Properties

Label 40.4
Level 40
Weight 4
Dimension 67
Nonzero newspaces 5
Newform subspaces 7
Sturm bound 384
Trace bound 1

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) = \( 4 \)
Nonzero newspaces: \( 5 \)
Newform subspaces: \( 7 \)
Sturm bound: \(384\)
Trace bound: \(1\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(\Gamma_1(40))\).

Total New Old
Modular forms 168 79 89
Cusp forms 120 67 53
Eisenstein series 48 12 36

Trace form

\( 67 q + 4 q^{3} + 20 q^{4} - 9 q^{5} - 64 q^{6} - 8 q^{7} - 84 q^{8} + 63 q^{9} + 52 q^{10} + 108 q^{11} + 216 q^{12} + 10 q^{13} + 96 q^{14} - 196 q^{15} - 152 q^{16} - 138 q^{17} - 484 q^{18} - 316 q^{19}+ \cdots - 4572 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
40.4.a \(\chi_{40}(1, \cdot)\) 40.4.a.a 1 1
40.4.a.b 1
40.4.a.c 1
40.4.c \(\chi_{40}(9, \cdot)\) 40.4.c.a 4 1
40.4.d \(\chi_{40}(21, \cdot)\) 40.4.d.a 12 1
40.4.f \(\chi_{40}(29, \cdot)\) 40.4.f.a 16 1
40.4.j \(\chi_{40}(7, \cdot)\) None 0 2
40.4.k \(\chi_{40}(3, \cdot)\) 40.4.k.a 32 2

Decomposition of \(S_{4}^{\mathrm{old}}(\Gamma_1(40))\) into lower level spaces

\( S_{4}^{\mathrm{old}}(\Gamma_1(40)) \cong \) \(S_{4}^{\mathrm{new}}(\Gamma_1(1))\)\(^{\oplus 8}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(2))\)\(^{\oplus 6}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(4))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(5))\)\(^{\oplus 4}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(8))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(10))\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(20))\)\(^{\oplus 2}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(\Gamma_1(40))\)\(^{\oplus 1}\)