Properties

Label 40.2.k
Level $40$
Weight $2$
Character orbit 40.k
Rep. character $\chi_{40}(3,\cdot)$
Character field $\Q(\zeta_{4})$
Dimension $8$
Newform subspaces $1$
Sturm bound $12$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 40 = 2^{3} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 40.k (of order \(4\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 40 \)
Character field: \(\Q(i)\)
Newform subspaces: \( 1 \)
Sturm bound: \(12\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(40, [\chi])\).

Total New Old
Modular forms 16 16 0
Cusp forms 8 8 0
Eisenstein series 8 8 0

Trace form

\( 8 q - 2 q^{2} - 4 q^{3} - 8 q^{6} + 4 q^{8} - 10 q^{10} - 8 q^{11} + 12 q^{12} + 8 q^{16} - 8 q^{17} + 10 q^{18} + 12 q^{22} + 20 q^{26} + 8 q^{27} - 20 q^{28} + 20 q^{30} - 32 q^{32} - 16 q^{33} + 20 q^{35}+ \cdots - 6 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{2}^{\mathrm{new}}(40, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
40.2.k.a 40.k 40.k $8$ $0.319$ \(\Q(\zeta_{20})\) None 40.2.k.a \(-2\) \(-4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{4}]$ \(q-\beta_{7} q^{2}+(-\beta_{6}+\beta_{5}+\beta_{3}-1)q^{3}+\cdots\)