Properties

Label 4.7.b
Level $4$
Weight $7$
Character orbit 4.b
Rep. character $\chi_{4}(3,\cdot)$
Character field $\Q$
Dimension $2$
Newform subspaces $1$
Sturm bound $3$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 4 = 2^{2} \)
Weight: \( k \) \(=\) \( 7 \)
Character orbit: \([\chi]\) \(=\) 4.b (of order \(2\) and degree \(1\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 4 \)
Character field: \(\Q\)
Newform subspaces: \( 1 \)
Sturm bound: \(3\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{7}(4, [\chi])\).

Total New Old
Modular forms 4 4 0
Cusp forms 2 2 0
Eisenstein series 2 2 0

Trace form

\( 2 q + 4 q^{2} - 112 q^{4} + 20 q^{5} + 480 q^{6} - 704 q^{8} - 462 q^{9} + 40 q^{10} + 1920 q^{12} + 2932 q^{13} - 4800 q^{14} + 4352 q^{16} - 9532 q^{17} - 924 q^{18} - 1120 q^{20} + 19200 q^{21} + 14880 q^{22}+ \cdots + 86596 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{7}^{\mathrm{new}}(4, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
4.7.b.a 4.b 4.b $2$ $0.920$ \(\Q(\sqrt{-15}) \) None 4.7.b.a \(4\) \(0\) \(20\) \(0\) $\mathrm{SU}(2)[C_{2}]$ \(q+(2+\beta )q^{2}-4\beta q^{3}+(-56+4\beta )q^{4}+\cdots\)