Properties

Label 40.4.c
Level $40$
Weight $4$
Character orbit 40.c
Rep. character $\chi_{40}(9,\cdot)$
Character field $\Q$
Dimension $4$
Newform subspaces $1$
Sturm bound $24$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 40.c (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 5 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(24\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(40, [\chi])\).

Total New Old
Modular forms 22 4 18
Cusp forms 14 4 10
Eisenstein series 8 0 8

Trace form

\( 4 q - 4 q^{5} - 4 q^{9} + 80 q^{11} - 80 q^{15} - 80 q^{19} - 272 q^{21} + 276 q^{25} + 280 q^{29} + 384 q^{31} - 304 q^{35} - 224 q^{39} - 1048 q^{41} + 772 q^{45} + 492 q^{49} + 1920 q^{51} - 1616 q^{55}+ \cdots - 3152 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(40, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
40.4.c.a 40.c 5.b $4$ $2.360$ \(\Q(i, \sqrt{6})\) None 40.4.c.a \(0\) \(0\) \(-4\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+\beta _{1}q^{3}+(-1-\beta _{2}-\beta _{3})q^{5}+(2\beta _{1}+\cdots)q^{7}+\cdots\)

Decomposition of \(S_{4}^{\mathrm{old}}(40, [\chi])\) into lower level spaces

\( S_{4}^{\mathrm{old}}(40, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(10, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(20, [\chi])\)\(^{\oplus 2}\)