Properties

Label 40.5
Level 40
Weight 5
Dimension 94
Nonzero newspaces 4
Newform subspaces 8
Sturm bound 480
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) = \( 5 \)
Nonzero newspaces: \( 4 \)
Newform subspaces: \( 8 \)
Sturm bound: \(480\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(\Gamma_1(40))\).

Total New Old
Modular forms 216 106 110
Cusp forms 168 94 74
Eisenstein series 48 12 36

Trace form

\( 94 q - 8 q^{2} + 20 q^{4} + 24 q^{5} + 128 q^{6} - 84 q^{7} - 308 q^{8} - 58 q^{9} - 244 q^{10} + 332 q^{11} + 456 q^{12} + 20 q^{13} + 1136 q^{14} + 524 q^{15} + 40 q^{16} + 176 q^{17} - 124 q^{18} - 1412 q^{19}+ \cdots - 46596 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{5}^{\mathrm{new}}(\Gamma_1(40))\)

We only show spaces with odd parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
40.5.b \(\chi_{40}(31, \cdot)\) None 0 1
40.5.e \(\chi_{40}(19, \cdot)\) 40.5.e.a 1 1
40.5.e.b 1
40.5.e.c 20
40.5.g \(\chi_{40}(11, \cdot)\) 40.5.g.a 16 1
40.5.h \(\chi_{40}(39, \cdot)\) None 0 1
40.5.i \(\chi_{40}(13, \cdot)\) 40.5.i.a 44 2
40.5.l \(\chi_{40}(17, \cdot)\) 40.5.l.a 2 2
40.5.l.b 4
40.5.l.c 6

Decomposition of \(S_{5}^{\mathrm{old}}(\Gamma_1(40))\) into lower level spaces

\( S_{5}^{\mathrm{old}}(\Gamma_1(40)) \cong \) \(S_{5}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)