Defining parameters
Level: | \( N \) | \(=\) | \( 40 = 2^{3} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 40.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(24\) | ||
Trace bound: | \(3\) | ||
Distinguishing \(T_p\): | \(3\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_0(40))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 22 | 3 | 19 |
Cusp forms | 14 | 3 | 11 |
Eisenstein series | 8 | 0 | 8 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(2\) | \(5\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(1\) |
\(-\) | \(+\) | \(-\) | \(1\) |
\(-\) | \(-\) | \(+\) | \(1\) |
Plus space | \(+\) | \(2\) | |
Minus space | \(-\) | \(1\) |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_0(40))\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | A-L signs | $q$-expansion | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | 2 | 5 | |||||||
40.4.a.a | $1$ | $2.360$ | \(\Q\) | None | \(0\) | \(-6\) | \(-5\) | \(-34\) | $-$ | $+$ | \(q-6q^{3}-5q^{5}-34q^{7}+9q^{9}+2^{4}q^{11}+\cdots\) | |
40.4.a.b | $1$ | $2.360$ | \(\Q\) | None | \(0\) | \(4\) | \(5\) | \(16\) | $-$ | $-$ | \(q+4q^{3}+5q^{5}+2^{4}q^{7}-11q^{9}+6^{2}q^{11}+\cdots\) | |
40.4.a.c | $1$ | $2.360$ | \(\Q\) | None | \(0\) | \(10\) | \(-5\) | \(-18\) | $+$ | $+$ | \(q+10q^{3}-5q^{5}-18q^{7}+73q^{9}-2^{4}q^{11}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_0(40))\) into lower level spaces
\( S_{4}^{\mathrm{old}}(\Gamma_0(40)) \simeq \) \(S_{4}^{\mathrm{new}}(\Gamma_0(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_0(20))\)\(^{\oplus 2}\)