Properties

Label 40.6.c
Level 40
Weight 6
Character orbit c
Rep. character \(\chi_{40}(9,\cdot)\)
Character field \(\Q\)
Dimension 8
Newform subspaces 1
Sturm bound 36
Trace bound 0

Related objects

Downloads

Learn more about

Defining parameters

Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 40.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(36\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(40, [\chi])\).

Total New Old
Modular forms 34 8 26
Cusp forms 26 8 18
Eisenstein series 8 0 8

Trace form

\( 8q + 8q^{5} - 1000q^{9} + O(q^{10}) \) \( 8q + 8q^{5} - 1000q^{9} - 736q^{11} - 992q^{15} + 1376q^{19} + 1984q^{21} - 2136q^{25} + 5872q^{29} + 4224q^{31} + 19232q^{35} - 3008q^{39} + 23600q^{41} - 28328q^{45} - 45000q^{49} - 124800q^{51} + 15008q^{55} + 91680q^{59} + 123856q^{61} - 72064q^{65} - 76736q^{69} - 125632q^{71} + 222784q^{75} + 43264q^{79} + 409672q^{81} - 293760q^{85} - 41904q^{89} - 487616q^{91} + 442592q^{95} + 266848q^{99} + O(q^{100}) \)

Decomposition of \(S_{6}^{\mathrm{new}}(40, [\chi])\) into newform subspaces

Label Dim. \(A\) Field CM Traces $q$-expansion
\(a_2\) \(a_3\) \(a_5\) \(a_7\)
40.6.c.a \(8\) \(6.415\) \(\mathbb{Q}[x]/(x^{8} + \cdots)\) None \(0\) \(0\) \(8\) \(0\) \(q-\beta _{1}q^{3}+(1-\beta _{2})q^{5}+(\beta _{2}+\beta _{6})q^{7}+\cdots\)

Decomposition of \(S_{6}^{\mathrm{old}}(40, [\chi])\) into lower level spaces

\( S_{6}^{\mathrm{old}}(40, [\chi]) \cong \) \(S_{6}^{\mathrm{new}}(5, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{6}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ 1
$3$ \( 1 - 472 T^{2} + 69724 T^{4} - 20119464 T^{6} + 8439593958 T^{8} - 1188034229736 T^{10} + 243112555575324 T^{12} - 97180614348674328 T^{14} + 12157665459056928801 T^{16} \)
$5$ \( 1 - 8 T + 1100 T^{2} + 113000 T^{3} - 438250 T^{4} + 353125000 T^{5} + 10742187500 T^{6} - 244140625000 T^{7} + 95367431640625 T^{8} \)
$7$ \( 1 - 44728 T^{2} + 1493128636 T^{4} - 37445733732616 T^{6} + 682894235558230726 T^{8} - \)\(10\!\cdots\!84\)\( T^{10} + \)\(11\!\cdots\!36\)\( T^{12} - \)\(10\!\cdots\!72\)\( T^{14} + \)\(63\!\cdots\!01\)\( T^{16} \)
$11$ \( ( 1 + 368 T + 176204 T^{2} + 51158896 T^{3} + 42277949270 T^{4} + 8239191359696 T^{5} + 4570277964394604 T^{6} + 1537227326344959568 T^{7} + \)\(67\!\cdots\!01\)\( T^{8} )^{2} \)
$13$ \( 1 - 1578472 T^{2} + 1074189263356 T^{4} - 437549632721743384 T^{6} + \)\(15\!\cdots\!86\)\( T^{8} - \)\(60\!\cdots\!16\)\( T^{10} + \)\(20\!\cdots\!56\)\( T^{12} - \)\(41\!\cdots\!28\)\( T^{14} + \)\(36\!\cdots\!01\)\( T^{16} \)
$17$ \( 1 - 6260872 T^{2} + 17547242668444 T^{4} - 31297293718759478968 T^{6} + \)\(45\!\cdots\!30\)\( T^{8} - \)\(63\!\cdots\!32\)\( T^{10} + \)\(71\!\cdots\!44\)\( T^{12} - \)\(51\!\cdots\!28\)\( T^{14} + \)\(16\!\cdots\!01\)\( T^{16} \)
$19$ \( ( 1 - 688 T + 5308396 T^{2} - 6058136368 T^{3} + 15069081422710 T^{4} - 15000545402668432 T^{5} + 32546127598645797196 T^{6} - \)\(10\!\cdots\!12\)\( T^{7} + \)\(37\!\cdots\!01\)\( T^{8} )^{2} \)
$23$ \( 1 - 34675896 T^{2} + 569897415616828 T^{4} - \)\(59\!\cdots\!20\)\( T^{6} + \)\(44\!\cdots\!82\)\( T^{8} - \)\(24\!\cdots\!80\)\( T^{10} + \)\(97\!\cdots\!28\)\( T^{12} - \)\(24\!\cdots\!04\)\( T^{14} + \)\(29\!\cdots\!01\)\( T^{16} \)
$29$ \( ( 1 - 2936 T + 58625996 T^{2} - 77951973928 T^{3} + 1466411094282230 T^{4} - 1598884552081323272 T^{5} + \)\(24\!\cdots\!96\)\( T^{6} - \)\(25\!\cdots\!64\)\( T^{7} + \)\(17\!\cdots\!01\)\( T^{8} )^{2} \)
$31$ \( ( 1 - 2112 T + 80187004 T^{2} - 163080265536 T^{3} + 3196344720873606 T^{4} - 4668849547150239936 T^{5} + \)\(65\!\cdots\!04\)\( T^{6} - \)\(49\!\cdots\!12\)\( T^{7} + \)\(67\!\cdots\!01\)\( T^{8} )^{2} \)
$37$ \( 1 - 251774632 T^{2} + 38631208311838780 T^{4} - \)\(41\!\cdots\!52\)\( T^{6} + \)\(32\!\cdots\!34\)\( T^{8} - \)\(19\!\cdots\!48\)\( T^{10} + \)\(89\!\cdots\!80\)\( T^{12} - \)\(27\!\cdots\!68\)\( T^{14} + \)\(53\!\cdots\!01\)\( T^{16} \)
$41$ \( ( 1 - 11800 T + 337909340 T^{2} - 2943020124776 T^{3} + 51155654972384870 T^{4} - \)\(34\!\cdots\!76\)\( T^{5} + \)\(45\!\cdots\!40\)\( T^{6} - \)\(18\!\cdots\!00\)\( T^{7} + \)\(18\!\cdots\!01\)\( T^{8} )^{2} \)
$43$ \( 1 - 283211672 T^{2} + 48021567531024796 T^{4} - \)\(54\!\cdots\!84\)\( T^{6} + \)\(43\!\cdots\!06\)\( T^{8} - \)\(11\!\cdots\!16\)\( T^{10} + \)\(22\!\cdots\!96\)\( T^{12} - \)\(28\!\cdots\!28\)\( T^{14} + \)\(21\!\cdots\!01\)\( T^{16} \)
$47$ \( 1 - 963352312 T^{2} + 473832864723586300 T^{4} - \)\(15\!\cdots\!72\)\( T^{6} + \)\(40\!\cdots\!54\)\( T^{8} - \)\(83\!\cdots\!28\)\( T^{10} + \)\(13\!\cdots\!00\)\( T^{12} - \)\(14\!\cdots\!88\)\( T^{14} + \)\(76\!\cdots\!01\)\( T^{16} \)
$53$ \( 1 - 1183385640 T^{2} + 874785099161623996 T^{4} - \)\(49\!\cdots\!80\)\( T^{6} + \)\(23\!\cdots\!06\)\( T^{8} - \)\(86\!\cdots\!20\)\( T^{10} + \)\(26\!\cdots\!96\)\( T^{12} - \)\(63\!\cdots\!60\)\( T^{14} + \)\(93\!\cdots\!01\)\( T^{16} \)
$59$ \( ( 1 - 45840 T + 3064286732 T^{2} - 94721285480976 T^{3} + 3348109683185502486 T^{4} - \)\(67\!\cdots\!24\)\( T^{5} + \)\(15\!\cdots\!32\)\( T^{6} - \)\(16\!\cdots\!60\)\( T^{7} + \)\(26\!\cdots\!01\)\( T^{8} )^{2} \)
$61$ \( ( 1 - 61928 T + 3903014764 T^{2} - 145287706763384 T^{3} + 5198153942066716726 T^{4} - \)\(12\!\cdots\!84\)\( T^{5} + \)\(27\!\cdots\!64\)\( T^{6} - \)\(37\!\cdots\!28\)\( T^{7} + \)\(50\!\cdots\!01\)\( T^{8} )^{2} \)
$67$ \( 1 - 9281919064 T^{2} + 39492482666681482588 T^{4} - \)\(10\!\cdots\!40\)\( T^{6} + \)\(16\!\cdots\!62\)\( T^{8} - \)\(18\!\cdots\!60\)\( T^{10} + \)\(13\!\cdots\!88\)\( T^{12} - \)\(56\!\cdots\!36\)\( T^{14} + \)\(11\!\cdots\!01\)\( T^{16} \)
$71$ \( ( 1 + 62816 T + 3398787356 T^{2} + 184024084124896 T^{3} + 8353296562609817510 T^{4} + \)\(33\!\cdots\!96\)\( T^{5} + \)\(11\!\cdots\!56\)\( T^{6} + \)\(36\!\cdots\!16\)\( T^{7} + \)\(10\!\cdots\!01\)\( T^{8} )^{2} \)
$73$ \( 1 - 9140679496 T^{2} + 46078306824990298588 T^{4} - \)\(15\!\cdots\!60\)\( T^{6} + \)\(37\!\cdots\!02\)\( T^{8} - \)\(66\!\cdots\!40\)\( T^{10} + \)\(85\!\cdots\!88\)\( T^{12} - \)\(72\!\cdots\!04\)\( T^{14} + \)\(34\!\cdots\!01\)\( T^{16} \)
$79$ \( ( 1 - 21632 T + 7152876604 T^{2} - 332616618908288 T^{3} + 24121899620797566790 T^{4} - \)\(10\!\cdots\!12\)\( T^{5} + \)\(67\!\cdots\!04\)\( T^{6} - \)\(63\!\cdots\!68\)\( T^{7} + \)\(89\!\cdots\!01\)\( T^{8} )^{2} \)
$83$ \( 1 - 6759897816 T^{2} + 40943120759345365468 T^{4} - \)\(86\!\cdots\!80\)\( T^{6} + \)\(39\!\cdots\!42\)\( T^{8} - \)\(13\!\cdots\!20\)\( T^{10} + \)\(98\!\cdots\!68\)\( T^{12} - \)\(25\!\cdots\!84\)\( T^{14} + \)\(57\!\cdots\!01\)\( T^{16} \)
$89$ \( ( 1 + 20952 T + 16118164796 T^{2} + 497915996461992 T^{3} + \)\(11\!\cdots\!30\)\( T^{4} + \)\(27\!\cdots\!08\)\( T^{5} + \)\(50\!\cdots\!96\)\( T^{6} + \)\(36\!\cdots\!48\)\( T^{7} + \)\(97\!\cdots\!01\)\( T^{8} )^{2} \)
$97$ \( 1 - 45263915272 T^{2} + \)\(10\!\cdots\!40\)\( T^{4} - \)\(14\!\cdots\!12\)\( T^{6} + \)\(15\!\cdots\!94\)\( T^{8} - \)\(11\!\cdots\!88\)\( T^{10} + \)\(55\!\cdots\!40\)\( T^{12} - \)\(18\!\cdots\!28\)\( T^{14} + \)\(29\!\cdots\!01\)\( T^{16} \)
show more
show less