Properties

Label 400.2.bi.d.223.9
Level $400$
Weight $2$
Character 400.223
Analytic conductor $3.194$
Analytic rank $0$
Dimension $80$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [400,2,Mod(47,400)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(400, base_ring=CyclotomicField(20)) chi = DirichletCharacter(H, H._module([10, 0, 17])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("400.47"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 400 = 2^{4} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 400.bi (of order \(20\), degree \(8\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [80,0,0,0,4,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(9)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.19401608085\)
Analytic rank: \(0\)
Dimension: \(80\)
Relative dimension: \(10\) over \(\Q(\zeta_{20})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 223.9
Character \(\chi\) \(=\) 400.223
Dual form 400.2.bi.d.287.9

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.13079 + 2.21930i) q^{3} +(-0.139160 - 2.23173i) q^{5} +(-0.125831 - 0.125831i) q^{7} +(-1.88325 + 2.59207i) q^{9} +(3.73866 + 5.14582i) q^{11} +(0.413421 + 2.61024i) q^{13} +(4.79553 - 2.83246i) q^{15} +(3.67632 + 1.87318i) q^{17} +(-0.529169 - 1.62861i) q^{19} +(0.136968 - 0.421546i) q^{21} +(0.203992 - 1.28795i) q^{23} +(-4.96127 + 0.621135i) q^{25} +(-0.501815 - 0.0794796i) q^{27} +(-8.12566 - 2.64019i) q^{29} +(1.69590 - 0.551033i) q^{31} +(-7.19248 + 14.1160i) q^{33} +(-0.263311 + 0.298332i) q^{35} +(6.42016 - 1.01685i) q^{37} +(-5.32541 + 3.86914i) q^{39} +(-8.51041 - 6.18317i) q^{41} +(2.70230 - 2.70230i) q^{43} +(6.04689 + 3.84221i) q^{45} +(-9.15432 + 4.66436i) q^{47} -6.96833i q^{49} +10.2770i q^{51} +(8.64413 - 4.40440i) q^{53} +(10.9638 - 9.05978i) q^{55} +(3.01600 - 3.01600i) q^{57} +(-4.80977 - 3.49451i) q^{59} +(6.89430 - 5.00901i) q^{61} +(0.563135 - 0.0891919i) q^{63} +(5.76783 - 1.28589i) q^{65} +(1.50776 - 2.95914i) q^{67} +(3.08903 - 1.00369i) q^{69} +(-7.64731 - 2.48476i) q^{71} +(-1.62013 - 0.256603i) q^{73} +(-6.98864 - 10.3082i) q^{75} +(0.177065 - 1.11794i) q^{77} +(-2.78770 + 8.57966i) q^{79} +(2.57920 + 7.93795i) q^{81} +(9.56955 + 4.87593i) q^{83} +(3.66884 - 8.46524i) q^{85} +(-3.32905 - 21.0188i) q^{87} +(0.221905 + 0.305426i) q^{89} +(0.276428 - 0.380471i) q^{91} +(3.14062 + 3.14062i) q^{93} +(-3.56099 + 1.40760i) q^{95} +(-4.08577 - 8.01878i) q^{97} -20.3792 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 80 q + 4 q^{5} - 4 q^{13} - 24 q^{17} - 48 q^{25} - 40 q^{29} - 64 q^{33} - 20 q^{37} - 24 q^{45} + 28 q^{53} + 48 q^{57} + 112 q^{65} + 140 q^{69} + 108 q^{73} + 136 q^{77} - 20 q^{81} - 24 q^{85} + 80 q^{89}+ \cdots - 52 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/400\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\) \(351\)
\(\chi(n)\) \(1\) \(e\left(\frac{11}{20}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.13079 + 2.21930i 0.652862 + 1.28131i 0.945666 + 0.325141i \(0.105412\pi\)
−0.292804 + 0.956173i \(0.594588\pi\)
\(4\) 0 0
\(5\) −0.139160 2.23173i −0.0622341 0.998062i
\(6\) 0 0
\(7\) −0.125831 0.125831i −0.0475597 0.0475597i 0.682927 0.730487i \(-0.260707\pi\)
−0.730487 + 0.682927i \(0.760707\pi\)
\(8\) 0 0
\(9\) −1.88325 + 2.59207i −0.627751 + 0.864025i
\(10\) 0 0
\(11\) 3.73866 + 5.14582i 1.12725 + 1.55152i 0.793194 + 0.608969i \(0.208417\pi\)
0.334054 + 0.942554i \(0.391583\pi\)
\(12\) 0 0
\(13\) 0.413421 + 2.61024i 0.114662 + 0.723950i 0.976299 + 0.216425i \(0.0694396\pi\)
−0.861637 + 0.507525i \(0.830560\pi\)
\(14\) 0 0
\(15\) 4.79553 2.83246i 1.23820 0.731338i
\(16\) 0 0
\(17\) 3.67632 + 1.87318i 0.891639 + 0.454313i 0.838894 0.544295i \(-0.183203\pi\)
0.0527450 + 0.998608i \(0.483203\pi\)
\(18\) 0 0
\(19\) −0.529169 1.62861i −0.121400 0.373630i 0.871828 0.489812i \(-0.162934\pi\)
−0.993228 + 0.116182i \(0.962934\pi\)
\(20\) 0 0
\(21\) 0.136968 0.421546i 0.0298890 0.0919888i
\(22\) 0 0
\(23\) 0.203992 1.28795i 0.0425353 0.268557i −0.957250 0.289261i \(-0.906591\pi\)
0.999786 + 0.0207035i \(0.00659060\pi\)
\(24\) 0 0
\(25\) −4.96127 + 0.621135i −0.992254 + 0.124227i
\(26\) 0 0
\(27\) −0.501815 0.0794796i −0.0965743 0.0152959i
\(28\) 0 0
\(29\) −8.12566 2.64019i −1.50890 0.490270i −0.566299 0.824200i \(-0.691625\pi\)
−0.942598 + 0.333929i \(0.891625\pi\)
\(30\) 0 0
\(31\) 1.69590 0.551033i 0.304593 0.0989684i −0.152733 0.988268i \(-0.548807\pi\)
0.457326 + 0.889299i \(0.348807\pi\)
\(32\) 0 0
\(33\) −7.19248 + 14.1160i −1.25205 + 2.45729i
\(34\) 0 0
\(35\) −0.263311 + 0.298332i −0.0445077 + 0.0504273i
\(36\) 0 0
\(37\) 6.42016 1.01685i 1.05547 0.167170i 0.395501 0.918465i \(-0.370571\pi\)
0.659966 + 0.751296i \(0.270571\pi\)
\(38\) 0 0
\(39\) −5.32541 + 3.86914i −0.852748 + 0.619558i
\(40\) 0 0
\(41\) −8.51041 6.18317i −1.32910 0.965650i −0.999770 0.0214356i \(-0.993176\pi\)
−0.329332 0.944214i \(-0.606824\pi\)
\(42\) 0 0
\(43\) 2.70230 2.70230i 0.412098 0.412098i −0.470371 0.882469i \(-0.655880\pi\)
0.882469 + 0.470371i \(0.155880\pi\)
\(44\) 0 0
\(45\) 6.04689 + 3.84221i 0.901418 + 0.572762i
\(46\) 0 0
\(47\) −9.15432 + 4.66436i −1.33530 + 0.680367i −0.968285 0.249850i \(-0.919619\pi\)
−0.367010 + 0.930217i \(0.619619\pi\)
\(48\) 0 0
\(49\) 6.96833i 0.995476i
\(50\) 0 0
\(51\) 10.2770i 1.43907i
\(52\) 0 0
\(53\) 8.64413 4.40440i 1.18736 0.604991i 0.255149 0.966902i \(-0.417875\pi\)
0.932213 + 0.361910i \(0.117875\pi\)
\(54\) 0 0
\(55\) 10.9638 9.05978i 1.47836 1.22162i
\(56\) 0 0
\(57\) 3.01600 3.01600i 0.399480 0.399480i
\(58\) 0 0
\(59\) −4.80977 3.49451i −0.626179 0.454946i 0.228895 0.973451i \(-0.426489\pi\)
−0.855074 + 0.518505i \(0.826489\pi\)
\(60\) 0 0
\(61\) 6.89430 5.00901i 0.882725 0.641337i −0.0512458 0.998686i \(-0.516319\pi\)
0.933971 + 0.357349i \(0.116319\pi\)
\(62\) 0 0
\(63\) 0.563135 0.0891919i 0.0709484 0.0112371i
\(64\) 0 0
\(65\) 5.76783 1.28589i 0.715411 0.159495i
\(66\) 0 0
\(67\) 1.50776 2.95914i 0.184202 0.361516i −0.780378 0.625308i \(-0.784973\pi\)
0.964580 + 0.263792i \(0.0849732\pi\)
\(68\) 0 0
\(69\) 3.08903 1.00369i 0.371875 0.120830i
\(70\) 0 0
\(71\) −7.64731 2.48476i −0.907568 0.294887i −0.182211 0.983259i \(-0.558325\pi\)
−0.725357 + 0.688373i \(0.758325\pi\)
\(72\) 0 0
\(73\) −1.62013 0.256603i −0.189621 0.0300331i 0.0609013 0.998144i \(-0.480603\pi\)
−0.250523 + 0.968111i \(0.580603\pi\)
\(74\) 0 0
\(75\) −6.98864 10.3082i −0.806978 1.19029i
\(76\) 0 0
\(77\) 0.177065 1.11794i 0.0201784 0.127402i
\(78\) 0 0
\(79\) −2.78770 + 8.57966i −0.313641 + 0.965288i 0.662669 + 0.748912i \(0.269424\pi\)
−0.976310 + 0.216375i \(0.930576\pi\)
\(80\) 0 0
\(81\) 2.57920 + 7.93795i 0.286577 + 0.881994i
\(82\) 0 0
\(83\) 9.56955 + 4.87593i 1.05039 + 0.535203i 0.891936 0.452163i \(-0.149347\pi\)
0.158459 + 0.987365i \(0.449347\pi\)
\(84\) 0 0
\(85\) 3.66884 8.46524i 0.397942 0.918184i
\(86\) 0 0
\(87\) −3.32905 21.0188i −0.356911 2.25345i
\(88\) 0 0
\(89\) 0.221905 + 0.305426i 0.0235219 + 0.0323751i 0.820616 0.571480i \(-0.193631\pi\)
−0.797094 + 0.603855i \(0.793631\pi\)
\(90\) 0 0
\(91\) 0.276428 0.380471i 0.0289775 0.0398842i
\(92\) 0 0
\(93\) 3.14062 + 3.14062i 0.325667 + 0.325667i
\(94\) 0 0
\(95\) −3.56099 + 1.40760i −0.365350 + 0.144417i
\(96\) 0 0
\(97\) −4.08577 8.01878i −0.414848 0.814184i −0.999995 0.00325706i \(-0.998963\pi\)
0.585147 0.810927i \(-0.301037\pi\)
\(98\) 0 0
\(99\) −20.3792 −2.04819
\(100\) 0 0
\(101\) −5.70850 −0.568017 −0.284009 0.958822i \(-0.591664\pi\)
−0.284009 + 0.958822i \(0.591664\pi\)
\(102\) 0 0
\(103\) 7.62445 + 14.9638i 0.751259 + 1.47443i 0.876037 + 0.482244i \(0.160178\pi\)
−0.124778 + 0.992185i \(0.539822\pi\)
\(104\) 0 0
\(105\) −0.959838 0.247015i −0.0936706 0.0241062i
\(106\) 0 0
\(107\) −7.70566 7.70566i −0.744934 0.744934i 0.228589 0.973523i \(-0.426589\pi\)
−0.973523 + 0.228589i \(0.926589\pi\)
\(108\) 0 0
\(109\) 2.68570 3.69656i 0.257244 0.354066i −0.660788 0.750573i \(-0.729778\pi\)
0.918032 + 0.396507i \(0.129778\pi\)
\(110\) 0 0
\(111\) 9.51655 + 13.0984i 0.903271 + 1.24325i
\(112\) 0 0
\(113\) −2.92518 18.4689i −0.275178 1.73741i −0.607571 0.794265i \(-0.707856\pi\)
0.332393 0.943141i \(-0.392144\pi\)
\(114\) 0 0
\(115\) −2.90276 0.276024i −0.270684 0.0257394i
\(116\) 0 0
\(117\) −7.54451 3.84412i −0.697490 0.355389i
\(118\) 0 0
\(119\) −0.226891 0.698300i −0.0207991 0.0640130i
\(120\) 0 0
\(121\) −9.10272 + 28.0153i −0.827520 + 2.54685i
\(122\) 0 0
\(123\) 4.09884 25.8790i 0.369580 2.33343i
\(124\) 0 0
\(125\) 2.07662 + 10.9858i 0.185738 + 0.982599i
\(126\) 0 0
\(127\) −14.8014 2.34431i −1.31341 0.208024i −0.539859 0.841756i \(-0.681522\pi\)
−0.773553 + 0.633732i \(0.781522\pi\)
\(128\) 0 0
\(129\) 9.05296 + 2.94149i 0.797069 + 0.258983i
\(130\) 0 0
\(131\) −15.4334 + 5.01462i −1.34842 + 0.438129i −0.892162 0.451716i \(-0.850812\pi\)
−0.456262 + 0.889846i \(0.650812\pi\)
\(132\) 0 0
\(133\) −0.138344 + 0.271516i −0.0119960 + 0.0235434i
\(134\) 0 0
\(135\) −0.107545 + 1.13098i −0.00925600 + 0.0973390i
\(136\) 0 0
\(137\) −2.01101 + 0.318513i −0.171812 + 0.0272124i −0.241748 0.970339i \(-0.577721\pi\)
0.0699356 + 0.997552i \(0.477721\pi\)
\(138\) 0 0
\(139\) 7.81925 5.68102i 0.663220 0.481858i −0.204529 0.978861i \(-0.565566\pi\)
0.867749 + 0.497003i \(0.165566\pi\)
\(140\) 0 0
\(141\) −20.7032 15.0418i −1.74353 1.26675i
\(142\) 0 0
\(143\) −11.8862 + 11.8862i −0.993972 + 0.993972i
\(144\) 0 0
\(145\) −4.76143 + 18.5017i −0.395415 + 1.53648i
\(146\) 0 0
\(147\) 15.4648 7.87972i 1.27552 0.649908i
\(148\) 0 0
\(149\) 11.3895i 0.933064i −0.884504 0.466532i \(-0.845503\pi\)
0.884504 0.466532i \(-0.154497\pi\)
\(150\) 0 0
\(151\) 9.52316i 0.774984i −0.921873 0.387492i \(-0.873342\pi\)
0.921873 0.387492i \(-0.126658\pi\)
\(152\) 0 0
\(153\) −11.7789 + 6.00163i −0.952264 + 0.485203i
\(154\) 0 0
\(155\) −1.46576 3.70812i −0.117733 0.297844i
\(156\) 0 0
\(157\) −1.63588 + 1.63588i −0.130557 + 0.130557i −0.769366 0.638808i \(-0.779428\pi\)
0.638808 + 0.769366i \(0.279428\pi\)
\(158\) 0 0
\(159\) 19.5494 + 14.2035i 1.55037 + 1.12641i
\(160\) 0 0
\(161\) −0.187733 + 0.136396i −0.0147955 + 0.0107495i
\(162\) 0 0
\(163\) 16.7141 2.64726i 1.30915 0.207349i 0.537430 0.843309i \(-0.319395\pi\)
0.771723 + 0.635959i \(0.219395\pi\)
\(164\) 0 0
\(165\) 32.5042 + 14.0873i 2.53045 + 1.09670i
\(166\) 0 0
\(167\) 1.25180 2.45679i 0.0968671 0.190112i −0.837488 0.546456i \(-0.815977\pi\)
0.934355 + 0.356343i \(0.115977\pi\)
\(168\) 0 0
\(169\) 5.72130 1.85896i 0.440100 0.142997i
\(170\) 0 0
\(171\) 5.21805 + 1.69545i 0.399034 + 0.129654i
\(172\) 0 0
\(173\) −0.737946 0.116879i −0.0561050 0.00888616i 0.128319 0.991733i \(-0.459042\pi\)
−0.184424 + 0.982847i \(0.559042\pi\)
\(174\) 0 0
\(175\) 0.702440 + 0.546124i 0.0530995 + 0.0412831i
\(176\) 0 0
\(177\) 2.31651 14.6259i 0.174120 1.09935i
\(178\) 0 0
\(179\) −5.49888 + 16.9238i −0.411006 + 1.26495i 0.504769 + 0.863254i \(0.331578\pi\)
−0.915775 + 0.401692i \(0.868422\pi\)
\(180\) 0 0
\(181\) 0.00113146 + 0.00348228i 8.41008e−5 + 0.000258836i 0.951099 0.308888i \(-0.0999567\pi\)
−0.951014 + 0.309146i \(0.899957\pi\)
\(182\) 0 0
\(183\) 18.9125 + 9.63640i 1.39805 + 0.712343i
\(184\) 0 0
\(185\) −3.16277 14.1866i −0.232532 1.04302i
\(186\) 0 0
\(187\) 4.10546 + 25.9209i 0.300221 + 1.89552i
\(188\) 0 0
\(189\) 0.0531429 + 0.0731449i 0.00386558 + 0.00532051i
\(190\) 0 0
\(191\) 4.46083 6.13980i 0.322774 0.444260i −0.616538 0.787326i \(-0.711465\pi\)
0.939312 + 0.343065i \(0.111465\pi\)
\(192\) 0 0
\(193\) 12.7046 + 12.7046i 0.914499 + 0.914499i 0.996622 0.0821232i \(-0.0261701\pi\)
−0.0821232 + 0.996622i \(0.526170\pi\)
\(194\) 0 0
\(195\) 9.37597 + 11.3465i 0.671427 + 0.812538i
\(196\) 0 0
\(197\) 6.83642 + 13.4172i 0.487075 + 0.955938i 0.995494 + 0.0948281i \(0.0302301\pi\)
−0.508419 + 0.861110i \(0.669770\pi\)
\(198\) 0 0
\(199\) −4.50843 −0.319594 −0.159797 0.987150i \(-0.551084\pi\)
−0.159797 + 0.987150i \(0.551084\pi\)
\(200\) 0 0
\(201\) 8.27218 0.583474
\(202\) 0 0
\(203\) 0.690243 + 1.35468i 0.0484456 + 0.0950798i
\(204\) 0 0
\(205\) −12.6149 + 19.8534i −0.881062 + 1.38662i
\(206\) 0 0
\(207\) 2.95431 + 2.95431i 0.205338 + 0.205338i
\(208\) 0 0
\(209\) 6.40217 8.81184i 0.442848 0.609527i
\(210\) 0 0
\(211\) −2.31031 3.17988i −0.159049 0.218912i 0.722054 0.691837i \(-0.243198\pi\)
−0.881103 + 0.472925i \(0.843198\pi\)
\(212\) 0 0
\(213\) −3.13307 19.7814i −0.214674 1.35540i
\(214\) 0 0
\(215\) −6.40687 5.65477i −0.436945 0.385652i
\(216\) 0 0
\(217\) −0.282735 0.144060i −0.0191933 0.00977946i
\(218\) 0 0
\(219\) −1.26254 3.88571i −0.0853148 0.262572i
\(220\) 0 0
\(221\) −3.36958 + 10.3705i −0.226662 + 0.697594i
\(222\) 0 0
\(223\) 3.34198 21.1004i 0.223795 1.41299i −0.578315 0.815813i \(-0.696290\pi\)
0.802111 0.597175i \(-0.203710\pi\)
\(224\) 0 0
\(225\) 7.73329 14.0297i 0.515553 0.935316i
\(226\) 0 0
\(227\) 11.7534 + 1.86155i 0.780099 + 0.123556i 0.533769 0.845630i \(-0.320775\pi\)
0.246330 + 0.969186i \(0.420775\pi\)
\(228\) 0 0
\(229\) −9.25382 3.00675i −0.611509 0.198691i −0.0131425 0.999914i \(-0.504184\pi\)
−0.598367 + 0.801222i \(0.704184\pi\)
\(230\) 0 0
\(231\) 2.68128 0.871200i 0.176415 0.0573207i
\(232\) 0 0
\(233\) −4.31029 + 8.45942i −0.282377 + 0.554195i −0.988011 0.154380i \(-0.950662\pi\)
0.705635 + 0.708576i \(0.250662\pi\)
\(234\) 0 0
\(235\) 11.6835 + 19.7809i 0.762149 + 1.29036i
\(236\) 0 0
\(237\) −22.1932 + 3.51505i −1.44160 + 0.228327i
\(238\) 0 0
\(239\) 4.87560 3.54233i 0.315376 0.229134i −0.418824 0.908068i \(-0.637557\pi\)
0.734200 + 0.678933i \(0.237557\pi\)
\(240\) 0 0
\(241\) −0.0577124 0.0419305i −0.00371758 0.00270098i 0.585925 0.810365i \(-0.300731\pi\)
−0.589642 + 0.807664i \(0.700731\pi\)
\(242\) 0 0
\(243\) −15.7779 + 15.7779i −1.01216 + 1.01216i
\(244\) 0 0
\(245\) −15.5515 + 0.969711i −0.993546 + 0.0619526i
\(246\) 0 0
\(247\) 4.03230 2.05456i 0.256569 0.130729i
\(248\) 0 0
\(249\) 26.7514i 1.69530i
\(250\) 0 0
\(251\) 21.9664i 1.38651i 0.720694 + 0.693253i \(0.243823\pi\)
−0.720694 + 0.693253i \(0.756177\pi\)
\(252\) 0 0
\(253\) 7.39024 3.76551i 0.464620 0.236736i
\(254\) 0 0
\(255\) 22.9356 1.43015i 1.43628 0.0895594i
\(256\) 0 0
\(257\) 3.27612 3.27612i 0.204359 0.204359i −0.597506 0.801865i \(-0.703841\pi\)
0.801865 + 0.597506i \(0.203841\pi\)
\(258\) 0 0
\(259\) −0.935807 0.679904i −0.0581482 0.0422472i
\(260\) 0 0
\(261\) 22.1462 16.0902i 1.37082 0.995957i
\(262\) 0 0
\(263\) −26.6919 + 4.22759i −1.64589 + 0.260684i −0.909450 0.415814i \(-0.863497\pi\)
−0.736445 + 0.676498i \(0.763497\pi\)
\(264\) 0 0
\(265\) −11.0324 18.6785i −0.677713 1.14741i
\(266\) 0 0
\(267\) −0.426904 + 0.837846i −0.0261261 + 0.0512753i
\(268\) 0 0
\(269\) −14.0309 + 4.55892i −0.855480 + 0.277962i −0.703740 0.710458i \(-0.748488\pi\)
−0.151741 + 0.988420i \(0.548488\pi\)
\(270\) 0 0
\(271\) −5.10891 1.65999i −0.310344 0.100837i 0.149704 0.988731i \(-0.452168\pi\)
−0.460048 + 0.887894i \(0.652168\pi\)
\(272\) 0 0
\(273\) 1.15696 + 0.183245i 0.0700224 + 0.0110905i
\(274\) 0 0
\(275\) −21.7447 23.2076i −1.31126 1.39947i
\(276\) 0 0
\(277\) −4.52419 + 28.5646i −0.271832 + 1.71628i 0.353088 + 0.935590i \(0.385132\pi\)
−0.624920 + 0.780689i \(0.714868\pi\)
\(278\) 0 0
\(279\) −1.76550 + 5.43364i −0.105698 + 0.325304i
\(280\) 0 0
\(281\) 4.79558 + 14.7593i 0.286080 + 0.880464i 0.986073 + 0.166314i \(0.0531866\pi\)
−0.699993 + 0.714150i \(0.746813\pi\)
\(282\) 0 0
\(283\) 9.47029 + 4.82535i 0.562950 + 0.286838i 0.712217 0.701959i \(-0.247691\pi\)
−0.149267 + 0.988797i \(0.547691\pi\)
\(284\) 0 0
\(285\) −7.15062 6.31121i −0.423566 0.373844i
\(286\) 0 0
\(287\) 0.292839 + 1.84891i 0.0172857 + 0.109138i
\(288\) 0 0
\(289\) 0.0141820 + 0.0195199i 0.000834236 + 0.00114823i
\(290\) 0 0
\(291\) 13.1759 18.1351i 0.772387 1.06310i
\(292\) 0 0
\(293\) 4.30366 + 4.30366i 0.251423 + 0.251423i 0.821554 0.570131i \(-0.193108\pi\)
−0.570131 + 0.821554i \(0.693108\pi\)
\(294\) 0 0
\(295\) −7.12948 + 11.2204i −0.415094 + 0.653279i
\(296\) 0 0
\(297\) −1.46713 2.87940i −0.0851312 0.167079i
\(298\) 0 0
\(299\) 3.44620 0.199299
\(300\) 0 0
\(301\) −0.680068 −0.0391985
\(302\) 0 0
\(303\) −6.45512 12.6689i −0.370837 0.727808i
\(304\) 0 0
\(305\) −12.1382 14.6892i −0.695030 0.841101i
\(306\) 0 0
\(307\) −10.4311 10.4311i −0.595333 0.595333i 0.343734 0.939067i \(-0.388308\pi\)
−0.939067 + 0.343734i \(0.888308\pi\)
\(308\) 0 0
\(309\) −24.5876 + 33.8419i −1.39874 + 1.92520i
\(310\) 0 0
\(311\) −8.76260 12.0607i −0.496881 0.683899i 0.484757 0.874649i \(-0.338908\pi\)
−0.981639 + 0.190750i \(0.938908\pi\)
\(312\) 0 0
\(313\) −0.730700 4.61346i −0.0413016 0.260768i 0.958394 0.285449i \(-0.0921428\pi\)
−0.999695 + 0.0246815i \(0.992143\pi\)
\(314\) 0 0
\(315\) −0.277418 1.24436i −0.0156308 0.0701115i
\(316\) 0 0
\(317\) 9.20580 + 4.69059i 0.517049 + 0.263450i 0.692985 0.720952i \(-0.256295\pi\)
−0.175936 + 0.984402i \(0.556295\pi\)
\(318\) 0 0
\(319\) −16.7931 51.6839i −0.940235 2.89375i
\(320\) 0 0
\(321\) 8.38769 25.8147i 0.468155 1.44083i
\(322\) 0 0
\(323\) 1.10529 6.97853i 0.0615000 0.388296i
\(324\) 0 0
\(325\) −3.67240 12.6933i −0.203708 0.704098i
\(326\) 0 0
\(327\) 11.2407 + 1.78036i 0.621614 + 0.0984540i
\(328\) 0 0
\(329\) 1.73882 + 0.564977i 0.0958643 + 0.0311482i
\(330\) 0 0
\(331\) 9.14170 2.97032i 0.502473 0.163263i −0.0468032 0.998904i \(-0.514903\pi\)
0.549277 + 0.835641i \(0.314903\pi\)
\(332\) 0 0
\(333\) −9.45502 + 18.5565i −0.518132 + 1.01689i
\(334\) 0 0
\(335\) −6.81383 2.95312i −0.372279 0.161346i
\(336\) 0 0
\(337\) 30.0736 4.76320i 1.63822 0.259468i 0.731696 0.681631i \(-0.238729\pi\)
0.906520 + 0.422164i \(0.138729\pi\)
\(338\) 0 0
\(339\) 37.6802 27.3763i 2.04651 1.48688i
\(340\) 0 0
\(341\) 9.17592 + 6.66669i 0.496904 + 0.361022i
\(342\) 0 0
\(343\) −1.75765 + 1.75765i −0.0949042 + 0.0949042i
\(344\) 0 0
\(345\) −2.66983 6.75422i −0.143739 0.363635i
\(346\) 0 0
\(347\) −19.5032 + 9.93735i −1.04698 + 0.533465i −0.890863 0.454273i \(-0.849899\pi\)
−0.156121 + 0.987738i \(0.549899\pi\)
\(348\) 0 0
\(349\) 19.2942i 1.03279i −0.856349 0.516397i \(-0.827273\pi\)
0.856349 0.516397i \(-0.172727\pi\)
\(350\) 0 0
\(351\) 1.34271i 0.0716688i
\(352\) 0 0
\(353\) −6.76681 + 3.44786i −0.360161 + 0.183511i −0.624702 0.780863i \(-0.714780\pi\)
0.264541 + 0.964374i \(0.414780\pi\)
\(354\) 0 0
\(355\) −4.48113 + 17.4125i −0.237833 + 0.924161i
\(356\) 0 0
\(357\) 1.29317 1.29317i 0.0684418 0.0684418i
\(358\) 0 0
\(359\) 18.0610 + 13.1221i 0.953225 + 0.692559i 0.951567 0.307440i \(-0.0994724\pi\)
0.00165758 + 0.999999i \(0.499472\pi\)
\(360\) 0 0
\(361\) 12.9990 9.44430i 0.684156 0.497068i
\(362\) 0 0
\(363\) −72.4676 + 11.4777i −3.80356 + 0.602425i
\(364\) 0 0
\(365\) −0.347213 + 3.65140i −0.0181740 + 0.191123i
\(366\) 0 0
\(367\) −15.1432 + 29.7202i −0.790469 + 1.55138i 0.0431661 + 0.999068i \(0.486256\pi\)
−0.833635 + 0.552315i \(0.813744\pi\)
\(368\) 0 0
\(369\) 32.0545 10.4151i 1.66869 0.542190i
\(370\) 0 0
\(371\) −1.64191 0.533489i −0.0852438 0.0276974i
\(372\) 0 0
\(373\) 31.7514 + 5.02893i 1.64402 + 0.260388i 0.908738 0.417368i \(-0.137047\pi\)
0.735287 + 0.677756i \(0.237047\pi\)
\(374\) 0 0
\(375\) −22.0326 + 17.0313i −1.13776 + 0.879490i
\(376\) 0 0
\(377\) 3.53220 22.3014i 0.181917 1.14858i
\(378\) 0 0
\(379\) 3.99140 12.2843i 0.205025 0.631001i −0.794688 0.607018i \(-0.792365\pi\)
0.999712 0.0239825i \(-0.00763459\pi\)
\(380\) 0 0
\(381\) −11.5345 35.4997i −0.590933 1.81870i
\(382\) 0 0
\(383\) −16.9707 8.64699i −0.867161 0.441841i −0.0369680 0.999316i \(-0.511770\pi\)
−0.830193 + 0.557476i \(0.811770\pi\)
\(384\) 0 0
\(385\) −2.51959 0.239589i −0.128410 0.0122106i
\(386\) 0 0
\(387\) 1.91545 + 12.0937i 0.0973679 + 0.614757i
\(388\) 0 0
\(389\) 11.2986 + 15.5512i 0.572860 + 0.788475i 0.992890 0.119036i \(-0.0379803\pi\)
−0.420030 + 0.907510i \(0.637980\pi\)
\(390\) 0 0
\(391\) 3.16251 4.35282i 0.159935 0.220132i
\(392\) 0 0
\(393\) −28.5809 28.5809i −1.44172 1.44172i
\(394\) 0 0
\(395\) 19.5355 + 5.02746i 0.982936 + 0.252959i
\(396\) 0 0
\(397\) 4.05205 + 7.95261i 0.203367 + 0.399130i 0.970053 0.242892i \(-0.0780960\pi\)
−0.766687 + 0.642022i \(0.778096\pi\)
\(398\) 0 0
\(399\) −0.759015 −0.0379983
\(400\) 0 0
\(401\) 14.5424 0.726212 0.363106 0.931748i \(-0.381716\pi\)
0.363106 + 0.931748i \(0.381716\pi\)
\(402\) 0 0
\(403\) 2.13945 + 4.19891i 0.106574 + 0.209162i
\(404\) 0 0
\(405\) 17.3565 6.86072i 0.862450 0.340912i
\(406\) 0 0
\(407\) 29.2353 + 29.2353i 1.44914 + 1.44914i
\(408\) 0 0
\(409\) −2.87699 + 3.95984i −0.142258 + 0.195801i −0.874201 0.485565i \(-0.838614\pi\)
0.731943 + 0.681366i \(0.238614\pi\)
\(410\) 0 0
\(411\) −2.98090 4.10286i −0.147037 0.202379i
\(412\) 0 0
\(413\) 0.165502 + 1.04494i 0.00814381 + 0.0514180i
\(414\) 0 0
\(415\) 9.55008 22.0352i 0.468795 1.08167i
\(416\) 0 0
\(417\) 21.4498 + 10.9292i 1.05040 + 0.535207i
\(418\) 0 0
\(419\) 6.49932 + 20.0028i 0.317512 + 0.977203i 0.974708 + 0.223483i \(0.0717426\pi\)
−0.657195 + 0.753720i \(0.728257\pi\)
\(420\) 0 0
\(421\) 5.16907 15.9088i 0.251925 0.775346i −0.742495 0.669852i \(-0.766358\pi\)
0.994420 0.105494i \(-0.0336423\pi\)
\(422\) 0 0
\(423\) 5.14953 32.5129i 0.250379 1.58083i
\(424\) 0 0
\(425\) −19.4027 7.00985i −0.941170 0.340028i
\(426\) 0 0
\(427\) −1.49781 0.237229i −0.0724840 0.0114803i
\(428\) 0 0
\(429\) −39.8198 12.9382i −1.92252 0.624664i
\(430\) 0 0
\(431\) −10.8757 + 3.53373i −0.523864 + 0.170214i −0.558998 0.829169i \(-0.688814\pi\)
0.0351342 + 0.999383i \(0.488814\pi\)
\(432\) 0 0
\(433\) −9.11703 + 17.8932i −0.438137 + 0.859891i 0.561341 + 0.827584i \(0.310285\pi\)
−0.999478 + 0.0323072i \(0.989715\pi\)
\(434\) 0 0
\(435\) −46.4450 + 10.3545i −2.22687 + 0.496461i
\(436\) 0 0
\(437\) −2.20553 + 0.349321i −0.105505 + 0.0167103i
\(438\) 0 0
\(439\) −18.7617 + 13.6312i −0.895447 + 0.650580i −0.937292 0.348544i \(-0.886676\pi\)
0.0418458 + 0.999124i \(0.486676\pi\)
\(440\) 0 0
\(441\) 18.0624 + 13.1231i 0.860116 + 0.624911i
\(442\) 0 0
\(443\) −2.11481 + 2.11481i −0.100478 + 0.100478i −0.755559 0.655081i \(-0.772634\pi\)
0.655081 + 0.755559i \(0.272634\pi\)
\(444\) 0 0
\(445\) 0.650749 0.537735i 0.0308484 0.0254911i
\(446\) 0 0
\(447\) 25.2767 12.8791i 1.19555 0.609162i
\(448\) 0 0
\(449\) 23.8537i 1.12573i −0.826550 0.562863i \(-0.809700\pi\)
0.826550 0.562863i \(-0.190300\pi\)
\(450\) 0 0
\(451\) 66.9098i 3.15066i
\(452\) 0 0
\(453\) 21.1348 10.7687i 0.992997 0.505957i
\(454\) 0 0
\(455\) −0.887577 0.563968i −0.0416102 0.0264392i
\(456\) 0 0
\(457\) −12.8793 + 12.8793i −0.602468 + 0.602468i −0.940967 0.338499i \(-0.890081\pi\)
0.338499 + 0.940967i \(0.390081\pi\)
\(458\) 0 0
\(459\) −1.69595 1.23218i −0.0791603 0.0575133i
\(460\) 0 0
\(461\) −14.1365 + 10.2707i −0.658400 + 0.478356i −0.866122 0.499832i \(-0.833395\pi\)
0.207722 + 0.978188i \(0.433395\pi\)
\(462\) 0 0
\(463\) −4.19053 + 0.663714i −0.194750 + 0.0308454i −0.253048 0.967454i \(-0.581433\pi\)
0.0582972 + 0.998299i \(0.481433\pi\)
\(464\) 0 0
\(465\) 6.57198 7.44607i 0.304768 0.345303i
\(466\) 0 0
\(467\) 13.3260 26.1537i 0.616652 1.21025i −0.345675 0.938354i \(-0.612350\pi\)
0.962327 0.271894i \(-0.0876499\pi\)
\(468\) 0 0
\(469\) −0.562075 + 0.182629i −0.0259542 + 0.00843303i
\(470\) 0 0
\(471\) −5.48034 1.78067i −0.252521 0.0820490i
\(472\) 0 0
\(473\) 24.0086 + 3.80258i 1.10391 + 0.174843i
\(474\) 0 0
\(475\) 3.63694 + 7.75131i 0.166874 + 0.355654i
\(476\) 0 0
\(477\) −4.86253 + 30.7008i −0.222640 + 1.40569i
\(478\) 0 0
\(479\) 6.33663 19.5021i 0.289528 0.891076i −0.695477 0.718549i \(-0.744807\pi\)
0.985005 0.172527i \(-0.0551932\pi\)
\(480\) 0 0
\(481\) 5.30846 + 16.3378i 0.242045 + 0.744937i
\(482\) 0 0
\(483\) −0.514991 0.262401i −0.0234329 0.0119397i
\(484\) 0 0
\(485\) −17.3272 + 10.2343i −0.786788 + 0.464713i
\(486\) 0 0
\(487\) 2.55341 + 16.1216i 0.115706 + 0.730540i 0.975517 + 0.219926i \(0.0705816\pi\)
−0.859810 + 0.510613i \(0.829418\pi\)
\(488\) 0 0
\(489\) 24.7752 + 34.1002i 1.12038 + 1.54206i
\(490\) 0 0
\(491\) −5.12475 + 7.05361i −0.231277 + 0.318325i −0.908844 0.417135i \(-0.863034\pi\)
0.677568 + 0.735460i \(0.263034\pi\)
\(492\) 0 0
\(493\) −24.9270 24.9270i −1.12265 1.12265i
\(494\) 0 0
\(495\) 2.83596 + 45.4809i 0.127467 + 2.04421i
\(496\) 0 0
\(497\) 0.649609 + 1.27493i 0.0291389 + 0.0571884i
\(498\) 0 0
\(499\) −6.73434 −0.301470 −0.150735 0.988574i \(-0.548164\pi\)
−0.150735 + 0.988574i \(0.548164\pi\)
\(500\) 0 0
\(501\) 6.86788 0.306834
\(502\) 0 0
\(503\) 0.0480014 + 0.0942081i 0.00214028 + 0.00420053i 0.892074 0.451889i \(-0.149250\pi\)
−0.889934 + 0.456090i \(0.849250\pi\)
\(504\) 0 0
\(505\) 0.794394 + 12.7399i 0.0353501 + 0.566916i
\(506\) 0 0
\(507\) 10.5952 + 10.5952i 0.470549 + 0.470549i
\(508\) 0 0
\(509\) −9.06764 + 12.4805i −0.401916 + 0.553190i −0.961224 0.275770i \(-0.911067\pi\)
0.559308 + 0.828960i \(0.311067\pi\)
\(510\) 0 0
\(511\) 0.171574 + 0.236151i 0.00758998 + 0.0104467i
\(512\) 0 0
\(513\) 0.136103 + 0.859320i 0.00600909 + 0.0379399i
\(514\) 0 0
\(515\) 32.3342 19.0981i 1.42482 0.841563i
\(516\) 0 0
\(517\) −58.2268 29.6681i −2.56081 1.30480i
\(518\) 0 0
\(519\) −0.575072 1.76989i −0.0252429 0.0776896i
\(520\) 0 0
\(521\) 4.86323 14.9675i 0.213062 0.655737i −0.786224 0.617942i \(-0.787967\pi\)
0.999286 0.0377948i \(-0.0120333\pi\)
\(522\) 0 0
\(523\) 0.816953 5.15804i 0.0357228 0.225545i −0.963368 0.268184i \(-0.913576\pi\)
0.999091 + 0.0426388i \(0.0135765\pi\)
\(524\) 0 0
\(525\) −0.417701 + 2.17648i −0.0182300 + 0.0949893i
\(526\) 0 0
\(527\) 7.26687 + 1.15096i 0.316550 + 0.0501366i
\(528\) 0 0
\(529\) 20.2571 + 6.58193i 0.880743 + 0.286171i
\(530\) 0 0
\(531\) 18.1160 5.88626i 0.786169 0.255442i
\(532\) 0 0
\(533\) 12.6212 24.7705i 0.546684 1.07293i
\(534\) 0 0
\(535\) −16.1247 + 18.2693i −0.697130 + 0.789851i
\(536\) 0 0
\(537\) −43.7771 + 6.93362i −1.88912 + 0.299208i
\(538\) 0 0
\(539\) 35.8578 26.0522i 1.54450 1.12215i
\(540\) 0 0
\(541\) 29.5506 + 21.4698i 1.27048 + 0.923059i 0.999222 0.0394478i \(-0.0125599\pi\)
0.271259 + 0.962506i \(0.412560\pi\)
\(542\) 0 0
\(543\) −0.00644877 + 0.00644877i −0.000276743 + 0.000276743i
\(544\) 0 0
\(545\) −8.62347 5.47937i −0.369389 0.234710i
\(546\) 0 0
\(547\) −28.1881 + 14.3625i −1.20523 + 0.614098i −0.937025 0.349263i \(-0.886432\pi\)
−0.268210 + 0.963360i \(0.586432\pi\)
\(548\) 0 0
\(549\) 27.3038i 1.16530i
\(550\) 0 0
\(551\) 14.6307i 0.623287i
\(552\) 0 0
\(553\) 1.43037 0.728809i 0.0608255 0.0309921i
\(554\) 0 0
\(555\) 27.9078 23.0612i 1.18462 0.978892i
\(556\) 0 0
\(557\) −15.4577 + 15.4577i −0.654962 + 0.654962i −0.954184 0.299222i \(-0.903273\pi\)
0.299222 + 0.954184i \(0.403273\pi\)
\(558\) 0 0
\(559\) 8.17085 + 5.93647i 0.345590 + 0.251086i
\(560\) 0 0
\(561\) −52.8838 + 38.4223i −2.23275 + 1.62219i
\(562\) 0 0
\(563\) −10.3341 + 1.63676i −0.435532 + 0.0689814i −0.370351 0.928892i \(-0.620762\pi\)
−0.0651809 + 0.997873i \(0.520762\pi\)
\(564\) 0 0
\(565\) −40.8106 + 9.09835i −1.71691 + 0.382771i
\(566\) 0 0
\(567\) 0.674298 1.32338i 0.0283178 0.0555769i
\(568\) 0 0
\(569\) 0.0426009 0.0138419i 0.00178592 0.000580282i −0.308124 0.951346i \(-0.599701\pi\)
0.309910 + 0.950766i \(0.399701\pi\)
\(570\) 0 0
\(571\) −25.2657 8.20931i −1.05733 0.343549i −0.271792 0.962356i \(-0.587616\pi\)
−0.785543 + 0.618807i \(0.787616\pi\)
\(572\) 0 0
\(573\) 18.6703 + 2.95709i 0.779964 + 0.123534i
\(574\) 0 0
\(575\) −0.212066 + 6.51659i −0.00884376 + 0.271761i
\(576\) 0 0
\(577\) 1.99167 12.5749i 0.0829141 0.523499i −0.910917 0.412591i \(-0.864624\pi\)
0.993831 0.110908i \(-0.0353760\pi\)
\(578\) 0 0
\(579\) −13.8291 + 42.5616i −0.574719 + 1.76880i
\(580\) 0 0
\(581\) −0.590604 1.81769i −0.0245024 0.0754106i
\(582\) 0 0
\(583\) 54.9817 + 28.0146i 2.27711 + 1.16025i
\(584\) 0 0
\(585\) −7.52916 + 17.3723i −0.311292 + 0.718256i
\(586\) 0 0
\(587\) −4.96985 31.3784i −0.205128 1.29513i −0.848346 0.529443i \(-0.822401\pi\)
0.643218 0.765683i \(-0.277599\pi\)
\(588\) 0 0
\(589\) −1.79484 2.47038i −0.0739550 0.101790i
\(590\) 0 0
\(591\) −22.0463 + 30.3441i −0.906864 + 1.24819i
\(592\) 0 0
\(593\) −25.9959 25.9959i −1.06752 1.06752i −0.997549 0.0699739i \(-0.977708\pi\)
−0.0699739 0.997549i \(-0.522292\pi\)
\(594\) 0 0
\(595\) −1.52684 + 0.603536i −0.0625945 + 0.0247426i
\(596\) 0 0
\(597\) −5.09809 10.0056i −0.208651 0.409500i
\(598\) 0 0
\(599\) 21.2644 0.868840 0.434420 0.900710i \(-0.356953\pi\)
0.434420 + 0.900710i \(0.356953\pi\)
\(600\) 0 0
\(601\) −6.84047 −0.279028 −0.139514 0.990220i \(-0.544554\pi\)
−0.139514 + 0.990220i \(0.544554\pi\)
\(602\) 0 0
\(603\) 4.83082 + 9.48103i 0.196726 + 0.386097i
\(604\) 0 0
\(605\) 63.7894 + 16.4162i 2.59341 + 0.667415i
\(606\) 0 0
\(607\) 9.28593 + 9.28593i 0.376904 + 0.376904i 0.869984 0.493080i \(-0.164129\pi\)
−0.493080 + 0.869984i \(0.664129\pi\)
\(608\) 0 0
\(609\) −2.22592 + 3.06371i −0.0901988 + 0.124148i
\(610\) 0 0
\(611\) −15.9597 21.9666i −0.645660 0.888674i
\(612\) 0 0
\(613\) −1.76691 11.1558i −0.0713648 0.450579i −0.997333 0.0729792i \(-0.976749\pi\)
0.925969 0.377600i \(-0.123251\pi\)
\(614\) 0 0
\(615\) −58.3255 5.54619i −2.35191 0.223644i
\(616\) 0 0
\(617\) 15.4849 + 7.88996i 0.623399 + 0.317638i 0.737004 0.675888i \(-0.236240\pi\)
−0.113605 + 0.993526i \(0.536240\pi\)
\(618\) 0 0
\(619\) 9.41145 + 28.9654i 0.378278 + 1.16422i 0.941240 + 0.337737i \(0.109662\pi\)
−0.562963 + 0.826482i \(0.690338\pi\)
\(620\) 0 0
\(621\) −0.204732 + 0.630101i −0.00821562 + 0.0252851i
\(622\) 0 0
\(623\) 0.0105095 0.0663546i 0.000421056 0.00265844i
\(624\) 0 0
\(625\) 24.2284 6.16323i 0.969135 0.246529i
\(626\) 0 0
\(627\) 26.7956 + 4.24401i 1.07011 + 0.169489i
\(628\) 0 0
\(629\) 25.5073 + 8.28782i 1.01704 + 0.330457i
\(630\) 0 0
\(631\) 32.8585 10.6764i 1.30808 0.425019i 0.429692 0.902976i \(-0.358622\pi\)
0.878384 + 0.477956i \(0.158622\pi\)
\(632\) 0 0
\(633\) 4.44462 8.72305i 0.176658 0.346710i
\(634\) 0 0
\(635\) −3.17212 + 33.3590i −0.125882 + 1.32381i
\(636\) 0 0
\(637\) 18.1890 2.88086i 0.720675 0.114144i
\(638\) 0 0
\(639\) 20.8425 15.1430i 0.824516 0.599046i
\(640\) 0 0
\(641\) −5.23406 3.80277i −0.206733 0.150200i 0.479601 0.877487i \(-0.340781\pi\)
−0.686334 + 0.727286i \(0.740781\pi\)
\(642\) 0 0
\(643\) 5.21671 5.21671i 0.205727 0.205727i −0.596722 0.802448i \(-0.703530\pi\)
0.802448 + 0.596722i \(0.203530\pi\)
\(644\) 0 0
\(645\) 5.30481 20.6131i 0.208877 0.811641i
\(646\) 0 0
\(647\) 28.4031 14.4721i 1.11664 0.568957i 0.204514 0.978864i \(-0.434439\pi\)
0.912128 + 0.409906i \(0.134439\pi\)
\(648\) 0 0
\(649\) 37.8150i 1.48437i
\(650\) 0 0
\(651\) 0.790375i 0.0309772i
\(652\) 0 0
\(653\) −14.8891 + 7.58636i −0.582655 + 0.296877i −0.720365 0.693595i \(-0.756026\pi\)
0.137710 + 0.990473i \(0.456026\pi\)
\(654\) 0 0
\(655\) 13.3390 + 33.7454i 0.521198 + 1.31854i
\(656\) 0 0
\(657\) 3.71624 3.71624i 0.144984 0.144984i
\(658\) 0 0
\(659\) 29.9138 + 21.7337i 1.16528 + 0.846623i 0.990436 0.137974i \(-0.0440589\pi\)
0.174841 + 0.984597i \(0.444059\pi\)
\(660\) 0 0
\(661\) −6.77525 + 4.92251i −0.263527 + 0.191463i −0.711700 0.702483i \(-0.752075\pi\)
0.448174 + 0.893947i \(0.352075\pi\)
\(662\) 0 0
\(663\) −26.8255 + 4.24874i −1.04182 + 0.165007i
\(664\) 0 0
\(665\) 0.625204 + 0.270964i 0.0242444 + 0.0105075i
\(666\) 0 0
\(667\) −5.05801 + 9.92690i −0.195847 + 0.384371i
\(668\) 0 0
\(669\) 50.6072 16.4433i 1.95659 0.635734i
\(670\) 0 0
\(671\) 51.5509 + 16.7499i 1.99010 + 0.646623i
\(672\) 0 0
\(673\) 2.59214 + 0.410555i 0.0999197 + 0.0158257i 0.206194 0.978511i \(-0.433892\pi\)
−0.106274 + 0.994337i \(0.533892\pi\)
\(674\) 0 0
\(675\) 2.53901 + 0.0826254i 0.0977264 + 0.00318025i
\(676\) 0 0
\(677\) −1.71212 + 10.8099i −0.0658021 + 0.415458i 0.932696 + 0.360664i \(0.117450\pi\)
−0.998498 + 0.0547935i \(0.982550\pi\)
\(678\) 0 0
\(679\) −0.494895 + 1.52313i −0.0189923 + 0.0584524i
\(680\) 0 0
\(681\) 9.15926 + 28.1893i 0.350983 + 1.08022i
\(682\) 0 0
\(683\) 25.0034 + 12.7399i 0.956729 + 0.487478i 0.861377 0.507966i \(-0.169602\pi\)
0.0953520 + 0.995444i \(0.469602\pi\)
\(684\) 0 0
\(685\) 0.990687 + 4.44371i 0.0378522 + 0.169786i
\(686\) 0 0
\(687\) −3.79125 23.9370i −0.144645 0.913254i
\(688\) 0 0
\(689\) 15.0702 + 20.7424i 0.574129 + 0.790221i
\(690\) 0 0
\(691\) −10.3065 + 14.1857i −0.392079 + 0.539650i −0.958734 0.284305i \(-0.908237\pi\)
0.566655 + 0.823955i \(0.308237\pi\)
\(692\) 0 0
\(693\) 2.56434 + 2.56434i 0.0974111 + 0.0974111i
\(694\) 0 0
\(695\) −13.7666 16.6599i −0.522198 0.631947i
\(696\) 0 0
\(697\) −19.7048 38.6728i −0.746373 1.46484i
\(698\) 0 0
\(699\) −23.6480 −0.894451
\(700\) 0 0
\(701\) −42.6580 −1.61117 −0.805584 0.592481i \(-0.798149\pi\)
−0.805584 + 0.592481i \(0.798149\pi\)
\(702\) 0 0
\(703\) −5.05341 9.91787i −0.190593 0.374059i
\(704\) 0 0
\(705\) −30.6882 + 48.2973i −1.15578 + 1.81898i
\(706\) 0 0
\(707\) 0.718308 + 0.718308i 0.0270147 + 0.0270147i
\(708\) 0 0
\(709\) 24.8028 34.1382i 0.931491 1.28209i −0.0277848 0.999614i \(-0.508845\pi\)
0.959275 0.282473i \(-0.0911547\pi\)
\(710\) 0 0
\(711\) −16.9892 23.3836i −0.637144 0.876954i
\(712\) 0 0
\(713\) −0.363754 2.29665i −0.0136227 0.0860103i
\(714\) 0 0
\(715\) 28.1809 + 24.8727i 1.05390 + 0.930187i
\(716\) 0 0
\(717\) 13.3748 + 6.81479i 0.499490 + 0.254503i
\(718\) 0 0
\(719\) −16.1889 49.8242i −0.603743 1.85813i −0.505211 0.862996i \(-0.668585\pi\)
−0.0985321 0.995134i \(-0.531415\pi\)
\(720\) 0 0
\(721\) 0.923522 2.84231i 0.0343937 0.105853i
\(722\) 0 0
\(723\) 0.0277958 0.175496i 0.00103374 0.00652676i
\(724\) 0 0
\(725\) 41.9535 + 8.05155i 1.55811 + 0.299027i
\(726\) 0 0
\(727\) −20.4633 3.24107i −0.758942 0.120205i −0.235043 0.971985i \(-0.575523\pi\)
−0.523899 + 0.851780i \(0.675523\pi\)
\(728\) 0 0
\(729\) −29.0437 9.43686i −1.07569 0.349513i
\(730\) 0 0
\(731\) 14.9964 4.87264i 0.554663 0.180221i
\(732\) 0 0
\(733\) 1.41356 2.77427i 0.0522111 0.102470i −0.863427 0.504474i \(-0.831686\pi\)
0.915638 + 0.402004i \(0.131686\pi\)
\(734\) 0 0
\(735\) −19.7375 33.4168i −0.728029 1.23260i
\(736\) 0 0
\(737\) 20.8642 3.30456i 0.768542 0.121725i
\(738\) 0 0
\(739\) −13.0090 + 9.45162i −0.478545 + 0.347683i −0.800762 0.598982i \(-0.795572\pi\)
0.322217 + 0.946666i \(0.395572\pi\)
\(740\) 0 0
\(741\) 9.11937 + 6.62561i 0.335009 + 0.243398i
\(742\) 0 0
\(743\) 13.2634 13.2634i 0.486589 0.486589i −0.420639 0.907228i \(-0.638194\pi\)
0.907228 + 0.420639i \(0.138194\pi\)
\(744\) 0 0
\(745\) −25.4183 + 1.58496i −0.931255 + 0.0580684i
\(746\) 0 0
\(747\) −30.6607 + 15.6224i −1.12181 + 0.571593i
\(748\) 0 0
\(749\) 1.93922i 0.0708577i
\(750\) 0 0
\(751\) 0.966648i 0.0352735i 0.999844 + 0.0176367i \(0.00561424\pi\)
−0.999844 + 0.0176367i \(0.994386\pi\)
\(752\) 0 0
\(753\) −48.7500 + 24.8394i −1.77655 + 0.905197i
\(754\) 0 0
\(755\) −21.2532 + 1.32524i −0.773482 + 0.0482304i
\(756\) 0 0
\(757\) 9.27361 9.27361i 0.337055 0.337055i −0.518203 0.855258i \(-0.673399\pi\)
0.855258 + 0.518203i \(0.173399\pi\)
\(758\) 0 0
\(759\) 16.7136 + 12.1432i 0.606666 + 0.440768i
\(760\) 0 0
\(761\) −15.0872 + 10.9615i −0.546909 + 0.397353i −0.826644 0.562725i \(-0.809753\pi\)
0.279736 + 0.960077i \(0.409753\pi\)
\(762\) 0 0
\(763\) −0.803087 + 0.127196i −0.0290737 + 0.00460482i
\(764\) 0 0
\(765\) 15.0332 + 25.4521i 0.543526 + 0.920222i
\(766\) 0 0
\(767\) 7.13303 13.9994i 0.257559 0.505488i
\(768\) 0 0
\(769\) −25.3127 + 8.22461i −0.912801 + 0.296587i −0.727510 0.686097i \(-0.759323\pi\)
−0.185290 + 0.982684i \(0.559323\pi\)
\(770\) 0 0
\(771\) 10.9753 + 3.56610i 0.395266 + 0.128430i
\(772\) 0 0
\(773\) 25.6051 + 4.05545i 0.920951 + 0.145864i 0.598869 0.800847i \(-0.295617\pi\)
0.322083 + 0.946712i \(0.395617\pi\)
\(774\) 0 0
\(775\) −8.07157 + 3.78721i −0.289939 + 0.136040i
\(776\) 0 0
\(777\) 0.450709 2.84567i 0.0161691 0.102088i
\(778\) 0 0
\(779\) −5.56656 + 17.1321i −0.199443 + 0.613822i
\(780\) 0 0
\(781\) −15.8045 48.6413i −0.565530 1.74052i
\(782\) 0 0
\(783\) 3.86773 + 1.97071i 0.138222 + 0.0704274i
\(784\) 0 0
\(785\) 3.87850 + 3.42320i 0.138429 + 0.122179i
\(786\) 0 0
\(787\) −0.230310 1.45412i −0.00820966 0.0518338i 0.983243 0.182297i \(-0.0583534\pi\)
−0.991453 + 0.130464i \(0.958353\pi\)
\(788\) 0 0
\(789\) −39.5652 54.4569i −1.40856 1.93872i
\(790\) 0 0
\(791\) −1.95588 + 2.69204i −0.0695431 + 0.0957179i
\(792\) 0 0
\(793\) 15.9250 + 15.9250i 0.565512 + 0.565512i
\(794\) 0 0
\(795\) 28.9779 45.6056i 1.02774 1.61746i
\(796\) 0 0
\(797\) 10.1976 + 20.0140i 0.361219 + 0.708933i 0.998073 0.0620520i \(-0.0197645\pi\)
−0.636854 + 0.770985i \(0.719764\pi\)
\(798\) 0 0
\(799\) −42.3914 −1.49970
\(800\) 0 0
\(801\) −1.20959 −0.0427387
\(802\) 0 0
\(803\) −4.73667 9.29623i −0.167153 0.328057i
\(804\) 0 0
\(805\) 0.330525 + 0.399990i 0.0116495 + 0.0140978i
\(806\) 0 0
\(807\) −25.9836 25.9836i −0.914667 0.914667i
\(808\) 0 0
\(809\) −11.7267 + 16.1404i −0.412290 + 0.567468i −0.963775 0.266717i \(-0.914061\pi\)
0.551485 + 0.834185i \(0.314061\pi\)
\(810\) 0 0
\(811\) −9.47694 13.0439i −0.332780 0.458033i 0.609535 0.792759i \(-0.291356\pi\)
−0.942315 + 0.334726i \(0.891356\pi\)
\(812\) 0 0
\(813\) −2.09310 13.2153i −0.0734082 0.463481i
\(814\) 0 0
\(815\) −8.23391 36.9331i −0.288421 1.29371i
\(816\) 0 0
\(817\) −5.83098 2.97103i −0.204000 0.103943i
\(818\) 0 0
\(819\) 0.465624 + 1.43304i 0.0162702 + 0.0500746i
\(820\) 0 0
\(821\) 3.77328 11.6130i 0.131688 0.405295i −0.863372 0.504568i \(-0.831652\pi\)
0.995060 + 0.0992731i \(0.0316517\pi\)
\(822\) 0 0
\(823\) 3.98600 25.1666i 0.138943 0.877252i −0.815478 0.578788i \(-0.803526\pi\)
0.954421 0.298464i \(-0.0964742\pi\)
\(824\) 0 0
\(825\) 26.9159 74.5010i 0.937091 2.59379i
\(826\) 0 0
\(827\) 11.8326 + 1.87411i 0.411461 + 0.0651691i 0.358734 0.933440i \(-0.383209\pi\)
0.0527274 + 0.998609i \(0.483209\pi\)
\(828\) 0 0
\(829\) 22.5198 + 7.31711i 0.782144 + 0.254134i 0.672755 0.739865i \(-0.265111\pi\)
0.109388 + 0.993999i \(0.465111\pi\)
\(830\) 0 0
\(831\) −68.5093 + 22.2600i −2.37656 + 0.772192i
\(832\) 0 0
\(833\) 13.0529 25.6178i 0.452257 0.887605i
\(834\) 0 0
\(835\) −5.65711 2.45179i −0.195772 0.0848478i
\(836\) 0 0
\(837\) −0.894825 + 0.141726i −0.0309297 + 0.00489878i
\(838\) 0 0
\(839\) −38.4811 + 27.9581i −1.32851 + 0.965222i −0.328731 + 0.944424i \(0.606621\pi\)
−0.999784 + 0.0207988i \(0.993379\pi\)
\(840\) 0 0
\(841\) 35.5943 + 25.8607i 1.22739 + 0.891750i
\(842\) 0 0
\(843\) −27.3325 + 27.3325i −0.941380 + 0.941380i
\(844\) 0 0
\(845\) −4.94489 12.5097i −0.170109 0.430348i
\(846\) 0 0
\(847\) 4.67060 2.37979i 0.160484 0.0817706i
\(848\) 0 0
\(849\) 26.4739i 0.908581i
\(850\) 0 0
\(851\) 8.47630i 0.290564i
\(852\) 0 0
\(853\) −47.7453 + 24.3274i −1.63477 + 0.832955i −0.636679 + 0.771129i \(0.719693\pi\)
−0.998087 + 0.0618264i \(0.980307\pi\)
\(854\) 0 0
\(855\) 3.05764 11.8812i 0.104569 0.406329i
\(856\) 0 0
\(857\) −36.5766 + 36.5766i −1.24943 + 1.24943i −0.293461 + 0.955971i \(0.594807\pi\)
−0.955971 + 0.293461i \(0.905193\pi\)
\(858\) 0 0
\(859\) −40.5206 29.4399i −1.38254 1.00448i −0.996637 0.0819401i \(-0.973888\pi\)
−0.385908 0.922537i \(-0.626112\pi\)
\(860\) 0 0
\(861\) −3.77215 + 2.74063i −0.128554 + 0.0934003i
\(862\) 0 0
\(863\) 24.2136 3.83506i 0.824240 0.130547i 0.269954 0.962873i \(-0.412991\pi\)
0.554286 + 0.832326i \(0.312991\pi\)
\(864\) 0 0
\(865\) −0.158151 + 1.66316i −0.00537729 + 0.0565493i
\(866\) 0 0
\(867\) −0.0272836 + 0.0535470i −0.000926599 + 0.00181855i
\(868\) 0 0
\(869\) −54.5717 + 17.7314i −1.85122 + 0.601497i
\(870\) 0 0
\(871\) 8.34740 + 2.71223i 0.282841 + 0.0919006i
\(872\) 0 0
\(873\) 28.4798 + 4.51076i 0.963896 + 0.152666i
\(874\) 0 0
\(875\) 1.12105 1.64366i 0.0378985 0.0555658i
\(876\) 0 0
\(877\) 5.58262 35.2473i 0.188512 1.19022i −0.694018 0.719958i \(-0.744161\pi\)
0.882529 0.470258i \(-0.155839\pi\)
\(878\) 0 0
\(879\) −4.68458 + 14.4177i −0.158007 + 0.486296i
\(880\) 0 0
\(881\) −15.0314 46.2618i −0.506420 1.55860i −0.798370 0.602167i \(-0.794304\pi\)
0.291950 0.956434i \(-0.405696\pi\)
\(882\) 0 0
\(883\) 15.6464 + 7.97222i 0.526542 + 0.268286i 0.696991 0.717080i \(-0.254522\pi\)
−0.170449 + 0.985366i \(0.554522\pi\)
\(884\) 0 0
\(885\) −32.9634 3.13451i −1.10805 0.105365i
\(886\) 0 0
\(887\) 2.16807 + 13.6887i 0.0727967 + 0.459620i 0.996979 + 0.0776691i \(0.0247478\pi\)
−0.924182 + 0.381951i \(0.875252\pi\)
\(888\) 0 0
\(889\) 1.56749 + 2.15746i 0.0525719 + 0.0723590i
\(890\) 0 0
\(891\) −31.2045 + 42.9493i −1.04539 + 1.43886i
\(892\) 0 0
\(893\) 12.4406 + 12.4406i 0.416309 + 0.416309i
\(894\) 0 0
\(895\) 38.5347 + 9.91693i 1.28807 + 0.331486i
\(896\) 0 0
\(897\) 3.89693 + 7.64816i 0.130115 + 0.255365i
\(898\) 0 0
\(899\) −15.2352 −0.508121
\(900\) 0 0
\(901\) 40.0288 1.33355
\(902\) 0 0
\(903\) −0.769014 1.50928i −0.0255912 0.0502255i
\(904\) 0 0
\(905\) 0.00761406 0.00300971i 0.000253100 0.000100046i
\(906\) 0 0
\(907\) −33.7582 33.7582i −1.12092 1.12092i −0.991603 0.129320i \(-0.958720\pi\)
−0.129320 0.991603i \(-0.541280\pi\)
\(908\) 0 0
\(909\) 10.7506 14.7969i 0.356573 0.490781i
\(910\) 0 0
\(911\) 18.1771 + 25.0186i 0.602233 + 0.828902i 0.995910 0.0903464i \(-0.0287974\pi\)
−0.393678 + 0.919249i \(0.628797\pi\)
\(912\) 0 0
\(913\) 10.6866 + 67.4726i 0.353675 + 2.23302i
\(914\) 0 0
\(915\) 18.8740 43.5487i 0.623956 1.43967i
\(916\) 0 0
\(917\) 2.57300 + 1.31101i 0.0849679 + 0.0432933i
\(918\) 0 0
\(919\) −13.9477 42.9267i −0.460093 1.41602i −0.865050 0.501686i \(-0.832713\pi\)
0.404957 0.914336i \(-0.367287\pi\)
\(920\) 0 0
\(921\) 11.3543 34.9450i 0.374138 1.15148i
\(922\) 0 0
\(923\) 3.32426 20.9885i 0.109419 0.690846i
\(924\) 0 0
\(925\) −31.2205 + 9.03266i −1.02652 + 0.296992i
\(926\) 0 0
\(927\) −53.1461 8.41751i −1.74555 0.276467i
\(928\) 0 0
\(929\) −26.7906 8.70480i −0.878971 0.285595i −0.165441 0.986220i \(-0.552905\pi\)
−0.713530 + 0.700625i \(0.752905\pi\)
\(930\) 0 0
\(931\) −11.3487 + 3.68742i −0.371939 + 0.120850i
\(932\) 0 0
\(933\) 16.8576 33.0849i 0.551894 1.08315i
\(934\) 0 0
\(935\) 57.2771 12.7694i 1.87316 0.417605i
\(936\) 0 0
\(937\) −19.2471 + 3.04844i −0.628776 + 0.0995883i −0.462686 0.886522i \(-0.653114\pi\)
−0.166090 + 0.986111i \(0.553114\pi\)
\(938\) 0 0
\(939\) 9.41238 6.83849i 0.307161 0.223166i
\(940\) 0 0
\(941\) 22.6739 + 16.4735i 0.739147 + 0.537022i 0.892444 0.451158i \(-0.148989\pi\)
−0.153297 + 0.988180i \(0.548989\pi\)
\(942\) 0 0
\(943\) −9.69970 + 9.69970i −0.315866 + 0.315866i
\(944\) 0 0
\(945\) 0.155845 0.128780i 0.00506963 0.00418920i
\(946\) 0 0
\(947\) −19.1883 + 9.77694i −0.623537 + 0.317708i −0.737060 0.675827i \(-0.763786\pi\)
0.113523 + 0.993535i \(0.463786\pi\)
\(948\) 0 0
\(949\) 4.33500i 0.140720i
\(950\) 0 0
\(951\) 25.7345i 0.834498i
\(952\) 0 0
\(953\) 15.7156 8.00749i 0.509078 0.259388i −0.180532 0.983569i \(-0.557782\pi\)
0.689610 + 0.724181i \(0.257782\pi\)
\(954\) 0 0
\(955\) −14.3232 9.10096i −0.463487 0.294500i
\(956\) 0 0
\(957\) 95.7127 95.7127i 3.09395 3.09395i
\(958\) 0 0
\(959\) 0.293126 + 0.212969i 0.00946554 + 0.00687712i
\(960\) 0 0
\(961\) −22.5071 + 16.3523i −0.726035 + 0.527495i
\(962\) 0 0
\(963\) 34.4853 5.46194i 1.11127 0.176009i
\(964\) 0 0
\(965\) 26.5854 30.1213i 0.855813 0.969639i
\(966\) 0 0
\(967\) −12.3062 + 24.1523i −0.395741 + 0.776685i −0.999795 0.0202581i \(-0.993551\pi\)
0.604054 + 0.796944i \(0.293551\pi\)
\(968\) 0 0
\(969\) 16.7373 5.43828i 0.537680 0.174703i
\(970\) 0 0
\(971\) 34.4150 + 11.1821i 1.10443 + 0.358851i 0.803806 0.594891i \(-0.202805\pi\)
0.300624 + 0.953743i \(0.402805\pi\)
\(972\) 0 0
\(973\) −1.69875 0.269056i −0.0544596 0.00862555i
\(974\) 0 0
\(975\) 24.0175 22.5036i 0.769177 0.720693i
\(976\) 0 0
\(977\) 1.34979 8.52225i 0.0431836 0.272651i −0.956643 0.291263i \(-0.905925\pi\)
0.999827 + 0.0186118i \(0.00592466\pi\)
\(978\) 0 0
\(979\) −0.742040 + 2.28376i −0.0237157 + 0.0729894i
\(980\) 0 0
\(981\) 4.52389 + 13.9231i 0.144437 + 0.444530i
\(982\) 0 0
\(983\) 8.11314 + 4.13385i 0.258769 + 0.131849i 0.578563 0.815638i \(-0.303614\pi\)
−0.319794 + 0.947487i \(0.603614\pi\)
\(984\) 0 0
\(985\) 28.9923 17.1242i 0.923772 0.545622i
\(986\) 0 0
\(987\) 0.712387 + 4.49784i 0.0226755 + 0.143168i
\(988\) 0 0
\(989\) −2.92920 4.03169i −0.0931430 0.128200i
\(990\) 0 0
\(991\) 17.9533 24.7106i 0.570306 0.784959i −0.422285 0.906463i \(-0.638772\pi\)
0.992591 + 0.121504i \(0.0387718\pi\)
\(992\) 0 0
\(993\) 16.9294 + 16.9294i 0.537237 + 0.537237i
\(994\) 0 0
\(995\) 0.627391 + 10.0616i 0.0198896 + 0.318975i
\(996\) 0 0
\(997\) 12.7518 + 25.0269i 0.403855 + 0.792609i 0.999947 0.0103065i \(-0.00328073\pi\)
−0.596092 + 0.802916i \(0.703281\pi\)
\(998\) 0 0
\(999\) −3.30255 −0.104488
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 400.2.bi.d.223.9 yes 80
4.3 odd 2 inner 400.2.bi.d.223.2 80
25.12 odd 20 inner 400.2.bi.d.287.2 yes 80
100.87 even 20 inner 400.2.bi.d.287.9 yes 80
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
400.2.bi.d.223.2 80 4.3 odd 2 inner
400.2.bi.d.223.9 yes 80 1.1 even 1 trivial
400.2.bi.d.287.2 yes 80 25.12 odd 20 inner
400.2.bi.d.287.9 yes 80 100.87 even 20 inner