Properties

Label 4.6
Level 4
Weight 6
Dimension 1
Nonzero newspaces 1
Newform subspaces 1
Sturm bound 6
Trace bound 0

Downloads

Learn more

Defining parameters

Level: \( N \) = \( 4 = 2^{2} \)
Weight: \( k \) = \( 6 \)
Nonzero newspaces: \( 1 \)
Newform subspaces: \( 1 \)
Sturm bound: \(6\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{6}(\Gamma_1(4))\).

Total New Old
Modular forms 4 1 3
Cusp forms 1 1 0
Eisenstein series 3 0 3

Trace form

\( q - 12 q^{3} + 54 q^{5} - 88 q^{7} - 99 q^{9} + 540 q^{11} - 418 q^{13} - 648 q^{15} + 594 q^{17} + 836 q^{19} + 1056 q^{21} - 4104 q^{23} - 209 q^{25} + 4104 q^{27} - 594 q^{29} + 4256 q^{31} - 6480 q^{33}+ \cdots - 53460 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{6}^{\mathrm{new}}(\Gamma_1(4))\)

We only show spaces with even parity, since no modular forms exist when this condition is not satisfied. Within each space \( S_k^{\mathrm{new}}(N, \chi) \) we list available newforms together with their dimension.

Label \(\chi\) Newforms Dimension \(\chi\) degree
4.6.a \(\chi_{4}(1, \cdot)\) 4.6.a.a 1 1