# Properties

 Label 40.2.f Level $40$ Weight $2$ Character orbit 40.f Rep. character $\chi_{40}(29,\cdot)$ Character field $\Q$ Dimension $4$ Newform subspaces $1$ Sturm bound $12$ Trace bound $0$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$40 = 2^{3} \cdot 5$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 40.f (of order $$2$$ and degree $$1$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$40$$ Character field: $$\Q$$ Newform subspaces: $$1$$ Sturm bound: $$12$$ Trace bound: $$0$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(40, [\chi])$$.

Total New Old
Modular forms 8 8 0
Cusp forms 4 4 0
Eisenstein series 4 4 0

## Trace form

 $$4 q - 4 q^{4} - 4 q^{6} - 4 q^{9} + O(q^{10})$$ $$4 q - 4 q^{4} - 4 q^{6} - 4 q^{9} + 4 q^{10} + 12 q^{14} - 8 q^{15} - 8 q^{16} + 12 q^{20} + 16 q^{24} - 4 q^{25} - 12 q^{30} + 16 q^{31} - 24 q^{34} + 4 q^{36} - 16 q^{40} - 24 q^{44} - 12 q^{46} + 4 q^{49} + 24 q^{50} + 16 q^{54} + 24 q^{55} + 8 q^{60} + 32 q^{64} + 24 q^{66} - 12 q^{70} - 48 q^{71} - 24 q^{74} + 24 q^{76} - 16 q^{79} - 24 q^{80} - 20 q^{81} - 24 q^{84} + 12 q^{86} + 24 q^{89} - 4 q^{90} + 36 q^{94} - 24 q^{95} - 16 q^{96} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(40, [\chi])$$ into newform subspaces

Label Dim $A$ Field CM Traces $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
40.2.f.a $4$ $0.319$ $$\Q(\sqrt{2}, \sqrt{-3})$$ None $$0$$ $$0$$ $$0$$ $$0$$ $$q+\beta _{1}q^{2}+\beta _{2}q^{3}+(-1+\beta _{3})q^{4}+(-\beta _{2}+\cdots)q^{5}+\cdots$$