Properties

Label 4.7.b.a
Level $4$
Weight $7$
Character orbit 4.b
Analytic conductor $0.920$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [4,7,Mod(3,4)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(4, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1])) N = Newforms(chi, 7, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("4.3"); S:= CuspForms(chi, 7); N := Newforms(S);
 
Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 4.b (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(0)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.920216334479\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-15}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 2\sqrt{-15}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta + 2) q^{2} - 4 \beta q^{3} + (4 \beta - 56) q^{4} + 10 q^{5} + ( - 8 \beta + 240) q^{6} + 40 \beta q^{7} + ( - 48 \beta - 352) q^{8} - 231 q^{9} + (10 \beta + 20) q^{10} - 124 \beta q^{11} + (224 \beta + 960) q^{12} + \cdots + 28644 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 112 q^{4} + 20 q^{5} + 480 q^{6} - 704 q^{8} - 462 q^{9} + 40 q^{10} + 1920 q^{12} + 2932 q^{13} - 4800 q^{14} + 4352 q^{16} - 9532 q^{17} - 924 q^{18} - 1120 q^{20} + 19200 q^{21} + 14880 q^{22}+ \cdots + 86596 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/4\mathbb{Z}\right)^\times\).

\(n\) \(3\)
\(\chi(n)\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
3.1
0.500000 1.93649i
0.500000 + 1.93649i
2.00000 7.74597i 30.9839i −56.0000 30.9839i 10.0000 240.000 + 61.9677i 309.839i −352.000 + 371.806i −231.000 20.0000 77.4597i
3.2 2.00000 + 7.74597i 30.9839i −56.0000 + 30.9839i 10.0000 240.000 61.9677i 309.839i −352.000 371.806i −231.000 20.0000 + 77.4597i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 4.7.b.a 2
3.b odd 2 1 36.7.d.c 2
4.b odd 2 1 inner 4.7.b.a 2
5.b even 2 1 100.7.b.c 2
5.c odd 4 2 100.7.d.a 4
8.b even 2 1 64.7.c.c 2
8.d odd 2 1 64.7.c.c 2
12.b even 2 1 36.7.d.c 2
16.e even 4 2 256.7.d.f 4
16.f odd 4 2 256.7.d.f 4
20.d odd 2 1 100.7.b.c 2
20.e even 4 2 100.7.d.a 4
24.f even 2 1 576.7.g.h 2
24.h odd 2 1 576.7.g.h 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
4.7.b.a 2 1.a even 1 1 trivial
4.7.b.a 2 4.b odd 2 1 inner
36.7.d.c 2 3.b odd 2 1
36.7.d.c 2 12.b even 2 1
64.7.c.c 2 8.b even 2 1
64.7.c.c 2 8.d odd 2 1
100.7.b.c 2 5.b even 2 1
100.7.b.c 2 20.d odd 2 1
100.7.d.a 4 5.c odd 4 2
100.7.d.a 4 20.e even 4 2
256.7.d.f 4 16.e even 4 2
256.7.d.f 4 16.f odd 4 2
576.7.g.h 2 24.f even 2 1
576.7.g.h 2 24.h odd 2 1

Hecke kernels

This newform subspace is the entire newspace \(S_{7}^{\mathrm{new}}(4, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 4T + 64 \) Copy content Toggle raw display
$3$ \( T^{2} + 960 \) Copy content Toggle raw display
$5$ \( (T - 10)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} + 96000 \) Copy content Toggle raw display
$11$ \( T^{2} + 922560 \) Copy content Toggle raw display
$13$ \( (T - 1466)^{2} \) Copy content Toggle raw display
$17$ \( (T + 4766)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} + 56687040 \) Copy content Toggle raw display
$23$ \( T^{2} + 109674240 \) Copy content Toggle raw display
$29$ \( (T - 25498)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} + 1754787840 \) Copy content Toggle raw display
$37$ \( (T - 1994)^{2} \) Copy content Toggle raw display
$41$ \( (T - 29362)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 463704000 \) Copy content Toggle raw display
$47$ \( T^{2} + 57154560 \) Copy content Toggle raw display
$53$ \( (T + 192854)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 6149722560 \) Copy content Toggle raw display
$61$ \( (T + 10918)^{2} \) Copy content Toggle raw display
$67$ \( T^{2} + 155350887360 \) Copy content Toggle raw display
$71$ \( T^{2} + 283280336640 \) Copy content Toggle raw display
$73$ \( (T - 288626)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 96538352640 \) Copy content Toggle raw display
$83$ \( T^{2} + 41678324160 \) Copy content Toggle raw display
$89$ \( (T - 310738)^{2} \) Copy content Toggle raw display
$97$ \( (T + 1457086)^{2} \) Copy content Toggle raw display
show more
show less