(0.958002\pi\)
\(758\) 0 0
\(759\) −10.2823 31.6457i −0.373225 1.14867i
\(760\) 0 0
\(761\) 13.3968 41.2310i 0.485633 1.49462i −0.345430 0.938444i \(-0.612267\pi\)
0.831063 0.556179i \(-0.187733\pi\)
\(762\) 0 0
\(763\) −3.71171 1.89121i −0.134373 0.0684663i
\(764\) 0 0
\(765\) −33.4176 + 16.3627i −1.20822 + 0.591595i
\(766\) 0 0
\(767\) 17.2167 + 2.72686i 0.621660 + 0.0984613i
\(768\) 0 0
\(769\) 29.3429 + 40.3870i 1.05813 + 1.45639i 0.881541 + 0.472107i \(0.156506\pi\)
0.176589 + 0.984285i \(0.443494\pi\)
\(770\) 0 0
\(771\) −56.6329 + 77.9485i −2.03959 + 2.80725i
\(772\) 0 0
\(773\) −11.2904 + 5.75273i −0.406086 + 0.206911i −0.645089 0.764108i \(-0.723180\pi\)
0.239002 + 0.971019i \(0.423180\pi\)
\(774\) 0 0
\(775\) −13.0135 4.69112i −0.467460 0.168510i
\(776\) 0 0
\(777\) 10.5304 + 20.6671i 0.377776 + 0.741427i
\(778\) 0 0
\(779\) −18.3524 13.3338i −0.657544 0.477734i
\(780\) 0 0
\(781\) −13.8128 + 10.0356i −0.494262 + 0.359102i
\(782\) 0 0
\(783\) 9.04515 57.1088i 0.323247 2.04090i
\(784\) 0 0
\(785\) −25.1272 13.3107i −0.896829 0.475079i
\(786\) 0 0
\(787\) −14.3613 + 28.1856i −0.511924 + 1.00471i 0.479927 + 0.877308i \(0.340663\pi\)
−0.991852 + 0.127399i \(0.959337\pi\)
\(788\) 0 0
\(789\) −29.1114 9.45887i −1.03639 0.336745i
\(790\) 0 0
\(791\) 6.68707 2.17276i 0.237765 0.0772545i
\(792\) 0 0
\(793\) −4.32515 4.32515i −0.153591 0.153591i
\(794\) 0 0
\(795\) −41.8978 + 29.4336i −1.48596 + 1.04390i
\(796\) 0 0
\(797\) −34.8296 + 5.51647i −1.23373 + 0.195403i −0.739037 0.673665i \(-0.764719\pi\)
−0.494692 + 0.869069i \(0.664719\pi\)
\(798\) 0 0
\(799\) 16.3676 0.579046
\(800\) 0 0
\(801\) 0.371747 0.0131350
\(802\) 0 0
\(803\) 2.18298 0.345750i 0.0770358 0.0122013i
\(804\) 0 0
\(805\) −26.3794 0.419744i −0.929750 0.0147940i
\(806\) 0 0
\(807\) 30.2491 + 30.2491i 1.06482 + 1.06482i
\(808\) 0 0
\(809\) −18.8208 + 6.11524i −0.661704 + 0.215001i −0.620568 0.784153i \(-0.713098\pi\)
−0.0411361 + 0.999154i \(0.513098\pi\)
\(810\) 0 0
\(811\) −18.8755 6.13303i −0.662809 0.215360i −0.0417556 0.999128i \(-0.513295\pi\)
−0.621054 + 0.783768i \(0.713295\pi\)
\(812\) 0 0
\(813\) −11.0932 + 21.7717i −0.389057 + 0.763567i
\(814\) 0 0
\(815\) 3.28778 18.8156i 0.115166 0.659083i
\(816\) 0 0
\(817\) −5.86031 + 37.0005i −0.205026 + 1.29448i
\(818\) 0 0
\(819\) 77.7071 56.4575i 2.71531 1.97279i
\(820\) 0 0
\(821\) −3.09509 2.24872i −0.108020 0.0784808i 0.532464 0.846453i \(-0.321266\pi\)
−0.640484 + 0.767972i \(0.721266\pi\)
\(822\) 0 0
\(823\) −5.52402 10.8415i −0.192555 0.377911i 0.774463 0.632620i \(-0.218020\pi\)
−0.967018 + 0.254709i \(0.918020\pi\)
\(824\) 0 0
\(825\) 26.7533 12.5759i 0.931431 0.437838i
\(826\) 0 0
\(827\) 34.3578 17.5062i 1.19474 0.608750i 0.260526 0.965467i \(-0.416104\pi\)
0.934213 + 0.356717i \(0.116104\pi\)
\(828\) 0 0
\(829\) 24.1681 33.2646i 0.839394 1.15533i −0.146707 0.989180i \(-0.546867\pi\)
0.986101 0.166147i \(-0.0531327\pi\)
\(830\) 0 0
\(831\) 9.60490 + 13.2200i 0.333190 + 0.458597i
\(832\) 0 0
\(833\) −6.23112 0.986913i −0.215896 0.0341945i
\(834\) 0 0
\(835\) 0.516187 + 3.63219i 0.0178634 + 0.125697i
\(836\) 0 0
\(837\) −29.9776 15.2744i −1.03618 0.527959i
\(838\) 0 0
\(839\) 10.7884 33.2034i 0.372458 1.14631i −0.572719 0.819751i \(-0.694112\pi\)
0.945178 0.326557i \(-0.105888\pi\)
\(840\) 0 0
\(841\) 1.97555 + 6.08012i 0.0681225 + 0.209659i
\(842\) 0 0
\(843\) 12.4714 12.4714i 0.429537 0.429537i
\(844\) 0 0
\(845\) −42.2581 + 56.2587i −1.45372 + 1.93536i
\(846\) 0 0
\(847\) 2.44611 + 15.4441i 0.0840494 + 0.530667i
\(848\) 0 0
\(849\) 60.6788i 2.08249i
\(850\) 0 0
\(851\) 19.8193i 0.679398i
\(852\) 0 0
\(853\) −2.54315 16.0568i −0.0870760 0.549776i −0.992203 0.124634i \(-0.960224\pi\)
0.905127 0.425142i \(-0.139776\pi\)
\(854\) 0 0
\(855\) 43.7336 + 14.9833i 1.49566 + 0.512417i
\(856\) 0 0
\(857\) 17.7376 17.7376i 0.605904 0.605904i −0.335969 0.941873i \(-0.609064\pi\)
0.941873 + 0.335969i \(0.109064\pi\)
\(858\) 0 0
\(859\) −5.51226 16.9650i −0.188076 0.578838i 0.811912 0.583780i \(-0.198427\pi\)
−0.999988 + 0.00494198i \(0.998427\pi\)
\(860\) 0 0
\(861\) −15.3443 + 47.2249i −0.522933 + 1.60942i
\(862\) 0 0
\(863\) 45.3876 + 23.1261i 1.54501 + 0.787223i 0.998730 0.0503786i \(-0.0160428\pi\)
0.546282 + 0.837602i \(0.316043\pi\)
\(864\) 0 0
\(865\) −13.2585 13.6872i −0.450801 0.465379i
\(866\) 0 0
\(867\) −34.5509 5.47233i −1.17341 0.185850i
\(868\) 0 0
\(869\) 6.30599 + 8.67945i 0.213916 + 0.294430i
\(870\) 0 0
\(871\) 32.8321 45.1896i 1.11247 1.53119i
\(872\) 0 0
\(873\) −96.6322 + 49.2366i −3.27051 + 1.66641i
\(874\) 0 0
\(875\) −2.55791 23.2991i −0.0864732 0.787652i
\(876\) 0 0
\(877\) 3.37829 + 6.63027i 0.114077 + 0.223888i 0.940985 0.338449i \(-0.109902\pi\)
−0.826908 + 0.562337i \(0.809902\pi\)
\(878\) 0 0
\(879\) −51.7444 37.5945i −1.74530 1.26803i
\(880\) 0 0
\(881\) 14.7119 10.6889i 0.495658 0.360117i −0.311698 0.950181i \(-0.600898\pi\)
0.807356 + 0.590065i \(0.200898\pi\)
\(882\) 0 0
\(883\) −6.72079 + 42.4334i −0.226173 + 1.42800i 0.569361 + 0.822088i \(0.307191\pi\)
−0.795533 + 0.605910i \(0.792809\pi\)
\(884\) 0 0
\(885\) 13.1904 12.7772i 0.443390 0.429501i
\(886\) 0 0
\(887\) 5.10177 10.0128i 0.171301 0.336197i −0.789356 0.613936i \(-0.789585\pi\)
0.960656 + 0.277739i \(0.0895852\pi\)
\(888\) 0 0
\(889\) 18.2412 + 5.92694i 0.611792 + 0.198783i
\(890\) 0 0
\(891\) 31.4894 10.2315i 1.05493 0.342769i
\(892\) 0 0
\(893\) −14.3795 14.3795i −0.481192 0.481192i
\(894\) 0 0
\(895\) 10.4004 30.3571i 0.347647 1.01472i
\(896\) 0 0
\(897\) 116.456 18.4448i 3.88834 0.615853i
\(898\) 0 0
\(899\) −13.1545 −0.438728
\(900\) 0 0
\(901\) 17.6521 0.588075
\(902\) 0 0
\(903\) 80.9909 12.8277i 2.69521 0.426879i
\(904\) 0 0
\(905\) 22.6137 + 16.9860i 0.751704 + 0.564634i
\(906\) 0 0
\(907\) −22.0214 22.0214i −0.731208 0.731208i 0.239651 0.970859i \(-0.422967\pi\)
−0.970859 + 0.239651i \(0.922967\pi\)
\(908\) 0 0
\(909\) −88.6813 + 28.8143i −2.94137 + 0.955710i
\(910\) 0 0
\(911\) −16.3818 5.32276i −0.542753 0.176351i 0.0247935 0.999693i \(-0.492107\pi\)
−0.567546 + 0.823342i \(0.692107\pi\)
\(912\) 0 0
\(913\) 5.28251 10.3675i 0.174826 0.343115i
\(914\) 0 0
\(915\) −6.37992 + 0.906679i −0.210914 + 0.0299739i
\(916\) 0 0
\(917\) 5.93856 37.4946i 0.196109 1.23818i
\(918\) 0 0
\(919\) 45.1693 32.8174i 1.49000 1.08255i 0.515839 0.856685i \(-0.327480\pi\)
0.974159 0.225862i \(-0.0725198\pi\)
\(920\) 0 0
\(921\) 29.4526 + 21.3986i 0.970496 + 0.705107i
\(922\) 0 0
\(923\) −27.4665 53.9061i −0.904072 1.77434i
\(924\) 0 0
\(925\) −17.4700 + 2.19979i −0.574411 + 0.0723286i
\(926\) 0 0
\(927\) −71.6518 + 36.5084i −2.35335 + 1.19909i
\(928\) 0 0
\(929\) 19.9905 27.5145i 0.655866 0.902722i −0.343470 0.939164i \(-0.611602\pi\)
0.999336 + 0.0364414i \(0.0116022\pi\)
\(930\) 0 0
\(931\) 4.60721 + 6.34128i 0.150995 + 0.207827i
\(932\) 0 0
\(933\) −76.2900 12.0831i −2.49762 0.395584i
\(934\) 0 0
\(935\) −10.0391 1.75421i −0.328315 0.0573687i
\(936\) 0 0
\(937\) −16.4853 8.39969i −0.538552 0.274406i 0.163486 0.986546i \(-0.447726\pi\)
−0.702038 + 0.712140i \(0.747726\pi\)
\(938\) 0 0
\(939\) 18.6321 57.3438i 0.608037 1.87134i
\(940\) 0 0
\(941\) 13.7612 + 42.3526i 0.448602 + 1.38066i 0.878484 + 0.477771i \(0.158555\pi\)
−0.429882 + 0.902885i \(0.641445\pi\)
\(942\) 0 0
\(943\) −30.0013 + 30.0013i −0.976978 + 0.976978i
\(944\) 0 0
\(945\) 0.906978 57.0003i 0.0295040 1.85422i
\(946\) 0 0
\(947\) 3.46390 + 21.8702i 0.112562 + 0.710686i 0.977834 + 0.209383i \(0.0671456\pi\)
−0.865272 + 0.501302i \(0.832854\pi\)
\(948\) 0 0
\(949\) 7.83181i 0.254231i
\(950\) 0 0
\(951\) 9.08042i 0.294453i
\(952\) 0 0
\(953\) −4.50148 28.4212i −0.145817 0.920654i −0.946766 0.321921i \(-0.895671\pi\)
0.800949 0.598732i \(-0.204329\pi\)
\(954\) 0 0
\(955\) 34.1029 + 48.5444i 1.10354 + 1.57086i
\(956\) 0 0
\(957\) 19.8777 19.8777i 0.642554 0.642554i
\(958\) 0 0
\(959\) −10.3256 31.7788i −0.333430 1.02619i
\(960\) 0 0
\(961\) 7.21420 22.2030i 0.232716 0.716227i
\(962\) 0 0
\(963\) 0.656760 + 0.334636i 0.0211638 + 0.0107835i
\(964\) 0 0
\(965\) 18.9713 35.8131i 0.610709 1.15286i
\(966\) 0 0
\(967\) −39.5249 6.26013i −1.27104 0.201312i −0.515768 0.856728i \(-0.672493\pi\)
−0.755268 + 0.655416i \(0.772493\pi\)
\(968\) 0 0
\(969\) −13.4580 18.5233i −0.432332 0.595054i
\(970\) 0 0
\(971\) −2.20060 + 3.02886i −0.0706206 + 0.0972009i −0.842866 0.538123i \(-0.819133\pi\)
0.772246 + 0.635324i \(0.219133\pi\)
\(972\) 0 0
\(973\) 22.0896 11.2552i 0.708161 0.360826i
\(974\) 0 0
\(975\) 29.1841 + 100.604i 0.934639 + 3.22192i
\(976\) 0 0
\(977\) −6.45251 12.6638i −0.206434 0.405150i 0.764456 0.644676i \(-0.223008\pi\)
−0.970890 + 0.239526i \(0.923008\pi\)
\(978\) 0 0
\(979\) 0.0823740 + 0.0598482i 0.00263269 + 0.00191276i
\(980\) 0 0
\(981\) 11.0450 8.02466i 0.352640 0.256208i
\(982\) 0 0
\(983\) 3.31062 20.9025i 0.105593 0.666685i −0.876941 0.480598i \(-0.840420\pi\)
0.982533 0.186087i \(-0.0595805\pi\)
\(984\) 0 0
\(985\) −2.60366 5.31745i −0.0829594 0.169428i
\(986\) 0 0
\(987\) −20.2085 + 39.6615i −0.643244 + 1.26244i
\(988\) 0 0
\(989\) 66.6367 + 21.6516i 2.11892 + 0.688480i
\(990\) 0 0
\(991\) −28.1717 + 9.15355i −0.894905 + 0.290772i −0.720132 0.693837i \(-0.755919\pi\)
−0.174772 + 0.984609i \(0.555919\pi\)
\(992\) 0 0
\(993\) 65.6482 + 65.6482i 2.08328 + 2.08328i
\(994\) 0 0
\(995\) −2.15331 7.00450i −0.0682646 0.222057i
\(996\) 0 0
\(997\) −34.8626 + 5.52170i −1.10411 + 0.174874i −0.681772 0.731564i \(-0.738791\pi\)
−0.422338 + 0.906438i \(0.638791\pi\)
\(998\) 0 0
\(999\) −42.8254 −1.35494
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.d.303.1 80
4.3 odd 2 inner 400.2.bi.d.303.10 yes 80
25.17 odd 20 inner 400.2.bi.d.367.10 yes 80
100.67 even 20 inner 400.2.bi.d.367.1 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.d.303.1 80 1.1 even 1 trivial
400.2.bi.d.303.10 yes 80 4.3 odd 2 inner
400.2.bi.d.367.1 yes 80 100.67 even 20 inner
400.2.bi.d.367.10 yes 80 25.17 odd 20 inner